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Life testing experiments have gained popularity in recent times. The main aim

of a life testing experiment is to measure one or more reliability characteristics of

the product under consideration. In a very classical form of life testing experiment,

certain number of identical items are placed on the test under normal operating

conditions and the ‘time to failure’ of all the items are recorded. One of the main

problems of the classical life testing experiment is the long experimental time. To

cope with this problem different censoring schemes are proposed in the literature.

The most popular censoring schemes are Type-I and Type-II censoring schemes.

In Type-I censoring scheme, experimenter reduces the experimental time by termi-

nating the experiment at a pre-fixed time, whereas in Type-II censoring scheme,

experiment terminates as soon as a pre-specified number of failures occur. Different

type of mixtures of these two basic censoring schemes, known as hybrid censoring

schemes, are introduced in the literature by several authors. Progressive censor-

ing schemes are proposed to remove experimental units in working conditions from

the experiment before the termination of the experiment. However, there may be

few failures or even no failure before the terminating time in the Type-I censoring



scheme, which creates difficulty in further statistical analysis. On the other hand,

the main drawback of the Type-II censoring scheme is the possibility of long dura-

tion of experimental time. The hybrid and progressive censoring schemes inherit one

or both of these problems. In the literature different censoring schemes have been

studied under different lifetime distributions. In this context, readers are referred

to the text by Lawless [93] and the review articles by Balakrishnan and Kundu [28],

and Balakrishnan [9].

Accelerated life test is a very useful technique for testing reliability character-

istics of durable products. In an accelerated life test the product is tested under

one or more extreme environmental conditions which affect the lifetime of the prod-

uct negatively and thus an accelerated life test helps in obtaining more failures in

an affordable time. This type of factors which affect lifetime of the products are

called stress factors. Step-stress life test is a special type of accelerated life test and

allows the experimenter to change the stress levels during the experiment. How-

ever, in most of the cases a step-stress life test is done with censoring schemes.

Though different lifetime distributions have been studied in the literature, it may

be mentioned that the one-parameter exponential distribution has been explored

most extensively. A review of step-stress model under different censoring schemes

is provided by Balakrishnan [10].

Childs et al. [49] considered the maximum likelihood estimators of the unknown

parameters of a two-parameter exponential model when the data are hybrid Type-I

censored. The exact distribution of the maximum likelihood estimators of unknown

parameters and of the quantiles were provided in this article. They also discussed

different methods for constructing confidence intervals of the unknown parameters

and compared them based on extensive simulation study. In Chapter 2, we have ad-

dressed the problem of estimation of model parameters of two-parameter exponential

distribution in presence of hybrid Type-II censoring scheme. The distributions of

maximum likelihood estimators of the scale and the location parameters have been
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derived. Based on the assumption of the monotonicity of the cumulative distribution

function of the maximum likelihood estimator of the scale parameters, approximate

confidence interval of the scale parameter has been derived in this dissertation. How-

ever, we could not prove this monotonicity assumption formally, the same has been

verified on the basis of extensive numerical simulations. Percentile and bias cor-

rected Bootstrap confidence intervals have also been considered. Simulations have

been done to judge the performance of the different confidence intervals. Analysis

of a data set has been performed for illustrative purpose.

Extensive work has been done on different censoring schemes by several authors.

Lawless [93], Balakrishnan [9], Balakrishnan and Kundu [28] and references cited

therein may be mentioned in this regard. However, most of the analysis has been

performed under the frequentist context and very little attention is paid to Bayesian

analysis. Moreover, it is worth mentioning that the analysis of different hybrid and

progressive censoring schemes is not very easy even when lifetimes of the experi-

mental units are assumed to have an exponential distribution. Though finding the

maximum likelihood estimates are not difficult, construction of the confidence inter-

val involves a numerical computation. It seems that Bayesian approach is a natural

choice in this case. Draper and Guttman [62] considered Bayesian analysis of hybrid

life tests with one-parameter exponential failure times. In Chapter 3, an attempt

has been made to address the Bayesian inference of the unknown parameters of a

two-parameter exponential distribution when the data are obtained from different

hybrid and progressive censoring schemes. We notice that the Bayes estimate and

credible interval of some parametric function cannot be found in explicit form in

general. A simulation based procedure has been proposed to compute Bayes esti-

mate as well as to construct credible intervals. Extensive simulation study has been

carried out to understand the effectiveness of the proposed procedure. Analysis of

a data set has been performed for illustrative purpose.

Simple step-stress models under different censoring schemes are extensively stud-

vii



ied based on the assumption that the lifetime of the experimental units follow ex-

ponential distributions with different scale parameters at different stress levels. Dif-

ferent models have been proposed to relate cumulative distribution function under

different stress levels to that under step-stress pattern by several authors. Among

them the most popular one is cumulative exposure model and most of the litera-

ture is developed based on this model assumption. Interested readers are referred

to the review article by Balakrishnan [10] in this respect. In all these cases the

exact distributions of the unknown parameters are obtained, and they can be used

to construct exact confidence intervals. However, it is observed that the exact dis-

tribution and therefore the construction of associated confidence interval is quite

complicated in all these cases. It may be mentioned that although extensive work

has been done on step-stress models, not much attention has been paid to develop

the inference imposing the order restriction on the mean lifetime of the product at

different stress levels, which is a very natural choice for simple step-stress life test.

Balakrishnan et al. [13] considered the order restricted inference for step-stress mod-

els when lifetimes are independently and exponentially distributed, and the data are

Type-I or Type-II censored. It is observed that obtaining the exact joint distribu-

tion of the maximum likelihood estimators is not easy. It is not immediate that

how this method can be extended for more general censoring schemes. It seems that

Bayesian analysis is a natural choice in these cases. Though some work have been

done on the Bayesian inference of the step-stress model, see for example Drop et al.

[64], Lee and Pan [94], Leu and Shen [95] or Fan et al. [71], none of them dealt

with the ordered restricted inference. We have addressed order restricted Bayesian

inference of the unknown parameters of a simple step-stress model under different

censoring schemes when the lifetimes of the experimental units are assumed to be

exponentially distributed in Chapter 4. We have assumed fairly flexible priors on

the unknown parameters. It has been observed that in most of the cases the Bayes

estimates of the unknown parameters cannot be obtained in explicit form. We have
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proposed to use the importance sampling technique to compute Bayes estimate and

also to construct associated credible interval. Extensive Monte Carlo simulations

have been performed to see the effectiveness of the proposed method in case of

Type-I censoring scheme. The analysis of two data sets have been performed for

illustrative purposes.

Though analysis of one-parameter exponential model in case of simple step-stress

set up, under the cumulative exposure model formulation has been performed quite

extensively in the literature, not much work has been done in case of two-parameter

exponential distribution. In Chapter 5, an attempt has been made to address the

same issue. We have analyzed a simple step-stress model based on the assump-

tion that the lifetimes of the experimental units follow two-parameter exponential

distribution. The analysis has been performed based on the assumption that the

model satisfies cumulative exposure model assumptions, and the data are Type-II

censored. One of the justifications for incorporating the location parameter is the

presence of possible bias in the experimental data due to calibration. It is observed

that the maximum likelihood estimators of the unknown parameters do not always

exist. Whenever they exist, they can be obtained in closed form. We have obtained

the exact conditional distributions of the maximum likelihood estimators of the scale

parameters. Since the conditional distributions of the maximum likelihood estima-

tors of the scale parameters depend on the unknown location parameter, it is not

possible to obtain the exact confidence intervals of the scale parameters based on

the exact conditional distributions. We have proposed to use the Fisher information

matrix to construct the asymptotic confidence intervals of the unknown scale param-

eters, assuming the location parameter to be known. We have also proposed to use

the parametric bootstrap method for constructing confidence interval for the scale

parameters, and it is very easy to implement it in practice. Extensive simulations

have been performed to compare the performances of the different methods. One

data analysis has been performed for illustrative purposes.
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Analysis of simple step-stress model has also been performed when lifetimes

have other distributions such as Weibull distribution, log-normal distribution, and

generalized exponential distribution. Properties of the cumulative exposure model

under Weibull distribution was studied in Komori [86]. Inferential aspects of step-

stress model under Type-I and Type-II censoring schemes were addressed by Bai

and Kim [6] and Kateri and Balakrishnan [83], respectively, when the distribution

of lifetimes is assumed to be Weibull. In all these cases it was assumed that the

model satisfies cumulative exposure model assumptions. However, it is noticed that

maximum likelihood estimators of the unknown parameters do not exist in close

form and therefore finding maximum likelihood estimators of the unknown parame-

ters involves extensive computation. Most of the further statistical analysis mainly

relies on asymptotic distribution of the maximum likelihood estimators. Moreover,

extension of the analysis provided in Bai and Kim [6] and Kateri and Balakrish-

nan [83] are not immediate for more general censoring situations. It seems that

Bayesian analysis is a natural choice in this case also. It may be worth mentioning

that though some inferential issues on the parameters of Weibull distribution under

the step-stress model have been addressed, no attention has been paid to develop

the inference imposing the order restriction on the mean lifetime of the experimental

units at different stress levels. Again a frequentist approach to the order restricted

inference for parameters of Weibull distribution under step-stress model will be quite

involved and hence, in this case also Bayesian approach is a natural alternative. In

Chapter 6, we consider a simple step-stress model when the lifetimes are assumed

to have two-parameter Weibull distribution. The analysis has been performed un-

der the assumption that the model satisfies Khamis-Higgins model (see Khamis and

Higgins [85]) assumptions. We have assumed quite flexible priors on the unknown

parameters. It has been noticed that the Bayes estimators do not exist in close form

in most of the cases. Therefore, an importance sampling based procedure has been

proposed to calculate Bayes estimate and to construct Bayesian credible interval in
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both the ordered restricted and unrestricted cases. Extensive simulations have been

performed to examine performance of the proposed methods. Analysis of a data set

has been also performed for illustrative purpose.
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Chapter 1

Introduction

1.1 Life Testing Experiments and its Difficulties

Life testing experiments have gained popularity in recent times. The main aim of

a life testing experiment is to measure one or more reliability characteristics of the

product under consideration. In a very classical form of life testing experiment,

certain number of identical items are placed on the test under normal operating

conditions and the ‘time to failure’ of all the items are recorded. The definition of

‘time to failure’ depends on the item considered. For examples, ‘time to failure’ may

be the time after which a minimum satisfactory performance is not achieved for an

electronic equipment, or it may be the number of revolution before malfunctioning

for a ball bearing. For testing the lifetime of a electric bulb ‘time to failure’ is

the hours it works before it is fused. The failure may occur due to any one or

combination of more than one of the following reasons: (a) careless planning, (b)

substandard raw materials, (c) random cause, (d) wear-out or fatigue caused by the

aging of the item. As the time to failure can occur at any time, it is supposed that

the time to failure is a random variable having a CDF.

However, due to the substantial improvement of the science and technology,

the most of the products nowadays are quite durable and hence, one of the major
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difficulties of the life testing experiments is the time duration of the experiment.

Also the most of the life testing experiments are destructive in nature, i.e., items

put on the test cannot be used for future purpose. To overcome these problems,

experimenters use alternative techniques. Among them, censoring and ALT are

playing important roles.

Censoring simply means truncation of the experiment before all the items put on

the test fail. Depending the truncation criteria there exists different types of censor-

ing schemes. In an ALT items are put on the test under some extreme operational

conditions which affect the lifetime of the item under consideration negatively, i.e.,

items are failed more quickly than the normal conditions. The factors which affect

the lifetime of an item are called the stress factors. For example, voltage, temper-

ature, humidity could be stress factors for an electronic equipment. ALT enables

the experimenter to get more failures within a shorter time period and hence cut

down the experimental time. SSLT, which provides freedom of changing the stress

level during the experiment, is a special type of ALT. In this dissertation we will

consider either one or the combination of both censoring and SSLT techniques. We

will briefly discuss different censoring schemes and SSLT in the next two sections.

1.2 Censoring Schemes

Censoring is a very useful technique in life testing experiments. This is a technique

to truncate the experiment in a well planned manner before the failure of all the

items put on the test. Censoring can be done with respect to a pre-specified time

or pre-specified number of failures or a combination of both. Depending upon the

censoring criteria there are different types of censoring schemes. Consider the fol-

lowing experiment. Let n be a positive integer. A total of n items are put on the life

testing experiment, and the time to failure of the items are recorded in a chronolog-

ical order. Let t1:n < t2:n < . . . < tn:n be the ordered failure times of the items. In
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all the cases it is assumed that the failed items are not replaced. In the next three

subsections we will discuss some of the popular censoring schemes.

1.2.1 Basic Censoring Schemes

There are two very basic censoring schemes, viz., CS-I and CS-II. They are the most

common and popular censoring schemes.

Type-I Censoring Scheme

Let τ be a prefixed time. In a CS-I the experiment is terminated at the time τ .

Hence, under this censoring scheme data set is of any one of the following forms:

(a) t1:n < t2:n < . . . < tN :n < τ ,

(b) there is no failure before the time τ ,

where N ∈ {1, 2, . . . , n} is the number of failures before the time τ . Note that

experimental time is fixed under this censoring scheme, but number of failures varies

from experiment to experiment. Clearly, pre-fixed experimental duration is the

advantage of this censoring scheme. However, wrongly chosen τ may end up in

a few or even no failure before the time τ . If there were few failures, efficiency

of further statistical analysis will be quite poor. Though statistical inference is

possible in case of no failure, the results may not be informative, see Meeker and

Escobar [107] and Nelson [114]. This is a major drawback of CS-I censoring scheme.

Interested readers are referred to Lawless [93], Miller [110], and Bain and Englehardt

[8] in this respect.

Type-II Censoring Scheme

Let r(≤ n) be a prefixed positive integer. In a CS-II the experiment is terminated

as soon as the r-th failure occurs. Under a CS-II the data set looks like
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(a) t1:n < t2:n < . . . < tr:n.

On contrast to the previous censoring scheme, in this case number of failures is

prefixed, but the experimental time varies from experiment to experiment. Clearly,

pre-fixed number of failures is the main advantage, whereas no upper bound of

the experimental duration is the main disadvantage of CS-II. Interested readers are

referred to Lawless [93], Miller [110], and Bain and Englehardt [8].

1.2.2 Hybrid and Generalized Hybrid Censoring Schemes

HCSs are mixture of these two basic censoring schemes. Here we discuss the exper-

imental setup of the HCS-I, HCS-II, GHCS-I, and GHCS-II.

Hybrid Type-I Censoring Scheme

Epstein [69] first introduced HCS-I and this censoring scheme can be described as

follows. Let r(≤ n) be a pre-chosen positive integer, and τ be a pre-determined

time. The test is terminated when r-th item fails or time τ is reached on the test,

whichever is earlier, i.e., the termination time of the experiment is τ ∗ = min{tr:n, τ}.

For HCS-I, the available data will be of the form

(a) t1:n < t2:n < . . . < tr:n if τ ∗ = tr:n,

(b) t1:n < t2:n < . . . < tN :n if τ ∗ = τ ,

(c) there is no failure before the time τ ,

where N ∈ {1, . . . , r− 1} is the number of failures before the time τ . Note that the

maximum duration of the experiment under this censoring scheme is τ and this is

the main advantage of this censoring scheme. Like the CS-I, the experiment can be

terminated with few or no failure before the time τ , and this is a serious disadvantage

of HCS-I.
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Hybrid Type-II Censoring Scheme

To overcome the disadvantage of the HCS-I by ensuring a minimum number of

failures, Childs et al. [51] proposed HCS-II. Let r(≤ n) be a pre-chosen positive

integer, and τ be a pre-determined time. The test is terminated when r-th item

fails or time τ is reached on the test, whichever is later, i.e., the termination time of

the experiment is τ ∗ = max{tr:n, τ}. For HCS-II, the available data will be of the

form

(a) t1:n < t2:n < . . . < tr:n if τ ∗ = tr:n,

(b) t1:n < t2:n < . . . < tN :n if τ ∗ = τ ,

where N ∈ {0, 1, . . . , n} is the number of failures before the time τ . Note that in

the second case N is restricted to the set {r, r+ 1, . . . , n}. However, this censoring

scheme has no upper bound on the time duration which is the main disadvantage

of HCS-II.

Generalized Hybrid Type-I Censoring Scheme

To overcome the drawback of HCS-I and HCS-II, Chandrasekar et al. [45] proposed

GHCS-I and GHCS-II. Let r and k be two prefixed positive integers satisfying k <

r ≤ n and τ ∈ (0,∞) be a predetermined time. If the k-th failures occurs before

the time τ , the experiment is terminated at min{tr:n, τ}. If the k-th failure occurs

after the time τ , the experiment is terminated at the time tk:n. Note that GHCS-I

modifies HCS-I by allowing the experiment to continue beyond the time τ . Under

this censoring scheme the experimenter would like to observe r failures but is willing

to accept a bare minimum of k failures.

Generalized Hybrid Type-II Censoring Scheme

This censoring scheme was also introduced by Chandrasekar et al. [45]. Let r (≤ n)

be a prefixed positive integer and τ1, τ2 ∈ (0,∞) be two pre-specified times such that
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τ1 < τ2. If the r-th failure occurs before the time τ1, the experiment is terminated at

the time τ1. If the r-the failure occurs between the times τ1 and τ2, the experiment

stops at the time tr:n. Otherwise the experiment is terminated at the time τ2. Thus

GHCS-II modifies the HCS-II by reducing the experimental time by τ2 from above.

Interested readers are referred to the review article by Balakrishnan and Kundu [28]

in this regard.

1.2.3 Progressive Censoring Schemes

The PCSs enable the experimenter to remove unit at working condition from the

test before the termination of the experiment. This type of working unit can be

used in further testing.

Progressive Type-I Censoring Scheme

Let k (≤ n) be an pre-specified positive integer. Let τ1 < τ2 < . . . < τk be pre-

determined k time points, and R1, . . . , Rk−1 be pre-specified (k − 1) non-negative

integers. Let N1 be the number of failures before the time τ1. R1 items are ran-

domly chosen from the remaining (n−N1) units and removed from the test at the

time point τ1. The experiment continues and suppose N2 is the number of failures

between the times τ1 and τ2. Out of (n−N1−R1−N2) units still on the experiment,

randomly chosen R2 units are removed form the test at the time point τ2, and so

on. Finally at the time point τk all the remaining items, say Rk, are censored and

the experiment is terminated. Note that a PCS-I is feasible if the number of units

still on the test at each censoring time is larger than the number of items planned

to censor at that time point, and feasibility of such a censoring scheme is always

assumed, see Balakrishnan [9]. Clearly, the experiment termination time is fixed at

τk, and we have the relation
∑k

j=1(Nj + Rj) = n.
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Progressive Type-II Censoring Scheme

Let k (≤ n) be an pre-specified positive integer. Let R1, R2, . . . , Rk be k prefixed

non-negative integers satisfying k +
∑k

j=1 Rj = n. At the point of the first failure,

t1:n, randomly selected R1 items are removed form the remaining (n − 1) units.

Similarly, randomly selected R2 units out of (n−2−R1) remaining items are removed

at the point of second failure, t2:n, and so on. Finally, at the point of k-th failure,

tk:n, remaining Rk units are censored form the test, and the experiment terminates.

Progressive Hybrid Type-II Censoring Scheme

Let k (≤ n) be an pre-specified positive integer, and R1, R2, . . . , Rk be k prefixed

non-negative integers such that k +
∑k

j=1 Rj = n. Let τ be a predetermined time.

At the time of first failure, t1:n, randomly selected R1 items are removed form the

remaining (n − 1) items. At the time of the second failure, t2:n, randomly selected

R2 items out of remaining (n − 2 − R1) items are censored, and so on. If the k-th

failure occurs before the time point τ , remaining Rk items are removed from the

test at the time tk:n, and the experiment terminates. On the other hand if there are

fewer failures than k before the time τ , the experiment is terminated at the time

point τ by removing all the remaining items form the test. Clearly, in the second

case the number of items censored at the last stage is R∗
N = n−N−

∑k
j=1 Rj, where

0 ≤ N < k is the number of failures before the time τ . Hence, under the PHCS-II

the observed data will be of the form

(a) t1:n < . . . < tk:n if tk:n < τ ,

(b) t1:n < . . . < tN :n if tN :n < τ < tN+1:n.

For more detailed description of PHCS-II, readers are referred to Kundu and Joarder

[92].
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1.3 Accelerated Life Tests

In many life testing experiments it is very difficult to observe sufficient number of

failures in an affordable time under the normal operating conditions. This is due to

the rapid increase in reliability of the products to cope with the competition. ALTs

are introduced to overcome this problem by allowing the experimenter to conduct

the experiment under one or more extreme operating conditions and thus increasing

the number of failures within an affordable experimental time. The factors which

directly effect the lifetime of the product under consideration are called stress factors,

e.g., voltage, temperature, humidity could be some of the stress factors for testing

an electronic equipment.

A special case of ALT is SSLT, which enables the experimenter to change the lev-

els of a stress factor in a sequential manner during the experiment. Let s1, s2, . . . , sk

be k predetermined stress levels and τ1 < τ2 < . . . < τk−1 be (k − 1) pre-specified

time points. In a very basic form of SSLT, n units are put on the test at an ini-

tial stress level s1. At the time point τ1, the stress level is changed to s2 form s1.

Similarly the stress level is changed to s3 form s2 at the time point τ2 and so on.

Finally at the time point τk−1, the stress level is changed form sk−1 to sk. Experi-

ment stops when all the items put on the test fail. The failure times are recorded

in a chronological order. If we assume that the number of failures before the time

τi, i = 1, 2, . . . , k − 1, is ni satisfying n1 ≤ n2 ≤ . . . ≤ nk−1, then a typical data

set looks like t1:n < . . . < tn1:n < τ1 < tn1+1:n < . . . < tn2:n < τ2 < . . . < τk−1 <

tnk−1+1 < . . . < tn:n. A SSLT is called simple SSLT if k = 2, i.e., there are only two

stress levels. However, in most of the situations a SSLT is performed in presence of

a censoring scheme and hence, we briefly present the form of observed data in the

next subsection.
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1.3.1 Form of Data under Different Censoring Schemes

A total of n units is placed on a simple SSLT experiment. The stress level is

changed from s1 to s2 at a prefixed time τ1, and τ2 > τ1 is another prefixed time.

The positive integer r(≤ n) is also pre-fixed. The role of r and τ2 will be clear later.

Let the ordered lifetimes of these items be denoted by t1:n < . . . < tn:n. Let N1 and

N2 denote the number of failures before the time τ1 and between time τ1 and τ2,

respectively.

Type-I Censoring Scheme

The test is terminated when the time τ2 on the test has been reached. For Type-I

censoring the available data is of the form

(a) τ1 < t1:n < . . . < tN2:n < τ2,

(b) t1:n < . . . < tN1:n < τ1 < tN1+1:n < . . . < tN1+N2:n < τ2,

(c) t1:n < . . . < tN1:n < τ1 < τ2.

Type-II Censoring Scheme

The test is terminated when the r-th failure takes place, i.e., it is terminated at a

random time tr:n. In this case the available data is of the form

(a) τ1 < t1:n < . . . < tr:n,

(b) t1:n < . . . < tN1:n < τ1 < tN1+1:n < . . . < tr:n; N1 < r,

(c) t1:n < . . . < tr:n < τ1 < τ2.

Type-I Hybrid Censoring Scheme

In this case, the test is terminated at a random time τ ∗ = min{tr:n, τ2}. For HCS-I,

the available data is of the form

(a) τ1 < t1:n < . . . < tr:n if tr:n < τ2,
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(b) t1:n < . . . < tN1:n < τ1 < tN1+1:n < . . . < tr:n if tr:n < τ2, N1 < r,

(c) t1:n < . . . < tr:n < τ1 if tr:n < τ2,

(d) τ1 < t1:n < . . . < tN2:n < τ2 if tr:n > τ2,

(e) t1:n < . . . < tN1:n < τ1 < tN1+1:n < . . . < tN1+N2:n < τ2 if tr:n > τ2, N1 < r,

(f) t1:n < . . . < tN1:n < τ1 < τ2 if tr:n > τ2.

Type-II Hybrid Censoring Scheme

In HCS-II, the experiment is terminated at a random time τ ∗ = max{tr:n, τ2}. In

this case the available data is of the form

(a) τ1 < t1:n < . . . < tr:n if tr:n ≥ τ2,

(b) t1:n < . . . < tN1:n < τ1 < tN1+1:n < . . . < tr:n if tr:n ≥ τ2, N1 < r,

(c) τ1 < t1:n < . . . < tN2:n < τ2 if tr:n < τ2,

(d) t1:n < . . . < tN1:n < τ1 < tN1+1:n < . . . < tN1+n2:n < τ2 if tr:n < τ2,

(e) t1:n < . . . < tN1:n < τ1 < τ2 if tr:n < τ2.

Type-II Progressive Censoring Scheme

R1, . . . , Rm are m prefixed non-negative integers such that

m +
m∑

j=1

Rj = n.

At the time of the first failure, say t1:n, R1 units are chosen at random from the

remaining (n−1) units and they are removed from the experiment. Similarly, at the

time of the second failure, say t2:n, R2 units are chosen at random from the remaining

(n−R1 − 2) surviving units and they are removed from the test, and so on. Finally

at the time of the mth failure, say tm:n, the rest of the Rm = n − m −
∑m−1

j=1 Rj

units are removed and the experiment is stopped. In this case the available data is

of the form

(a) τ1 < t1:n < . . . < tm:n if τ1 < t1:n,

(b) t1:n < . . . < tN1:n < τ1 < tN1+1:n < . . . < tm:n if t1:n < τ1 < tm:n,

(c) t1:n < . . . < tm:n < τ1 if τ1 ≥ tm:n.
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1.3.2 Existing Models

Let us assume that the CDF of the lifetime at the stress level si is Fi(·). To analyze

a data observed under a SSLT, one needs a model which relates the CDFs of lifetime

under different stress levels to the CDF of lifetime of the product under the SSLT.

Several models have been proposed in the literature to describe this type of relation-

ship. Among them the most popular and commonly used one is CEM, first proposed

by Seydyakin [126] and later quite extensively studied by Nelson [112]. This model

assumes that the remaining lifetime of an unit depends only on the cumulative expo-

sure accumulated and current stress level, regardless of how the exposure is actually

accumulated. Moreover, at a fixed stress level unit will fail according to the CDF

of that stress level only starting at previous fraction accumulated. To construct the

CEM, which ensures the continuity of the resultant CDF, let us consider a k step

SSLT, where stress levels are changed at prefixed time τ1 < τ2 < . . . < τk−1. Clearly,

the units under test will fail according to the CDF of the stress level s1 till the time

τ1 and hence,

F (t) = F1(t) for 0 ≤ t < τ1.

The effect of change of the stress level from s1 to s2 at the time point τ1 is equivalent

to change the CDF of stress level s2 from F2(t) to F2(t− h1), i.e.,

F (t) = F2(t− h1) for τ1 ≤ t < τ2,

where the shifting parameter h1 is the solution of the equation

F2(τ1 − h1) = F1(τ1).

Proceeding in this way, finally one will have, with τ0 = 0 and τk = ∞

F (t) = Fi(t− hi−1) for τi−1 ≤ t < τi, i = 1, 2, . . . , k, (1.1)

where h0 = 0 and hi, i = 1, 2, . . . , k − 1, is the solution of the equation

Fi+1(τi − hi) = Fi(τi − hi−1).

Let us consider an example of CEM. Here we assume k = 3 and the lifetime of the

units under consideration is exponentially distributed with scale parameter (mean)
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Figure 1.1: Pictorial presentation of CDF under CEM.

θi at the stress level si, i = 1, 2, 3, i.e., the CDF of the lifetime at the stress level

si is given by

Fi(t) =





0 if t < 0

1 − e
− t

θi if t ≥ 0.

The CDF of the lifetime under the assumption of CEM can be obtained as follows.

Till the time τ1, it is identically same as the CDF of lifetime at the stress level s1.

For t ∈ (τ1, τ2), F (t) = F2(t− h1), where h1 is the solution of the equation

1 − e
− τ1

θ1 = 1 − e
− τ1−h1

θ2 ,

which implies h1 = (1−θ2/θ1)τ1. Similarly, for t ∈ (τ2,∞), the CDF of lifetime under

the SSLT is given by F (t) = F3(t−h2), where h2 = (1−θ3/θ2)τ2 +(1/θ2−1/θ1)θ3τ1.

Hence, finally we have

F (t) =





1 − e
− t

θ1 if 0 ≤ t < τ1

1 − e
− t−τ1

θ2
− τ1

θ1 if τ1 ≤ t < τ2

1 − e
− t−τ2

θ3
− τ2−τ1

θ2
− τ1

θ1 if t ≥ τ2.

(1.2)
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The process of obtaining CDF under the assumption of CEM is depicted in the

Figure 1.1, where we take θ1 = 40, θ2 = 20, θ3 = 5, τ1 = 15, and τ2 = 35.

The TRVM was proposed by DeGroot and Goel [61] for a simple SSLT and

assumes that the effect of the change of the stress level from s1 to s2 at the time

τ1 is equivalent to multiply the remaining life of the unit by an unknown positive

constant, say α, which depends on both the stress levels. Mathematically, if T

denote the lifetime under the stress level s1, then the lifetime, �T , under the simple

SSLT is given by

�T =





T if T ≤ τ1

τ1 + α(T − τ1) if T > τ1.
(1.3)

Note that for a CEM the CDF of the lifetime under different stress level may be fully

unrelated. However, for the TRVM, they are related to each other by (1.3). DeGroot

and Goel [61] considered the optimal design in the Bayesian framework under the

assumption that the distribution of T is exponential, and the stress changing time

is different for different experimental units.

The TFRM was first proposed by Bhattacharyya and Soejoeti [42] for simple

SSLT and then generalized by Madi [102] for the multiple step SSLT. Bhattacharyya

and Soejoeti [42] assumed that the effect of switching the stress level form s1 to s2

is to multiply the failure rate of the stress level s1 by an unknown constant α, i.e.,

�λ(t) =





λ(t) if t ≤ τ1

αλ(t) if t > τ1,
(1.4)

where λ(·) and �λ(·) are the failure rate at the stress level s1 and that under simple

SSLT. It is worth mentioning here that the TRVM and TFRM will coincide if α = 1

or the lifetime distribution under the stress level has lack of memory property, see

Rao [124]. Madi [102] generalized the concept of Bhattacharyya and Soejoeti [42],

incorporating multi-step SSLT. They assumed that the failure rate, �λ(t), under SSLT
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is given by

�λ(t) =

(
i−1∏

j=0

αj

)
λ(t) if τi−1 ≤ t < τi i = 1, 2, . . . , k,

where τ0 = 0, τk = ∞, α0 = 1 and αi > 0 for i = 1, 2, . . . , k − 1. If we take

λ(t) = βxβ−1/θ, i.e., the lifetime under the stress level s1 has a Weibull distribution

with shape parameter β and scale parameter θ, the CDF of the lifetime under the

step-stress pattern is given by

F (t) = 1 − e−(tβ−τβi−1)/θi−
∑i−1

j=1(τ
β
j −τβj−1)/θj if τi−1 < t ≤ τi, i = 1, 2, . . . , k,

(1.5)

where θ1 = θ and θi = θ/
(∏i−1

j=1 αj

)
for i = 2, 3, . . . , k. This model was also pro-

posed by Khamis and Higgins [85] when lifetime at the stress level si has a Weibull

distribution with common shape parameter β and different scale parameter θi and

was named as KHM. Xu and Tang [140] showed that the KHM is actually a spe-

cial case of TFRM. Note that the CDF of Weibull distribution coincides with the

CDF of exponential distribution under power transformation, which is extensively

used to prove many properties of Weibull distribution. However, the CDF of CEM

for Weibull distribution does not coincide with CDF of CEM for the exponential

distribution under power transformation, whereas CDF under KHM assumptions

coincides with CDF of CEM for exponential distribution under the same transfor-

mation. This is main advantage of the KHM over the CEM.

1.4 Distributions Used in this Dissertation

Several distributions have been used in the literature to describe the life pattern

of different items. Some popular distributions in the domain of reliability are ex-

ponential, Weibull, gamma, log-normal, and extreme value distributions. We have

mainly used exponential and Weibull distributions in this dissertation as the lifetime

distribution. We have also used gamma distribution in different contexts . Hence,
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in this section we provide a brief discussion on these three distributions.

Exponential Distribution

One-parameter exponential distribution is characterized by PDF

f(t) = λ e−λt for t > 0,

where λ > 0. The corresponding CDF and HRF are given by

F (t) = 1 − e−λt for t > 0, h(t) = λ for t > 0,

respectively. The mean and variance of this distribution function are
1

λ
and

1

λ2
,

respectively, while p-th (for 0 < p < 1) percentile point is −
ln(1 − p)

λ
. The distri-

bution where λ = 1 is called standard exponential distribution. This distribution is

the first widely used lifetime distribution. The reasons of its popularity are simple

representation of its PDF, CDF, and HRF, availability of simple statistical methods

for data analysis, and ability to adequately fit the lifetime of several types of man-

ufactured items. However, the constant hazard rate and sensitivity of inferential

procedures when original model departs from the exponential model lead to caution

in the use of this distribution. It may be mentioned here that this distribution has

lack of memory property, which implies that for t1 > 0, t2 > 0

P (X > t1 + t2 |X > t1) = P (X > t2),

if the random variable X has a exponential distribution.

Two-parameter exponential distribution is characterized by PDF

f(t) = λ e−λ(t−µ) for t > µ,

where ∞ < µ < ∞ and λ > 0. In this case µ is called the location parameter,

whereas λ is known as the scale parameter. Note that if X has a two-parameter

exponential distribution, X − µ is distributed as a one-parameter exponential dis-
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tribution.The mean and variance of this distribution function are µ +
1

λ
and

1

λ2
,

respectively, while p-th (for 0 < p < 1) percentile point is µ−
ln(1 − p)

λ
.

Weibull Distribution

Weibull distribution, perhaps the most widely used lifetime distribution, is charac-

terized by the PDF

f(t) = βλ tβ−1 e−λtβ for t > 0

with β > 0 and λ > 0. The corresponding CDF and HRF are given by

F (t) = 1 − e−λtβ for t > 0, h(t) = βλtβ−1 for t > 0,

respectively. The shape and spread of the PDF depend on the parameter β and

λ, respectively, for which they are called shape and scale parameters, respectively.

Note that if β < 1, HRF is a decreasing function in t, whereas HRF is an increasing

function in t provided β > 1. For β = 1, HRF is constant and it corresponds to the

exponential distribution. The mean and variance of this distribution are
Γ(1 + 1/β)

λ1/β

and
1

λ1/β

[
Γ(1 + 2/β) − Γ(1 + 1/β)2

]
, respectively. It may be mentioned here that

Weibull distribution can be positively or negatively skewed depending upon the

value of the shape parameter β. If β > β0 = 3.6023494257197, the distribution

is negatively skewed, whereas it is positively skewed for β < β0, see Cohen and

Whitten [59]. The reason for the popularity of this distribution is its simple form

of PDF, CDF and HRF. This distribution is very flexible to fit different types of

lifetime data, and it can be used quite conveniently even for censored data also.

Gamma Distribution

The PDF of a two-parameter gamma distribution is given by

f(t) =
λβ

Γ(β)
tβ−1 e−λt for t > 0
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with β > 0 and λ > 0. The close form of the CDF does not exist in this case,

and as a result HRF is also not in close form. However, it can be shown that

HRF is a decreasing function in t with lim
t→0

h(t) = ∞ and lim
t→∞

h(t) = λ for β < 1,

whereas it is an increasing function with h(0) = 0 and lim
t→∞

h(t) = λ for β > 1. If the

shape parameter is one, this distribution coincides with a one-parameter exponential

distribution. Again for β ≤ 1, gamma distribution has a J-shaped PDF, whereas

its PDF is bell shaped for β > 1. As the CDF and HRF do not exist in close form,

further analysis of this distribution can be complicated. Though gamma distribution

fits different types of lifetime data, we never assume that the distribution of lifetime

of the product under consideration has a gamma distribution in this dissertation.

We encounter this distribution in the sampling distribution of the MLE of mean

lifetime in Chapters 2, and 5 and as prior distribution in Chapters 3, 4 and 6.

1.5 Literature Review

1.5.1 Censoring Scheme

CS-I and CS-II are the most studied censoring schemes. In this regard some of

the references are Lawless [93], Miller [110], Bain and Englehardt [8] in frequentist

framework. Some Bayesian treatment can be found in Hamada et al. [78]. Epstein

[69] has proposed the HCS-I. Different inferential issues of exponential model un-

der HCS-I have been addressed by several authors. A set of two sided confidence

interval for mean lifetime was proposed by Fairbanks et al. [70], where the data are

exponentially distributed and are hybrid Type-I censored. Chen and Bhattacharya

[47] derived the MLE of the mean lifetime and the distribution of the MLE under

the same setup. However, an equivalent but easier form of the PDF of the MLE

of the mean lifetime was derived by Childs et al. [51]. Chen and Bhattacharya [47]

and Childs et al. [51] used the CDF of the MLE of the mean lifetime to find the

exact CI based on the assumption that the tail probability Pθ(�θ > b) is an increasing
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function of θ for all fixed b. However, the authors did not provide any formal proof

of this assumption, which has been formally proved by Balakrishnan and Iliopou-

los [19] recently. Draper and Guttman [62] considered estimation of parameter of

exponential distribution under the Bayesian framework when data are hybrid Type-

I censored. Gupta and Kundu [77] compared different methods of estimation for

one-parameter exponential distribution using an extensive Monte Carlo simulation.

Ebrahimi [67] considered the maximum likelihood estimation of model parameters

when the data are assumed to follow a two-parameter exponential distribution, and

both with and without replacement cases were considered in this article. However,

exact distribution of the MLE was not derived in Ebrahimi [67]. The exact distri-

bution of the MLEs of the location and scale parameters were derived by Childs

et al. [49]. Though the exponential distribution is studied more extensively in the

literature, other distributions are not left out. Kundu [87] considered the Weibull

distribution under the HCS-I. Both the maximum likelihood estimation and the

Bayesian estimation are considered in this article. Dube et al. [65] developed the

maximum likelihood estimation of the model parameters of log-normal distribution

under the assumption of HCS-I. They have suggested the use of EM algorithm for

computation of MLEs in this case. HCS-I has been extensively used in the context

of reliability acceptance in MIL-STD-781C [108].

HCS-II was introduced by Childs et al. [51]. They considered the frequentist es-

timation of the mean lifetime under the assumption of one-parameter exponentially

distributed lifetime. Exact PDF of the MLE was derived in the same article. Like

HCS-I, Childs et al. [51] used the exact CDF to construct the CI for the mean life-

time based on the assumption that Pθ(�θ > b) is an increasing function of the mean

lifetime θ for all fixed b. However, Childs et al. [51] did not provide any formal

proof of this assertion and the assumption was later proved by Balakrishnan and

Iliopoulos [19]. Park et al. [122] derived the Fisher information for HCS-II. Baner-

jee and Kundu [38] proved the existence and uniqueness of the MLEs of the shape
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and scale parameters of the Weibull distribution when the data are hybrid Type-II

censored. Banerjee and Kundu [38] suggest to solve the profile likelihood function

of the shape parameter using fixed point iteration method under the same setup.

Analysis of the hybrid Type-II censored data having a two-parameter Weibull dis-

tribution under the Bayesian framework was also presented in Banerjee and Kundu

[38]. Extensive Monte Carlo simulation was done by Banerjee and Kundu [38] to

compare the performance of the different estimation procedures under the same set

of assumptions.

GHCS-I and GHCS-II were introduced by Chandrasekar et al. [45]. The au-

thors had also considered the estimation of the model parameter when the data

are assumed to be distributed according to a exponential distribution. Assuming

stochastic monotonicity of �θ with respect to θ, Chandrasekar et al. [45] used the exact

CDF to construct CI for both the generalized hybrid censoring schemes. However,

the formal proof of the stochastic monotonicity was given by Balakrishnan and Il-

iopoulos [19] later. Fisher information for both the generalized hybrid censoring

schemes were discussed by Park and Balakrishnan [120]. An extensive review of

different hybrid censoring schemes can be found in a recent discussion article by

Balakrishnan and Kundu [28].

Progressive censoring schemes were first discussed by Herd [80], who named

it as ‘multi-censoring’. Cohen [53] pointed out the usefulness of the progressive

censoring schemes in reliability testing. For a book length account on progressive

censoring, readers are referred to Balakrishnan and Aggarwala [11]. Though PCS-I is

more natural and practical than PCS-II, former poses more difficulty to analyze the

mathematical properties than the latter. Cohen [53] considered likelihood inference

of the normal distribution under PCS-I. The Author showed that explicit solutions

of likelihood equations do not exist, and one needs to use some numerical methods

to solve them. They suggested the use of probit to find initial guesses. Gajjar

and Khatri [73] considered the PCS-I under log-normal and logistic models when
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population parameters change after each censoring time point. The inference of

the unknown parameters of two-parameter Weibull and three-parameter Weibull

distributions under PCS-I were discussed by Cohen [54] and Cohen [55], respectively.

For three-parameter Weibull distribution, Cohen [55] showed that if the value of the

shape parameter of the Weibull distribution is less than one, MLEs do not exist, and

he proposed to use modified MLEs to overcome this problem. Maximum likelihood

estimation of three-parameter gamma distribution was considered by Cohen and

Norgaard [58] under PCS-I. Maximum likelihood inference of three-parameter log-

normal distribution under the same progressive censoring scheme was developed by

Cohen [56]. Exact distribution of MLEs of parameters of one- and two-parameter

exponential distributions have been considered by Cramer and Balakrishnan [60],

when the data are Type-I progressively hybrid censored. The main tool used by the

authors is the distribution of the spacings from Type-I progressively hybrid censored

data. Least squares median rank estimator and MLEs of the two-parameter Weibull

distribution were discussed by Gibbons and Vance [74]. Bayesian inference and

life testing plan for Weibull distribution in presence of PCSs was considered by

Kundu [88]. Wingo [133] considered the Burr Type-XII distribution under PCS-I,

and proved the existence and uniqueness of solution to the likelihood equations.

Development of PCS-I can be also found in Nelson [113], Cohen and Whitten [59],

Cohen [57], and Balakrishnan and Cohen [15].

Under the assumption of existence of the PDF of the parent distribution, the

joint density of general progressively Type-II censored order statistics is provided by

Balakrishnan and Sandhu [33] and Aggarwala and Balakrishnan [1]. Thomas and

Wilson [129] considered Weibull and extreme value distributions and Viveros and

Balakrishnan [130] considered location-scale family of distribution under PCS-II.

Thomas and Wilson [129] and Viveros and Balakrishnan [130] proved the inde-

pendence of normalized spacing of progressively Type-II censored order statistic,

when the data are coming from standard exponential distribution. The authors also
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showed that the normalized spaciness are identically distributed as standard expo-

nential distribution in this case. A simple algorithm is proposed by Balakrishnan

and Sandhu [32] for generating progressively Type-II censored data from continuous

distributions. Several authors considered the likelihood inference of PCS-II under

different distributional assumption, and here we provide a brief review of the same.

Balakrishnan and Kannan [23] considered the MLEs of the unknown parameters for

logistic distribution, when the data are progressively Type-II right censored. The

likelihood estimation of the Laplace distribution was considered by Aggarwala and

Balakrishnan [2] under the same censoring scheme. Balakrishnan et al. [24] and

Balakrishnan et al. [25] considered MLEs of the unknown parameters of the gamma

and extreme value distribution, respectively, whereas the likelihood inference of the

scaled half-logistic distribution was discussed by Balakrishnan and Asgharzadeh [12]

under the PCS-II. Zheng and Park [142] provided a decomposed form of Fisher in-

formation matrix under the PCS-II. The authors including Ng et al. [118], Ng et al.

[119] and Lin et al. [98] used the EM algorithm under the PCS-II. Ng et al. [118]

and Ng et al. [119] also considered the Fisher information using the technique of

“missing information principle”. Existence and uniqueness of the MLEs of the un-

known parameters for the normal distribution was discussed by Balakrishnan and Mi

[30], Balakrishnan and Kateri [26] considered the same for the Weibull distribution,

when the data are progressively Type-II censored. Under PCS-II, Viveros and Bal-

akrishnan [130] considered the interval estimation of unknown parameters and the

functions of them for a density belongs to location-scale family of distributions using

the conditional method proposed by Fisher [72]. Predictive intervals for the smallest

life length from a future sample was also addressed by Viveros and Balakrishnan

[130]. Similar approach for the interval estimation of the unknown parameters can

be also found in Childs and Balakrishnan [48] for Laplace distribution and in Lin

et al. [97] for log-gamma distribution under PCS-II. Exact predictive intervals for

last censored failure time for exponential distribution was addressed by Balakrish-
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nan and Lin [29] under PCS-II. Robinson [125] considered the bootstrap confidence

interval for location and scale parameters of a PDF belonging to location-scale fam-

ily of distributions under PCS-II. A restricted MLEs and likelihood test procedure

for exponential distribution under PCS-II was developed by Bhattacharya [41]. The

best linear unbiased estimators and other linear estimators along with their proper-

ties under variety of distributions were discussed by many authors including Mann

[103], Mann [104], Thomas and Wilson [129], Cacciari and Montanari [44], Manta-

nari and Cacciari [105], Balakrishnan and Sandhu [33], Balakrishnan and Rao [31],

Aggarwala and Balakrishnan [1], Balakrishnan and Aggarwala [11], Balakrishnan

et al. [16], Balakrishnan et al. [14], Balakrishnan and Lin [29], Chandrasekar et al.

[46], Burkschat et al. [43]. It is also a more general censoring mechanism than

the traditional CS-I or CS-II, see for example the monograph by Balakrishnan and

Aggarwala [11] and also the recent review article by Balakrishnan [9] in this respect.

Kundu and Joarder [92] considered the estimation of the parameter of one-

parameter exponential distribution under both the classical and Bayesian framework

when the data are progressively Type-I hybrid censored. They considered a gamma

prior on mean lifetime and compared different methods of estimation using extensive

simulation study. Exact distribution of the MLE of the mean lifetime of exponential

distribution was developed by Childs et al. [50] under PHCS-I. However, the obvi-

ous drawback of this censoring scheme is the non-existence of the MLE under some

circumstances. To overcome this drawback, Childs et al. [50] also introduced the

PHCS-II and the exact distribution of MLE of the mean lifetime of exponentially

failure data was considered in that article. Based on the assumption that Pθ(�θ > b)

is a increasing function of θ for all fixed b, Childs et al. [50] developed exact CI

for the mean lifetime for both PHCS-I and PHCS-II. However, the formal proof

of this assumption remains a open problem till now. Park et al. [121] considered

the Fisher information for the exponential failure data under both the progressive

hybrid censoring schemes. Weibull distribution was studied by Mokhtari et al. [111]
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under both the classical and Bayesian framework when the data are progressively

hybrid Type-II censored.

1.5.2 Accelerated Life Tests

ALTs are gaining popularity in the recent times due to the increase in the life

expectancy of several products and are being studied in the literature by several

authors. Meeker and Escobar [107], and Bagdanavicius and Nikulin [4] provided

some of the book length key references in this area. A nice overview and a nice

bibliography of accelerated life test was provided by Nelson [116] and Nelson [117].

The CEM was first introduced by Seydyakin [126] and then discussed by Nelson

[112] and Nelson [115]. DeGroot and Goel [61] proposed TRVM. In the same article

optimality of a step-stress test was considered under the Bayesian setup. A TFRM,

which was first proposed by Bhattacharyya and Soejoeti [42] for simple SSLTs, as-

sumes that the failure rate of a stress level is same as that of the initial stress level

multiplied by a suitable constant and was generalized by Madi [102] for multiple

step SSLTs. SSLT is quite extensively studied in literature under the CEM and

different censoring schemes. Balakrishnan et al. [27] considered point and interval

estimation for a simple step-stress model with Type-II censoring when failure times

are assumed to be exponentially distributed. Simple SSLT under CS-I was consid-

ered by Balakrishnan et al. [36] for exponential distribution. Balakrishnan et al. [27]

and Balakrishnan et al. [36] constructed CI for the scale parameter based on the

assumption that CDF of the MLE of the scale parameter is a decreasing function of

that scale parameter when other quantities are held constant. However, they did not

provide any formal proof. Balakrishnan and Iliopoulos [20] proved this assumption

under both censoring schemes. Step-stress model under the presence of competing

risks with exponentially distributed failure times is considered by Balakrishnan and

Han [17] under SC-II. Exact inference for a exponential simple step-stress model
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with HCS-I and HCS-II were studied by Balakrishnan and Xie [34, 35], respectively.

Gouno et al. [75] and Han et al. [79] considered step-stress model under PCS-I and

optimality of the test. An analysis of simple step-stress models under the exponential

CEM and PCS-II was considered by Xie et al. [135]. Gouno et al. [75] considered the

log-linear link function, link function based on Box-Cox transformation was studied

by Fan et al. [71] under the same setup. Log-linear link function was also used by

Xiong [136] and Xiong and Milliken [138] under the assumption of exponentially

distributed failure times. However, Watkins [132] argued that it would be better

to work with original exponential parameters in case of simple SSLT. Analysis of

grouped data under CS-I and PCS-I were addressed by Xiong and Ji [137] and Wu

et al. [134]. Miller and Nelson [109], Bai et al. [7], Gouno et al. [75], Han et al.

[79], Ebraheim and Al-Masri [66], Balakrishnan and Han [18], and Wu et al. [134]

are references on optimality of the SSLT under the assumption of exponential CEM.

Step-stress models have been also discussed in Bayesian framework, for example, see

Drop et al. [64], Lee and Pan [94]. Optimality of the simple SSLT was considered

by Yuan and Liu [141] and Leu and Shen [95] under the Bayesian setup. Xiong and

Milliken [138], Xiong et al. [139], Wang and Yu [131], Kateri and Balakrishnan [83],

and Kundu and Balakrishnan [89] considered random stress-change time. In these

articles it is assumed that the stress levels are changed at time to failure of units.

An order restricted inference for exponential step-stress model under CS-I and CS-II

can be found in Balakrishnan et al. [13]. Guan and Tang [76] considered multivari-

ate exponential distribution under step-stress model with CS-I. A sequential order

statistics approach to SSLTs was considered by Balakrishnan et al. [22]. Balakrish-

nan [10] provided a nice review of the step-stress model under the assumption of

exponential failure data. Log-normally distributed failure time data was considered

under step-stress accelerated life tests by Chung and Bai [52], Alhadeed and Yang

[3], Balakrishnan et al. [37] and Lin and Chou [96]. Inference for a simple step-stress

model with CS-II and Weibull distributed lifetimes can be found in Kateri and Bal-
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akrishnan [83]. Properties of Weibull CEM was studied by Komori [86]. Optimal

step-stress plan for Weibull distribution and CS-I was considered by Bai and Kim

[6]. A new model for Weibull distributed lifetimes was considered by Khamis and

Higgins [85]. This model assumes that the power transform of the lifetimes follows

a exponential CEM. However, Xu and Tang [140] argued that this model is actually

a special case of tampered failure rate model proposed by Bhattacharyya and Soe-

joeti [42]. Liu [100] considered step-stress model for Weibull distributed lifetimes

under Bayesian setup. Estimation of the parameters of generalized exponential dis-

tribution was considered by Ismail [81] in presence of PCS-II with random removals.

It is worth mentioning here that inference for specific step-stress models has also

been discussed in the general framework of accelerated life testing; see, for example

Shaked and Singpurwala [127], McNichols and Padgett [106], Lu and Storer [101],

Drop and Mazzuchi [63], and Bagdonavicius et al. [5]. Almost all the analyses of the

step-stress models have been performed based on the single experiment and a very

little effort has been devoted to develop the analysis of multi-sample experiments.

Analysis of the step-stress model under the multi-sample experiment can be found

in Balakrishnan and Kamps [21] and Kateri et al. [84].

1.6 Organization of the Dissertation

In Chapter 2, we have addressed the problem of estimation of model parameters

of two-parameter exponential distribution. The distributions of maximum likeli-

hood estimators of scale and location parameters have been derived. We have found

that the distribution of the location parameter is same of that of the lowest order

statistic, which has been extensively studied and hence is not addressed further in

this dissertation. Based on the assumption of the monotonicity of the cumulative

distribution function of the maximum likelihood estimator of the scale parameters,

approximate confidence interval of the scale parameter has been derived in this dis-
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sertation. Though we could not prove this monotonicity assumption formally, the

same has been verified on the basis of extensive numerical simulations. Percentile

and bias-corrected Bootstrap confidence intervals have also been considered. Simu-

lations have been done to judge the performance of the different confidence intervals.

Analysis of a data set has been performed for illustrative purposes.

In Chapter 3, an attempt has been made to address the Bayesian inference

of the unknown parameters of a two-parameter exponential distribution when the

data are obtained from different HCSs and PCSs. We notice that the Bayes estimate

and credible interval of some parametric function cannot be found in explicit form

in general. A simulation based procedure has been proposed to compute Bayes

estimate as well as to construct credible intervals. Extensive simulation study has

been carried out to understand the effectiveness of the proposed procedure. Analysis

of a data set has been performed for illustrative purposes.

We address order restricted Bayesian inference of the unknown parameters of

a simple step-stress model under different censoring schemes when the lifetimes of

the experimental units are assumed to be exponentially distributed in Chapter 4.

We have assumed fairly flexible priors on the unknown parameters. It is observed

that in all the cases the Bayes estimates of the unknown parameters cannot be

obtained in explicit form. We propose to use the importance sampling technique

to compute Bayes estimate and also to construct associated CRI. Extensive Monte

Carlo simulations are performed to see the effectiveness of the proposed method in

case of CS-I, and the performances are quite satisfactory. The analysis of two data

sets have been performed for illustrative purposes.

In Chapter 5, an attempt has been made to address the same issue as in Chap-

ter 4. We analyze a simple step-stress model based on the assumption that the

lifetime of the experimental units follows two-parameter exponential distribution.

The analysis has been performed based on the assumption that the model satisfies
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CEM assumption, and the data are Type-II censored. One of the justifications for

incorporating the location parameter is the presence of possible bias in the experi-

mental data due to calibration. It is observed that MLEs of unknown parameters do

not always exist. Whenever they exist, they can be obtained in closed form. We ob-

tain the exact conditional distributions of the MLEs of the scale parameters. Fisher

information matrix has been used to construct the asymptotic CIs of the unknown

scale parameters, assuming the location parameter is known. Parametric bootstrap

method has been also used for constructing CI for the scale parameters, and it is

very easy to implement in practice. Extensive simulations have been performed to

compare the performances of the different methods. One data analysis has been

performed for illustrative purposes.

In Chapter 6, we consider a simple step-stress model when the lifetimes are

assumed to have two-parameter Weibull distribution. The analysis has been per-

formed under the assumption that the model satisfies KHM assumptions. We have

assumed quite flexible priors on the parameters. It has been noticed that the Bayes

estimators do not exist in close form in the most cases. Therefore an importance

simulation based procedure has been proposed to calculate Bayes estimate and to

construct Bayesian credible interval in both the ordered restricted and unrestricted

cases. Extensive simulations have been carried out to examine performance of the

proposed methods. Analysis of a data set has been also performed for illustrative

purpose.

Finally, this dissertation has been concluded in the Chapter 7. We have also

pointed out some of the future research directions in the same chapter.





Chapter 2

Exact Inference for the
Two-parameter Exponential
Distribution under Type-II
Hybrid Censoring1

2.1 Introduction

Childs et al. [49] have considered the MLEs of the unknown parameters of a two-

parameter exponential model, when the data are hybrid Type-I censored (see Sec-

tion 1.2). The exact distribution of the MLEs of unknown parameters and of the

quantiles are provided in this article. They have also discussed different methods for

constructing confidence intervals of the unknown parameters and compared them

based on extensive simulation study.

A natural extension to Childs et al. [49] is to consider HCS-II (see Section 1.2)

under the same setup. The purpose of this chapter is to consider a life test where n

items are put on the test under a HCS-II. It is assumed that the lifetime distribution

of the experimental units are i.i.d. as two-parameter exponential distribution, i.e.,

PDF of the lifetime of an experimental unit, for θ > 0 and −∞ < µ < ∞, is given

1A part of this work has been published in Journal of Statistical Planning and Inference, vol.
142, 613–625, 2012.
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by

f(t;µ, θ) =
1

θ
e−

t−µ
θ if t > µ, (2.1)

and 0 otherwise. First we obtain the MLEs of the unknown parameters µ ∈ R

and θ > 0, and provide the joint MGF. Based on the joint MGF, we obtain the

marginal MGFs, and the marginal distribution functions of the MLEs. From the

marginal distribution functions, using the same idea as in Chen and Bhattacharya

[47], the confidence interval of θ is obtained by solving two non-linear equations.

Since the confidence interval based on the MLEs is quite difficult to implement,

we have proposed to use bootstrap confidence intervals, whose implementation are

quite straight forward.

Rest of the chapter is organized as follows. In Section 2.2, we present the MLEs of

the unknown parameters, and the joint and marginal moment generating functions

of the MLEs are derived in Section 2.3. Different confidence intervals are proposed

in Section 2.4. In Section 2.5, we consider the approximation of the original PDF of

the MLE of θ by gamma PDF using similar method as in Kundu [88]. Simulation

results and the analysis of a data set are presented in Section 2.6 and Section 2.7,

respectively. Finally we conclude the chapter in Section 2.8. Proofs of all the

theorems are provided in the Appendix 2.B.

2.2 Maximum Likelihood Estimators

We have already discussed HCS-II in the Section 1.2.2. Recall that the available

data under HCS-II can be one of the from given below.

(a) t1:n < t2:n < · · · < tr:n if τ ∗ = tr:n,

(b) t1:n < t2:n < · · · < tN :n if τ ∗ = τ ,
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where N is the number of units failed before the time τ . The likelihood of the

observed data is given by

L (µ, θ |Data) =





n!
(n−N)! θN

e−
1
θ

∑N
i=1(ti:n−µ)− 1

θ
(n−N)(τ−µ) if tr:n < τ

n!
(n−r)! θr

e−
1
θ

∑r
i=1(ti:n−µ)− 1

θ
(n−r)(tr:n−µ) if tr:n > τ .

(2.2)

For r = 1 and N = 0

L(µ, θ |Data) =
n

θ
e−

n
θ
(t1:n−µ) if µ < t1:n, θ > 0,

and this likelihood function get maximized at µ = tr:n for fixed θ.

L(t1:n, θ |Data) =
n

θ
if θ > 0,

which increases as θ decreases. Hence, there exists a path along which L(µ, θ|Data)

is unbounded and MLE of (µ, θ) does not exist for r = 1 and N = 0. For r = 1,

the likelihood function in (2.2) possesses its maximum at (�µ, �θ) conditioning on the

event {N ≥ 1}, where

�µ = t1:n and �θ =
1

N

{
N∑

i=1

ti:n − n t1:n + (n−N) τ

}
. (2.3)

Hence, (�µ, �θ) is the conditional MLE of (µ, θ), conditioning on the event {N ≥ 1}

when r = 1. For r ≥ 2, MLE of (µ, θ) exists for all values of N and is given by

(�µ, �θ), where

�µ = t1:n and �θ =
1

N∗

{
N∗∑

i=1

ti:n − n t1:n + (n−N∗) τ ∗

}
(2.4)

with τ ∗ = max{tr:n, τ} and N∗ = max{r, N}.

2.3 Joint and Marginal MGF

We have already seen that MLE of (µ, θ) does not exist if r = 1 and N = 0.

Hence, for r = 1, we consider the conditional distribution of MLEs of the unknown

parameters conditioning on the event {N ≥ 1}. For r ≥ 2, MLE of (µ, θ) exists for

all values of N . In order to find the distribution of �µ and �θ, we first find the joint
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MGF of (�µ, �θ) and then invert it to get the distribution of the MLEs as it was first

suggested by Bartholmew [39].

Theorem 2.3.1. For r = 1, conditional joint MGF of (�µ, �θ) conditioning on the

event {N ≥ 1} exists for all −∞ < ω1 < ∞ and −∞ < ω2 < ∞ and is given by

E[eω1
�θ+ω2 �µ |N ≥ 1]

= (1 − qn)−1


c10

eµ10ω1+µω2

(
1 + ω1

λ10
− ω2

ν0

) − d10
eτω2

(
1 + ω1

λ10
− ω2

ν0

) +
eµω2 − qneτω2

(
1 − ω1

λn

)αn
(

1 − ω2

νn−1

)

+
n−1∑

i=2

i−1∑

j=0



cij

eµijω1+µω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

) − dij
eτω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

)





+
n−2∑

j=0



cnj

eµnjω1+µω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

) − dnj
eτω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

)






 .

(2.5)

For r ≥ 2 the joint MGF of (�µ, �θ) exists for ω1 <
r

θ
and ω2 <

1

θ
+
n− 1

r
ω1 and is

given by

E[eω1
�θ+ω2 �µ]

=
qn eτω2

(
1 − ω1

λ1

)α1
(

1 − ω2

νn−1

) +
eµω2 − qneτω2

(
1 − ω1

λn

)αn
(

1 − ω2

νn−1

)

+
n−1∑

i=1

i−1∑

j=0

cij
eµij ω1+µω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

) −
n−1∑

i=1

i−1∑

j=0

dij
eτω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

)

+
n−2∑

j=0

cnj
eµnj ω1+µω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

) −

n−2∑

j=0

dnj
eτω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

)

(2.6)

when µ < τ and for µ ≥ τ

E[eω1
�θ+ω2 �µ] =

eµω2

(
1 − ω1

λ1

)α1
(

1 − ω2

νn−1

) , (2.7)
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where

q = e−
τ−µ
θ ,

νi =
i + 1

θ
IA(0,n−1)

(i),

λi =
r

θ
IA(1,r−1)

(i) +
i

θ
IA(r,n)

(i),

αi = (r − 1)IA(1,r−1)
(i) + (i− 1)IA(r,n)

(i),

µij =
1

r
(n− j − 1) (τ − µ) IA(0,i−1)

(j)IA(1,r−1)
(i)

+
1

i
(n− j − 1) (τ − µ) IA(0,i−1)

(j)IA(r,n)
(i),

λij =
r (j + 1)

(n− j − 1) θ
IA(0,i−1)

(j)IA(1,r−1)
(i) +

i (j + 1)

(n− j − 1) θ
IA(0,i−1)

(j)IA(r,n)
(i),

cij = (−1)i−j−1

(
n

i

)(
i

j + 1

)
qn−j−1IA(0,i−1)

(j)IA(1,n)
(i),

dij = (−1)i−j−1

(
n

i

)(
i

j + 1

)
qnIA(0,i−1)

(j)IA(1,n)
(i),

A(p,q) = {p, p + 1, · · · , q} for p < q,

IA(x) =





1 if x ∈ A

0 otherwise.

Remark 2.3.1. Note that as τ → ∞, the joint MGF of �θ and �µ at (ω1, ω2) reduces

to

eµω2

(
1 − ω1

λn

)αn
(

1 − ω2

νn−1

) ,

which is the joint MGF of �θ and �µ in case of complete sample. That means as

τ → ∞, 2n�θ/θ is distributed as χ2 random variable with 2n− 2 degrees of freedom,

n(�µ − µ)/θ is a standard exponential random variable and they are independently

distributed.
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Remark 2.3.2. For r ≥ 2, if τ ≤ µ the joint MGF of �θ and �µ at (ω1, ω2) is given

in (2.7), which is the joint MGF of �θ and �µ in case of ordinary Type-II censoring

scheme. In this case 2r�θ/θ is distributed as χ2 random variable with 2r− 2 degrees

of freedom, n(�µ − µ)/θ is a standard exponential random variable and they are

independently distributed.

Corollary 2.3.1. The marginal MGF of �θ for r = 1 exists for all −∞ < ω1 < ∞

and is given by

E[eω1
�θ |N ≥ 1]

=
1(

1 − ω1

λn

)αn
+ (1 − qn)−1


c10

eµ10ω1

(
1 + ω1

λ10

) − d10
1(

1 + ω1

λ10

)

+
n−1∑

i=2

i−1∑

j=0



cij

eµijω1

(
1 − ω1

λi

)αi
(

1 + ω1

λij

) − dij
1(

1 − ω1

λi

)αi
(

1 + ω1

λij

)





+
n−2∑

j=0



cnj

eµnjω1

(
1 − ω1

λn

)αn
(

1 + ω1

λnj

) − dnj
1(

1 − ω1

λn

)αn
(

1 + ω1

λnj

)






 .

For r ≥ 2, MGF of �θ exists when − r
(n−1)θ

< ω1 <
r
θ

and is

E[eω1
�θ] =

qn(
1 − ω1

λ1

)α1
+

1 − qn(
1 − ω1

λn

)αn

+
n−1∑

i=1

i−1∑

j=0

cij
eµij ω1

(
1 − ω1

λi

)αi
(

1 + ω1

λij

) −
n−1∑

i=1

i−1∑

j=0

dij
1(

1 − ω1

λi

)αi
(

1 + ω1

λij

)

+
n−2∑

j=0

cnj
eµnj ω1

(
1 − ω1

λn

)αn
(

1 + ω1

λnj

) −
n−2∑

j=0

dnj
1(

1 − ω1

λn

)αn
(

1 + ω1

λnj

) ,

when µ < τ and for µ ≥ τ

E[eω1
�θ] =

1(
1 − ω1

λ1

)α1
.

Corollary 2.3.2. The marginal MGF of �µ for r = 1 exists for all −∞ < ω2 < ∞

and it is given by
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E[eω2 �µ |N ≥ 1]

= (1 − qn)−1


c10

eµω2

(
1 − ω2

ν0

) − d10
eτω2

(
1 − ω2

ν0

) +
eµω2

(
1 − ω2

νn−1

) − qn
eτω2

(
1 − ω2

νn−1

)

+
n−1∑

i=2

i−1∑

j=0



cij

eµω2

(
1 − ω2

νj

) − dij
eτω2

(
1 − ω2

νj

)



 +

n−2∑

j=0



cnj

eµω2

(
1 − ω2

νj

) − dnj
eτω2

(
1 − ω2

νj

)






 .

For r ≥ 2, the MGF of �µ for ω2 <
1
θ

is given by

E[eω2 �µ] =
eµω2

(
1 − ω2

νn−1

) +
n−1∑

i=1

i−1∑

j=0



cij

eµω2

(
1 − ω2

νj

) − dij
eτω2

(
1 − ω2

νj

)





+
n−2∑

j=0



cnj

eµω2

(
1 − ω2

νj

) − dnj
eτω2

(
1 − ω2

νj

)





when µ < τ and for µ ≥ τ

E[eω2 �µ] =
eµω2

(
1 − ω2

νn−1

) .

From the MGF of �θ, the PDF of �θ can be obtained by using the inversion

technique as suggested by Chen and Bhattacharya [47]. The details are available in

Appendices 2.A and 2.B.

Theorem 2.3.2. For r = 1, conditional PDF of �θ, conditioning on the event

{N ≥ 1}, for −∞ < t < ∞ is

f�θ (t) = g1 (t;αn, λn) + (1 − qn)−1

[
c10 g1 (−t + µ10; 1, λ10) − d10 g1 (−t; 1, λ10)

+
n−1∑

i=2

i−1∑

j=0

{cij g2 (t− µij ;αi, λi, λij) − dij g2 (t;αi, λi, λij)}

+
n−2∑

j=0

{cnj g2 (t− µnj ;αn, λn, λnj) − dnj g2 (t;αn, λn, λnj)}

]
. (2.8)
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For r ≥ 2, the PDF of �θ for −∞ < t < ∞ is

f�θ (t) =





g3(t) if µ < τ

g1 (t;α1, λ1) if µ ≥ τ ,

(2.9)

where

g1 (t;α, λ) =
λα

Γ (α)
e−λt tα−1 I(0,∞)(t), t ∈ R,

g2 (t;α, λ1, λ2) =
α−1∑

k=0

pk g1 (t;α− k, λ1) +

(
1 −

α−1∑

k=0

pk

)
g1 (−t, 1, λ2) , t ∈ R,

pk =
λ2

λ1 + λ2

(
λ1

λ1 + λ2

)k

, k = 0, 1, · · · , α− 1,

g3(t) = qn g1 (t;α1, λ1) + (1 − qn) g1 (t;αn, λn)

+
n−1∑

i=1

i−1∑

j=0

{cij g2 (t− µij ;αi, λi, λij) − dij g2 (t;αi, λi, λij)}

+
n−2∑

j=0

{cnj g2 (t− µnj;αn, λn, λnj) − dnj g2 (t;αn, λn, λnj)} , t ∈ R.

Note that g3(t) depends on µij , αi, λi and λij; i, j = 1, . . . , n, for brevity we

do not write it explicitly. From the Theorem 2.3.2, since the integration of density

function over the whole range is one, we have the following identity

n−1∑

i=1

i−1∑

j=0

(cij − dij) +
n−2∑

j=0

(cnj − dnj) = 0.

Theorem 2.3.3. When −∞ < t < ∞, for r = 1, the conditional PDF of �µ condi-

tioning on {N ≥ 1} is given by

f�µ (t) = (1 − qn)−1

[
c10 g1 (t− µ; 1, ν0) − d10g1 (t− τ ; 1, ν0) + g1 (t− µ; 1, νn−1)

− qng1 (t− τ ; 1, νn−1) +
n−1∑

i=2

i−1∑

j=0

{cij g1 (t− µ; 1, νj) − dij g1 (t− τ ; 1, νj)}

+
n−2∑

j=0

{cnj g1 (t− µ; 1, νj) − dnj g1 (t− τ ; 1, νj)}

]
,
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and for r ≥ 2 the PDF of �µ is

f�µ (t) = g4(t− µ) I(−∞, τ)(µ) + g1 (t− µ; 1, νn−1) I(τ,∞)(µ),

where g1(·) is as previous Theorem and

g4(t) = g1 (t; 1, νn−1) +
n−1∑

i=1

i−1∑

j=0

{cij g1 (t; 1, νj) − dij g1 (t + µ− τ ; 1, νj)}

+
n−2∑

j=0

{cnj g1 (t; 1, νj) − dnj g1 (t + µ− τ ; 1, νj)} .

From the PDF of �θ, the corresponding moments can be easily obtained. The

first two moments of �θ are as follows:

For r = 1,

E[�θ] = θ + θA1 (µ, θ) + (1 − qn)−1 B1 (µ, θ) ,

E[�θ2] = θ2 + θ2C1 (µ, θ) + θD1 (µ, θ) + (1 − qn)−1 E1 (µ, θ) .

For r ≥ 2,

E[�θ] =





θ + θA2 (µ, θ) + B1 (µ, θ) if µ < τ

(
1 −

1

r

)
θ if µ ≥ τ ,

E[�θ2] =





θ2 + θ2C2 (µ, θ) + θD2 (µ, θ) + E1 (µ, θ) if µ < τ

(
1 −

1

r

)
θ2 if µ ≥ τ,

where

A1 (µ, θ) =

[ n∑

i=2

i−1∑

j=0
j ̸=n−1

(cij − dij)

{
i−2∑

k=0

pjk
i− k − 1

i
−

(
1 −

i−2∑

k=0

pjk

)
n− j − 1

i(j + 1)

}

−
1

r
(c10 − d10)(n− 1) −

1 − qn

n

]
(1 − qn)−1,

B1 (µ, θ) =
n∑

i=1

i−1∑

j=0

cijµij,
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C1 (µ, θ) =

[ n∑

i=1

i−1∑

j=0
j ̸=n−1

(cij − dij)

{
i−2∑

k=0

pjk
i− k − 1

(i− k)−1i2
+ 2

(
1 −

i−2∑

k=0

pjk

)
n− j − 1

i2(j + 1)2

}

+ 2(n− 1)(c10 − d10) −
1 − qn

n

]
(1 − qn)−1 ,

D1 (µ, θ) =
2

1 − qn

[ n∑

i=1

i−1∑

j=0
j ̸=n−1

cijµij

{
i−2∑

k=0

pjk
i− k − 1

i

−

(
1 −

i−2∑

k=0

pjk

)
n− j − 1

i(j + 1)

}
+ (n− 1)c10µ10

]
,

E1 (µ, θ) =
n∑

i=1

i−1∑

j=0

cijµ
2
ij ,

A2 (µ, θ) = qn
(

1

n
−

1

r

)
−

1

n

+
r−1∑

i=1

i−1∑

j=0

(cij − dij)

{
r−2∑

k=0

pjk
r − k − 1

r
−

(
1 −

r−2∑

k=0

pjk

)
n− j − 1

r(j + 1)

}

+
n∑

i=r

i−1∑

j=0
j ̸=n−1

(cij − dij)

{
i−2∑

k=0

pjk
i− k − 1

i
−

(
1 −

i−2∑

k=0

pjk

)
n− j − 1

i(j + 1)

}
,

C2 (µ, θ) =
r−1∑

i=1

i−1∑

j=0

(cij − dij)

{
r−2∑

k=0

pjk
r − k − 1

r2(r − k)−1
+ 2

(
1 −

r−2∑

k=0

pjk

)
(n− j − 1)2

r2(j + 1)2

}

+
n∑

i=r

i−1∑

j=0
j ̸=n−1

(cij − dij)

{
i−2∑

k=0

pjk
(i− k − 1)

i2(i− k)−1

+2

(
1 −

i−2∑

k=0

pjk

)
(n− j − 1)2

i2(j + 1)2

}
−
qn

r
−

1 − qn

n
,

D2 (µ, θ) =2
r−1∑

i=1

i−1∑

j=0

cijµij

{
r−2∑

k=0

pjk
r − k − 1

r
−

(
1 −

r−2∑

k=0

pjk

)
n− j − 1

r(j + 1)

}

+ 2
n∑

i=r

i−1∑

j=0
j ̸=n−1

cijµij

{
i−2∑

k=0

pjk
i− k − 1

i
−

(
1 −

i−2∑

k=0

pjk

)
n− j − 1

i(j + 1)

}
.
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The CDFs of �θ and �µ can be easily obtained from their respective PDFs. Let us

denote max{0, x} by ⟨x⟩. For t ∈ R, the CDF of �θ for r = 1 conditioning on the

event N ≥ 1 is

F�θ(t) = G1(λn t, αn) + (1 − qn)−1

[
c10 e

−λ10 ⟨µ10−t⟩ − d10 e
−λ10 ⟨−t⟩

+
n−1∑

i=2

i−1∑

j=0

{cij G2(t;µij, αi, λi, λij) − dij G2 (t; 0, αi, λi, λij)}

+
n−2∑

j=0

{cnj G2(t;µnj, αn, λn.λnj) − dnj G2 (t; 0, αn, λn, λnj)}

]
,

and for r ≥ 2, the CDF is

F�θ(t) =





qnG1(λ1 t, α1) + (1 − qn) G1(λn t, αn)

+
n−1∑

i=2

i−1∑

j=0

{cij G2(t;µij, αi, λi, λij) − dij G2 (t; 0, αi, λi, λij)}

+
n−2∑

j=0

{cnj G2(t;µnj, αn, λn.λnj) − dnj G2 (t; 0, αn, λn, λnj)} if µ < τ

G1(λ1 t, α1) if µ ≥ τ ,

where

G1(t, α) =





0 if t < 0

1

Γ(α)

∫ t

0

wα−1 e−wdw if t ≥ 0,

and

G2(t; µ, α, λ1 λ2) =





(
1 −

α−1∑

k=0

pk

)
eλ2t if t < 0

α−1∑

k=0

pkG1(λ1t, α− k) if t ≥ 0.

The CDF of �µ for r = 1 conditioning on the event N ≥ 1 is

F�µ(t) =





0 if t < µ

(1 − qn)−1 [1 − e−
n
θ
(t−µ)

]
if µ ≤ t < τ

1 t ≥ τ ,
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and for r ≥ 2, the same is

F�µ(t) =





0 if t < µ

1 − e−
n
θ
(t−µ) if t ≥ µ.

Clearly the distribution of �µ is same of that of the first order statistics from an

exponential distribution for r ≥ 2. For r = 1, the distribution of �µ is same as the

conditional distribution of the first order statistics from an exponential distribution

conditioning on the event that it lies in the interval (µ, τ). This statistic has been

quite extensively studied in literature, and therefore we do not pursue it in this

dissertation.

Note that the pth quantile of the exponential distribution given in (2.1) is ηp =

µ+ap θ, where ap = −ln(1−p). Therefore the MLE of ηp can be found by replacing

µ and θ by their respective MLEs. The moment generating function of the MLE of

ηp, say �ηp, can be obtained easily from the joint MGF of �µ and �θ in Theorem 2.3.1.

The MGF of �ηp for r = 1 exists for all −∞ < ω < ∞ and is

E
(
eω �ηp |N ≥ 1

)

= (1 − qn)−1

[
c10 e

(µ+µ10 ap)ω

1 − β10 ω
−

d10 e
τ ω

1 − β10 ω
+

eµω − qn eτ ω(
1 − ap

λn
ω
)αn

(
1 − ω

νn−1

)

+
n−1∑

i=2

i−1∑

j=0





cij e
(µ+ap µij)ω

(
1 − ap

λi
ω
)αi

(1 − βij ω)
−

dij e
τ ω

(
1 − ap

λi
ω
)αi

(1 − βij ω)





+
n−2∑

j=0





cnj e
(µ+ap µnj)ω

(
1 − ap

λn
ω
)αn

(1 − βnj ω)
−

dnj e
τ ω

(
1 − ap

λn
ω
)αn

(1 − βnj ω)





]
.

For r ≥ 2 the MGF of �ηp exists at least for ω in some neighborhood of zero and is

given by

E[eω �ηp ] =
qn eτ ω(

1 − ap
λ1
ω
)α1

(
1 − 1

νn−1
ω
) +

eµω − qn eτ ω(
1 − ap

λn
ω
)αn

(
1 − 1

νn−1
ω
)

+
n−1∑

i=1

i−1∑

j=0



cij

e(µ+ap µij)ω

(
1 − ap

λi
ω
)αi

(1 − βij ω)
− dij

eτ ω(
1 − ap

λi
ω
)αi

(1 − βij ω)




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+
n−1∑

j=0



cnj

e(µ+ap µnj)ω

(
1 − ap

λn
ω
)αn

(1 − βnj ω)
− dnj

eτ ω(
1 − ap

λn
ω
)αn

(1 − βnj ω)



 ,

when µ < τ and when µ ≥ τ

E[eω �ηp ] =
eµω(

1 − ap
λ1
ω
)α1

(
1 − 1

νn−1
ω
) ,

where βij =
1

νj
−

ap
λij

and q, µij, αi, νi, λi, λij , cij and dij ; i, j = 1, . . . , n are given

in Theorem 2.3.1.

From these MGFs, one can find the PDF of �ηp using the Lemmas 2.A.3, 2.A.4

and 2.A.5. For r = 1, conditional PDF of �ηp, conditioning on the event {N ≥ 1},

at t ∈ R is as follows:

f�ηp(t) = (1 − qn)−1

[
c10 h1 (t− µ− µ10; β10) − d10 h1 (t− τ ; β10)

+ h2(t− µ;αn,
λn
ap
,

1

νn−1

) − qn h2

(
t− τ ;αn,

λn
ap
,

1

νn−1

)

+
n−1∑

i=2

i−1∑

j=0

{
cij h2

(
t− µ− µij ap;αi,

λi
ap
, βij

)
− dij h2

(
t;αi,

λi
ap
, βij

)}

+
n−2∑

j=0

{
cnj h2

(
t− µ− µnj ap;αn,

λn
ap
, βnj

)
− dnj h2

(
t;αn,

λn
ap
, βnj

)}]
.

For r ≥ 2, PDF of �ηp at the point t ∈ R when µ < τ is

f�ηp(t) = qn h2

(
t− τ ;α1,

λ1

ap
,

1

νn−1

)
+ h2

(
t− µ;αn,

λn
ap
,

1

νn−1

)

− qn h2

(
t− τ ;αn,

λn
ap
,

1

νn−1

)

+
n−1∑

i=1

i−1∑

j=0

{
cij h2

(
t− µ− µij ap;αi,

λi
ap
, βij

)
− dij h2

(
t;αi,

λi
ap
, βij

)}

+
n−2∑

j=0

{
cnj h2

(
t− µ− µnj ap;αn,

λn
ap
, βnj

)
− dnj h2

(
t;αn,

λn
ap
, βnj

)}
,
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and when µ ≥ τ the same is given by

f�ηp(t) = h2

(
t− µ;α1,

λ1

ap
,

1

νn−1

)
,

where

h1 (t; β) =





g1 (t; 1, β) if β > 0

g1 (−t; 1,−β) if β < 0,

h2(t;α, λ1, λ2) =





g2 (t;α, λ1,−λ2) if λ2 < 0

g1 (t;α, λ1) if λ2 = 0

h3 (t;α, λ1, λ2) if λ2 > 0,

h3 (t;α, λ1, λ2) =





(
1 −

α−1∑

k=0

p
′

k

)
g1

(
t; 1,

1

λ2

)
−

α−1∑

k=0

p
′

kg1 (t;α− k, λ1) if t > 0

0 otherwise,

with p
′

k =
1
λ1

λ1− 1
λ2

(
λ1

λ1− 1
λ2

)k

and functions g1(·), g2(·), and g3(·) as given in Theo-

rem 2.3.2.

2.4 Confidence Intervals

In this section, we present different methods for construction of CIs for the unknown

parameter θ. From Theorem 2.3.2, we can find the approximate CI for θ. However,

as the PDF of �θ is quite complicated, we also present the bootstrap CI for the scale

parameter.

2.4.1 Approximate Confidence interval

From CDF of �θ, approximate CI can be found based on the assumption that Pθ(�θ ≤

t) is a strictly decreasing function of θ, for all t ∈ R. Several authors including Chen

and Bhattacharya [47], Gupta and Kundu [77], Kundu and Basu [90], Childs et al.
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[51], Balakrishnan et al. [36] used this method to find the CI of scale parameter.

Though it is difficult to verify the assumption, an extensive numerical study supports

the monotonicity assumption; for example, see Figures 2.1 and 2.2.
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Figure 2.1: Plot of the CDF of �θ as a function of θ for n = 20, r = 16, µ = 0.0,
τ = 0.5 and different values of t.

Suppose �θobs is MLE of θ. Then a two-sided 100(1 − γ)% approximate CI, say

(θL, θU), for θ can be constructed by solving the equations

FθL(�θobs) = 1 −
γ

2
and FθU (�θobs) =

γ

2

for θL(the lower bound of θ) and θU(the upper bound of θ) with replacing µ by

its MLE. However, they are nonlinear equations and one needs to involve some

numerical procedure, e.g., bisection method or Newton-Raphson method, to solve

them.
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Figure 2.2: Plot of the CDF of �θ as a function of θ for n = 20, r = 16, µ = 0.0,
τ = 2.0 and different values of t.

2.4.2 Bootstrap Confidence Interval

The exact CIs presented in the previous section are computationally quite compli-

cated, specially when sample size is large. So we consider the bootstrap CIs. Here we

consider two types of bootstrap CI, viz., percentile bootstrap CI and bias adjusted

percentile (BCa) bootstrap CI; see Efron and Tibshirani [68] for details.

Bootstrap sample

Step 1. Given τ , r, n and the original Type-II sample, �µ and �θ are obtained from

(2.3) or (2.4).

Step 2. Based on τ , r, n, �µ and �θ, a random sample of size n is generated from

Uniform(0,1) distribution and the order them to get (U1:n, . . . , Un:n).
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Step 3. Let

t∗i:n = �µ− �θ log(1 − Ui:n).

Step 4. If t∗r:n < τ , find N1 such that

t∗N1:n
< τ ≤ t∗N1+1:n and set N∗ =




N1 if t∗r:n < τ

r if t∗r:n ≥ τ.

Now, {t∗1:n, . . . , t
∗
N∗:n} is the bootstrap sample.

Step 5. Based on n, τ , r, and the bootstrap sample, �µ∗ and �θ∗ are obtained form

(2.3) or (2.4).

Step 6. Steps 1-5 are repeated B times and �θ∗’s are ordered in ascending order to

obtain the bootstrap sample

{
�θ∗[1], �θ∗[2], . . . , �θ∗[B]

}
.

Percentile bootstrap CI

A two-sided 100(1 − γ)% bootstrap confidence interval for θ is

(
�θ∗[ γ2B], �θ∗[(1− γ

2
)B]

)
,

where, [x] denotes the largest integer less than or equal to x.

Bias adjusted percentile (BCa) interval

A two-sided 100(1 − γ)% BCa bootstrap confidence interval for θ is

(
�θ∗[γ1 B], �θ∗[γ2 B]

)
,

where

γ1 = Φ

{
�z0 +

�z0 + z1−γ/2

1 − a(�z0 + z1−γ/2)

}
and γ2 = Φ

{
�z0 +

�z0 + zγ/2
1 − a(�z0 + zγ/2)

}
.
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Here Φ(· ) is the CDF of the standard normal distribution, zγ is the upper γ-point

of standard normal distribution, and

�z0 = Φ−1

{
# of �θ∗[j] < �θ

B

}
, j = 1, . . . , B.

A estimate of the acceleration a is

�a =

∑N∗

i=1

[�θ(·) − �θ(i)
]3

6
{∑N∗

i=1

[�θ(·) − �θ(i)
]2}3/2

,

where �θ(i) is the MLE of θ based on the original sample with the ith observation

deleted, and

�θ(·) =
1

N∗

N∗∑

i=1

�θ(i).

2.5 Approximation for Distribution of Maximum

Likelihood Estimator

Since the exact distribution of �θ and the associated confidence interval become very

complicated, it seems meaningful if this distribution can be approximated by some

other well known distribution. We see that the distribution of �θ is very close to the

gamma distribution. Note that, if τ < µ then the distribution of �θ has a gamma

distribution. Again if (τ − µ)/θ is very large, then the distribution of �θ will also

become very close to gamma distribution. Hence, we have tried to approximate the

distribution of �θ by a gamma distribution. The gamma parameters are found by

equating the first two moments of the distribution of �θ and that of a gamma distri-

bution. In Figure 2.3, some plots of exact PDF of �θ and its gamma approximation

with histogram are given with µ = 0, θ = 1, n = 20, r = 16, and for different values

of τ . These histograms are drawn with 10, 000 replications. The plots are indicating

that these approximations are quite good. In Table 2.1, values of gamma parameters

are reported for the above mentioned parameters. CIs for θ can be found using the

gamma approximation exactly the same way as describes in Section 2.4.
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Figure 2.3: For n = 20, r = 16, µ = 0, θ = 1 and different values of τ plot of

histogram, exact PDF of �θ and Gamma PDF.

Table 2.1: Gamma parameters for µ = 0, θ = 1, n = 20, and different values of τ

(a) r = 12

τ α λ

0.25 11.00 12.00
0.50 11.20 12.20
0.75 12.44 13.40
1.00 13.77 14.56
1.50 14.48 15.06
2.00 15.71 16.35
2.50 16.80 17.54
3.00 17.51 18.32
3.50 17.97 18.83
4.00 18.28 19.18
7.00 18.91 19.90

10.00 18.99 19.99

(b) r = 16

τ α λ

0.25 15.00 16.00
0.50 15.00 16.00
0.75 15.04 16.04
1.00 15.29 16.29
1.50 16.52 17.44
2.00 17.01 17.80
2.50 17.20 17.97
3.00 17.59 18.41
3.50 17.99 18.85
4.00 18.28 19.18
7.00 18.91 19.90

10.00 18.99 19.99
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Note that the distribution of �θ/θ depends on τ, µ, and θ only through (τ −µ)/θ.

Hence, Table 2.1 can be used for other values of τ, µ and θ. To use this table for the

other values of τ, µ, and θ, say τ = τ1, µ = µ1, and θ = θ1, one needs to compute

the value of (τ1 − µ1)/θ1 and takes those gamma parameters which corresponds to

the τ = (τ1 − µ1)/θ1 in Table 2.1.

2.6 Simulation Study

In this section the results of Monte Carlo simulation are presented to study the

performance of the inference procedures described in Sections 2.2, 2.4, and 2.5. We

choose the value of the location parameter µ to be zero (without loss of generality)

and different values for the scale parameter θ, viz., 0.50, 1.00, 2.00, 3.00, 4.00, and

5.00. We also take n = 20, r = 16 and different choices for τ . Note that

E(�µ) = µ +
θ

n
.

Depending on this relation one of the examiner had suggested to judge the perfor-

mance of the following bias-reduced estimator of µ,

�µ = �µ−
�θ
n
.

The AEs and MSEs of �µ and �µ as estimators of µ and those of �θ are reported in the

Table 2.2. The coverage percentage of different CIs discussed in the section 2.4 are

calculated based on the 10, 000 Monte Carlo simulations and B = 1000. These values

are presented in the Tables 2.3 and 2.4. All the generations of random numbers in

this dissertation have been based on the ‘ran2’ function in Press et al. [123]. The

value of the seed has been taken to be one.

It is clear form the Table 2.2 that the performance of �µ is much better than that

of �µ. Table 2.3 reveals that the approximate method of constructing CI is always

maintaining its CP to its pre-fixed nominal level. Among the bootstrap methods

for constructing confidence interval, adjusted percentile bootstrap method is better
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Table 2.2: Average estimates and MSEs of MLE and bias-reduced estimator of µ.

�µ �µ �θ
τ θ AE MSE AE MSE AE MSE

0.50 0.50 0.025 0.0013 0.002 0.0007 0.467 0.0156
1.50 0.025 0.0013 0.001 0.0007 0.934 0.0634
2.50 0.025 0.0013 0.002 0.0007 1.867 0.2536
3.50 0.025 0.0013 0.002 0.0007 2.801 0.5705
4.50 0.025 0.0013 0.002 0.0007 3.735 1.0143

1.00 0.50 0.051 0.0051 0.004 0.0027 4.668 1.5848
1.50 0.051 0.0051 0.003 0.0027 0.476 0.0136
2.50 0.051 0.0051 0.003 0.0027 0.943 0.0582
3.50 0.051 0.0051 0.003 0.0027 1.868 0.2529
4.50 0.051 0.0051 0.003 0.0027 2.801 0.5705

2.00 0.50 0.101 0.0206 0.008 0.0110 3.735 1.0143
1.50 0.101 0.0206 0.008 0.0110 4.668 1.5848
2.50 0.101 0.0206 0.007 0.0110 0.474 0.0128
3.50 0.101 0.0206 0.006 0.0109 0.953 0.0559
4.50 0.101 0.0206 0.006 0.0109 1.876 0.2413

3.00 0.50 0.152 0.0463 0.012 0.0247 2.802 0.5679
1.50 0.152 0.0463 0.012 0.0247 3.735 1.0136
2.50 0.152 0.0463 0.012 0.0247 4.668 1.5847
3.50 0.152 0.0463 0.011 0.0247 0.474 0.0126
4.50 0.152 0.0463 0.010 0.0247 0.952 0.0533

4.00 0.50 0.202 0.0823 0.015 0.0439 1.897 0.2284
1.50 0.202 0.0823 0.015 0.0439 2.810 0.5494
2.50 0.202 0.0823 0.015 0.0439 3.736 1.0074
3.50 0.202 0.0823 0.015 0.0439 4.669 1.5828
4.50 0.202 0.0823 0.015 0.0439 0.474 0.0126

5.00 0.50 0.253 0.1286 0.019 0.0686 0.950 0.0519
1.50 0.253 0.1286 0.019 0.0686 1.906 0.2254
2.50 0.253 0.1286 0.019 0.0686 2.830 0.5237
3.50 0.253 0.1286 0.019 0.0686 3.745 0.9823
4.50 0.253 0.1286 0.019 0.0686 4.671 1.5725

then percentile bootstrap method with respect to the CP. From Table 2.4, we can

see that the CP of the percentile bootstrap method is quite lower than its pre-fixed

nominal level, while the same of the adjusted bootstrap method is somewhat close

to its nominal level.

Next we consider confidence intervals under the gamma approximation to the

distribution of �θ. Simulation results for µ = 0, θ = 1, n = 20, r = 16 and for

different values of τ are given in Table 2.5. It can be seen that the CP is very close

to nominal level under this approximation. Also we see that the AL of these CIs
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Table 2.3: CP and AL of approximate CIs based on 10000 simulations with

µ = 0, n = 20, and r = 16.

90% C.I. 95% C.I. 99% C.I.

τ θ CP AL CP AL CP AL

0.50 0.50 90.17 0.47 95.48 0.57 99.27 0.81
1.00 89.65 0.93 95.39 1.15 99.15 1.62
2.00 89.18 1.80 94.61 2.32 98.01 3.23
3.00 86.88 2.67 93.24 3.49 97.34 4.75
4.00 87.87 3.59 94.53 4.61 98.34 6.27
5.00 87.76 4.55 94.32 5.72 98.30 7.82

1.50 1.00 89.98 0.93 95.35 1.14 99.27 1.60
1.50 90.17 1.40 95.48 1.72 99.27 2.42
2.00 89.87 1.87 95.44 2.29 99.26 3.23
3.00 89.63 2.79 95.38 3.44 99.16 4.85
4.00 89.18 3.69 95.15 4.59 98.96 6.48
5.00 88.51 4.55 94.63 5.77 98.51 8.10

2.50 1.00 89.66 0.87 95.03 1.07 99.20 1.49
2.00 90.13 1.87 95.46 2.29 99.26 3.22
2.50 90.17 2.34 95.48 2.86 99.27 4.03
3.00 90.00 2.80 95.43 3.44 99.28 4.84
4.00 90.00 3.73 95.40 4.59 99.16 6.46
5.00 89.60 4.65 95.38 5.73 99.14 8.08

3.50 1.00 89.88 0.83 95.11 1.02 99.02 1.42
2.00 89.85 1.84 95.22 2.25 99.21 3.16
3.00 90.18 2.80 95.51 3.44 99.22 4.84
3.50 90.17 3.27 95.48 4.01 99.27 5.65
4.00 90.01 3.74 95.36 4.58 99.27 6.46
5.00 89.83 4.67 95.28 5.73 99.23 8.07

4.50 1.00 89.72 0.82 95.14 1.00 99.13 1.39
2.00 89.78 1.77 95.25 2.17 99.19 3.04
3.00 89.98 2.78 95.35 3.41 99.27 4.80
4.00 90.34 3.74 95.45 4.58 99.26 6.45
4.50 90.17 4.21 95.48 5.16 99.27 7.26
5.00 89.94 4.67 95.43 5.73 99.25 8.07

are very close to that of CIs calculated from the exact distribution of �θ. Though

approximate method of construction of confidence interval is always better with

respect to CP and AL, it is very complicated to calculate specially when n is large.

So we suggest to use the BCa bootstrap CI or gamma approximation CI for the

large values of n.

2.7 Data Analysis

In this section we consider a data set to illustrate the procedures described in the

previous sections. Here we consider the data provided by Bain and Englehardt [8].

A sample of 20 items had been put on the test and the test had been terminated
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Table 2.4: CP and AL of bootstrap CI based on 10000 simulations with µ = 0,
n = 20, r = 16, and B = 1000.

Bootstrap CI BCa Bootstrap CI

90% C.I. 95% C.I. 99% C.I. 90% C.I. 95% C.I. 99% C.I.

τ θ CP AL CP AL CP AL CP AL CP AL CP AL

0.50 0.50 78.34 0.36 85.07 0.43 93.39 0.56 86.09 0.43 92.75 0.52 97.23 0.62
1.00 78.28 0.74 84.78 0.88 92.84 1.14 85.76 0.88 92.18 1.04 96.57 1.24
2.00 78.28 1.47 84.78 1.75 92.84 2.29 85.86 1.77 92.12 2.09 96.49 2.48
3.00 78.28 2.21 84.78 2.63 92.84 3.44 85.70 2.67 92.05 3.15 96.39 3.71
4.00 78.28 2.94 84.78 3.50 92.84 4.58 85.57 3.58 91.92 4.23 96.18 4.92
5.00 78.28 3.68 84.78 4.38 92.84 5.73 85.54 4.50 91.72 5.33 95.73 6.09

1.50 0.50 81.15 0.35 87.62 0.42 94.91 0.56 85.39 0.43 91.67 0.51 96.87 0.61
1.00 81.47 0.72 88.02 0.85 95.00 1.12 87.61 0.87 93.67 1.03 97.81 1.23
2.00 78.28 1.47 84.78 1.74 92.83 2.27 85.85 1.77 92.15 2.09 96.56 2.48
3.00 78.28 2.21 84.78 2.63 92.84 3.43 85.70 2.67 92.05 3.15 96.39 3.71
4.00 78.28 2.94 84.78 3.50 92.84 4.58 85.57 3.58 91.92 4.23 96.18 4.92
5.00 78.28 3.68 84.78 4.38 92.84 5.73 85.54 4.50 91.72 5.33 95.73 6.09

2.50 0.50 80.67 0.34 87.31 0.41 94.67 0.53 85.65 0.41 91.93 0.48 96.82 0.58
1.00 81.93 0.71 88.26 0.85 95.04 1.12 85.36 0.87 91.70 1.03 97.14 1.23
2.00 79.68 1.44 86.53 1.71 94.39 2.24 87.03 1.76 93.22 2.08 97.47 2.46
3.00 78.28 2.20 84.78 2.61 92.85 3.40 85.72 2.67 92.10 3.15 96.57 3.70
4.00 78.28 2.94 84.78 3.50 92.84 4.57 85.58 3.58 91.93 4.23 96.20 4.92
5.00 78.28 3.68 84.78 4.38 92.84 5.72 85.54 4.50 91.72 5.33 95.73 6.09

3.50 0.50 80.34 0.34 87.02 0.40 94.06 0.51 85.67 0.40 92.10 0.47 96.90 0.57
1.00 80.87 0.70 87.44 0.83 94.56 1.10 85.44 0.85 91.60 1.00 96.91 1.21
2.00 82.47 1.43 88.70 1.71 95.39 2.24 87.20 1.76 93.26 2.07 97.69 2.46
3.00 79.05 2.17 86.02 2.58 94.04 3.36 86.74 2.66 93.03 3.14 97.24 3.68
4.00 78.28 2.92 84.78 3.47 92.96 4.53 85.60 3.57 92.06 4.23 96.45 4.91
5.00 78.28 3.67 84.78 4.36 92.84 5.70 85.55 4.50 91.73 5.33 95.76 6.08

4.50 0.50 80.69 0.34 87.24 0.40 94.59 0.52 85.62 0.40 92.03 0.47 96.97 0.56
1.00 80.59 0.69 87.14 0.82 94.19 1.08 85.55 0.83 91.79 0.98 96.75 1.18
2.00 81.99 1.43 88.40 1.71 95.13 2.25 85.65 1.76 92.11 2.07 97.31 2.46
3.00 81.47 2.15 88.02 2.56 95.00 3.36 87.45 2.66 93.49 3.14 97.61 3.68
4.00 78.79 2.89 85.60 3.44 93.86 4.49 86.48 3.57 92.78 4.22 96.97 4.89
5.00 78.28 3.65 84.81 4.33 93.03 5.65 85.60 4.50 91.95 5.32 96.09 6.07

after 150 hours. There were 13 failures within first 150 hours of the test, and the

failures times were 3, 19, 23, 26, 37, 38, 41, 45, 58, 84, 90, 109, and 138. One can

choose any r less than or equal to 13 to transform it a hybrid Type-II censored

data. Here we take r = 12. Under the assumption of two-parameters exponential

distributed lifetimes, MLEs of µ and θ are 3 and 130.85, respectively. Different types

of confidence interval are reported in the Table 2.6.

Next we consider the gamma approximation to the original PDF of �θ. Here we

have τ = 150, �µ = 3, and �θ = 130.85. Hence, (τ−�µ)/�θ = 1.12 and the corresponding

values of shape and scale parameters of gamma approximation are 14.04 and 14.73,
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Table 2.5: CP and AL of CI obtain from gamma approximation based on 10000
simulations with µ = 0, θ = 1, n = 20, and r = 16.

90% C.I. 95% C.I. 99% C.I.

r τ CP AL CP AL CP AL

12 1.00 91.00 1.13 95.88 1.41 99.12 2.06
1.50 90.68 1.06 95.37 1.34 99.10 2.01
2.50 90.29 0.93 95.35 1.16 99.15 1.72
3.50 90.15 0.88 95.21 1.09 98.98 1.59
4.50 89.61 0.85 95.04 1.05 98.79 1.52

16 1.00 90.36 0.93 95.63 1.14 99.37 1.61
1.50 90.32 0.93 95.57 1.15 99.24 1.62
2.50 90.06 0.89 95.16 1.10 99.18 1.58
3.50 90.13 0.86 95.21 1.05 98.98 1.50
4.50 89.94 0.84 95.16 1.03 99.11 1.46

Table 2.6: Lower and upper limits of different confidence intervals for θ

Approx. CI Per Boot. CI BCa Boot. CI Gam. Approx. CI

Level LL UL LL UL LL UL LL UL

90% 91.75 241.02 75.61 185.33 102.27 182.76 82.06 200.13
95% 84.97 270.12 70.57 199.49 95.63 182.76 76.30 221.27
99% 73.57 342.61 60.82 241.91 85.64 182.76 66.53 271.71

respectively. Using the Gamma(14.04, 14.73) distribution, the CI is reported in

Table 2.6.

2.8 Conclusion

In this chapter, we have considered the HCS-II, when lifetimes are assumed to have

two-parameter exponential distribution. We have found the MLEs for both the

parameters. We have considered different methods for construction of CI. We have

seen that the approximate and BCa bootstrap methods for construction of CI are

quite good. Also we approximate the distribution of the MLE of the scale parameter

by gamma distribution and find the associated CI. We have seen that this method of

constructing CI is also quite good. we recommend to use the gamma approximation

or BCa bootstrap method for constructing CI specially when n is large.
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2.A Lemmas

We need the following lemmas to prove the Theorems 2.3.1, 2.3.2, and 2.3.3.

Lemma 2.A.1. Let T1:n < . . . < Tn:n be the order statistics of a random sample of

size n from a continuous distribution with PDF f(x) and the corresponding CDF is

F (· ). Let τ be a pre-fixed number such that F (τ) > 0, and N denote the number of

order statistics less than or equal to τ . The conditional joint PDF of T1:n, . . . , TN :n

conditioned on the event N = i, i = 1, 2, · · · , n, is given by

f (t1, t2, . . . , tN |N = i) =
n!

(n− i)!P [N = i]

i∏

j=1

f (tj) {1 − F (T )}n−i ,

if t1 < . . . < ti < τ.

Proof: See Childs et al. [51].

Lemma 2.A.2. Let T1:n < . . . < Tn:n be the order statistics of a random sample of

size n from a continuous distribution with PDF f(x) and the corresponding CDF is

F (· ). Let τ be a pre-fixed number such that F (τ) > 0, and N denote the number of

order statistics less than or equal to τ . Let r ∈ {1, 2, . . . , n} be a pre-fixed integer.

Then PDF of T1:n, T2:n, . . . , Tr:n conditioned on the event N = 0 is given by

f (t1, t2, . . . , tr |N = 0) =
n!

(n− r)!P [N = 0]

r∏

j=1

f (tj) {1 − F (tr)}
n−r ,

if τ < t1 < . . . < tr < ∞.

For i = 1, 2, . . . , r − 1, PDF of T1:n, T2:n, . . . , Tr:n conditioned on the event N = i

is given by

f (t1, t2, . . . , tr |N = i) =
n!

(n− r)!P [N = i]

r∏

j=1

f (tj) {1 − F (tr)}
n−r ,

if t1 < . . . < ti < τ < ti+1 < . . . < tr < ∞.

Proof: See Childs et al. [51].

Lemma 2.A.3. Let X be a Gamma(α, 1) random variable and Y be a standard

Exponential random variable and they are independently distributed. The PDF of



54 Two-parameter Expo. Dist. Under HCS-II

X is

fGamma(x;α, λ) =





1
λα Γ(α)

xα−1 e−x/λ for x > 0

0 otherwise

with λ = 1. The PDF of Y is

f2(y) =





e−y for y > 0

0 otherwise.

Then for any arbitrary constant A, λ1 and λ2 the MGF of A+ λ1 X + λ2 Y is given

by

MA+λ1 X+λ2 Y (ω) = eωA (1 − λ1 ω)−α (1 − λ2 ω)−1 .

This MGF exists if

ω ∈





( 1
λ2
, 1
λ1

) if λ2 < 0

(−∞,min{ 1
λ1
, 1
λ2
}) if λ2 ≥ 0

Proof: This lemma can be proved using the joint distribution of (X, Y ), and

therefore the proof is omitted.

Lemma 2.A.4. Let X be a Gamma(α, λ1)(with α integer) and Y be an Exponential

random variable with mean
1

λ2

and they be independently distributed. Then the

PDF of X − Y is given by

g2 (t;α, λ1, λ2) =
α−1∑

k=0

pk g1 (t;α− k, λ1) +

(
1 −

α−1∑

k=0

pk

)
g1 (−t, 1, λ2) for t ∈ R,

where pk = λ2

λ1+λ2

(
λ1

λ1+λ2

)k

.

Proof: See Childs et al. [49].

Lemma 2.A.5. Let X be a Gamma(α, λ1)(with α integer) and Y be a Exponential

random variable with mean λ2 and they be independently distributed. Then the

PDF of X + Y is given by

g3 (t;α, λ− 1, λ2) =

(
1 −

α−1∑

k=0

pk

)
g1

(
t; 1,

1

λ2

)
−

α−1∑

k=0

pk g1(t;α− k, λ1)I(0,∞)(t)
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with pk =
1
λ2

λ1− 1
λ2

(
λ1

λ1− 1
λ2

)k

.

2.B Proof of Theorems 2.3.1, 2.3.2, and 2.3.3

The number of unit failed before time τ , N , is a non-negative random variable with

the PMF

P [N = i] =

(
n

i

)(
1 − e−

τ−µ
θ

)i

e−(n−i) τ−µ
θ if i = 0, 1, . . . , n. (2.10)

Case-II: r = 1

The joint conditional MGF of �θ and �µ conditioned on the event {N ≥ 1} can be

written as

E[eω1
�θ+ω2 �µ |N ≥ 1] =

n∑

i=1

E[eω1
�θ+ω2 �µ |N = i] × P [N = i |N ≥ 1]. (2.11)

Using (2.3) and Lemma 2.A.1,

E[eω1
�θ+ω2 �µ |N = 1] =

1

θ
(

1 − e−
τ−µ
θ

)
∫ τ

µ

eω1(n−1)(τ−t)+ω2 t− 1
θ
(t−µ)dt

=
e(n−1)τω1+

µ
θ

{
e−(n−1)µω1+µω2−µ

θ − e−
τ
θ
−(n−1)τω1+τω2

}

θ
(

1 − e−
τ−µ
θ

) (
1
θ

+ (n− 1)ω1 − ω2

) .

Using the above expression and (2.10)

E[eω1
�θ+ω2 �µ |N = 1] × P [N = 1 |N ≥ 1]

= (1 − qn)−1

[
c10

eµ10 ω1+µω2

(1 + (n− 1) θω1 − θω2)
− d10

eτω2

(1 + (n− 1) θω1 − θω2)

]
,

(2.12)

where q, c10, d10 and µ10 are as in Theorem 2.3.1.

Let us define for s = 2, · · · , n and for some constant a, b

Is (a, b) =

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ts−1

e−a(t1−τ)−b
∑s

i=2(ti−τ)dtsdts−1 . . . dt1
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=

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ts−2

e−a(t1−τ)−b
∑s−1

i=2 (ti−τ) ×

{
e−b(ts−1−τ) − 1

b

}
dts−1 . . . dt2dt1

=
1

2b2

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ts−3

e−a(t1−τ)−b
∑s−2

i=2 (ti−τ)
{
e−b(ts−2−τ)−1

}2
dts−2 . . . dt2dt1

...

=
b−(s−1)

(s− 1)!

∫ τ

µ

e−a(t1−τ)
{
e−b(t1−τ) − 1

}s−1
dt1

=
b−(s−1)

(s− 1)!

s−1∑

j=0

(−1)s−j−1

(
s− 1

j

)∫ τ

µ

e−(a+bj)(t1−τ)dt1

=
b−(s−1)

(s− 1)!

s−1∑

j=0

(−1)s−j−1

(
s− 1

j

)
×
e(a+bj)(τ−µ) − 1

a + bj
. (2.13)

For i = 2, 3, . . . , n, using (2.3) and Lemma 2.A.1 again, we have

E[eω1
�θ+ω2 �µ |N = i]

=
i!

θi
(

1 − e−
τ−µ
θ

)i

×

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ti−1

e
ω1
i {

∑i
j=2 tj−(n−1)t1+(n−i)τ}+ω2t1− 1

θ

∑i
j=1(tj−µ)dti . . . dt1.

Consider the exponential term in the integrand

ω1

i

{
i∑

j=2

tj − (n− 1) t1 + (n− i) τ

}
+ ω2t1 −

1

θ

i∑

j=1

(tj − µ)

= −

(
1

θ
+
n− 1

i
ω1 − ω2

)
(t1 − τ) −

(
1

θ
−
ω1

i

) i∑

j=2

(tj − τ)

−

(
1

θ
+
n− 1

i
ω1 − ω2

)
τ −

(
1

θ
−
ω1

i

)
(i− 1) τ +

iµ

θ
+
ω1

i
(n− i) τ

= −

(
1

θ
+
n− 1

i
ω1 − ω2

)
(t1 − τ) −

(
1

θ
−
ω1

i

) i∑

j=2

(tj − τ) − i

(
τ − µ

θ

)
+ τω2.
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Hence, using (2.13)

E[eω1
�θ+ω2 µ |N = i]

=
i! e−i τ−µ

θ
+τω2

θi
(

1 − e−
τ−µ
θ

)i

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ti−1

e−( 1
θ
+n−1

i
ω1−ω2)(t1−τ)−( 1

θ
−ω1

i )
∑i

j=2(tj−τ)dti . . . dt1

=
e−i τ−µ

θ
+τω2

(
1 − e−

τ−µ
θ

)i

i−1∑

j=0

(−1)i−j−1

(
i

j + 1

)
×

e(
j+1
θ

+n−j−1
θ

ω1−ω2)(τ−µ) − 1
(
1 − θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 −
θ

j+1
ω2

) .

Using the above expression and (2.10), one will get for i = 2, · · · , n

E[eω1
�θ+ω2 �µ |N = i] × P [N = i |N ≥ 1]

=
e−i τ−µ

θ
+τω2

(
1 − e−

τ−µ
θ

)i

i−1∑

j=0

(−1)i−j−1

(
i

j + 1

)
×

e(
j+1
θ

+n−j−1
θ

ω1−ω2)(τ−µ) − 1
(
1 − θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 −
θ

j+1
ω2

)

×

(
n
i

) (
1 − e−

τ−µ
θ

)i

e−(n−i) τ−µ
θ

1 − e−n τ−µ
θ

=
e−n τ−µ

θ
+τω2

1 − e−n τ−µ
θ

i−1∑

j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
e(

j+1
θ

+n−j−1
i

ω1−ω2)(τ−µ) − 1
(
1 − θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 −
θ

j+1
ω2

) .

Hence, using (2.11), (2.12) and the above expression, we have

E[eω1
�θ+ω2�µ |N ≥ 1]

= (1 − qn)−1


c10

eµ10ω1+µω2

(
1 + ω1

λ10
− ω2

ν0

) − d10
eτω2

(
1 + ω1

λ10
− ω2

ν0

) +
eµω2 − qneτω2

(
1 − ω1

λn

)αn
(

1 − ω2

νn−1

)

+
n−1∑

i=2

i−1∑

j=0



cij

eµijω1+µω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

) − dij
eτω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

)





+
n−2∑

j=0



cnj

eµnjω1+µω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

) − dnj
eτω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

)






 ,

where q, αi, λi, µij , λij , cij and dij are as given in Theorem 2.3.1. Now using Lemmas

2.A.3, 2.A.4, one will get (2.8).
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Case-II: r ≥ 2

The joint MGF of �θ and �µ can be expressed as

E[eω1
�θ+ω2 �µ] =

n∑

i=0

E[eω1
�θ+ω2 �µ |N = i] × P [N = i]. (2.14)

Now using (2.4) and Lemma 2.A.2, for ω1 <
r
θ

and ω2 <
1
θ

+ n−1
r
ω1

E[eω1
�θ+ω2 �µ |N = 0]

=
n!

θr (n− r)!P [N = 0]

×

∫ ∞

max{τ, µ}

∫ ∞

t1

. . .

∫ ∞

tr−1

{
e

ω1
r {

∑r−1
j=2 tj−(n−1)t1+(n−r+1)tr}+ω2 t1

× e
−

∑r
j=1

(
tj−µ

θ

)
−(n−r)( tr−µ

θ )
}
dtr . . . dt1

=
n! e

nµ
θ

θr (n− r)!P [N = 0]

×

∫ ∞

max{τ, µ}

∫ ∞

t1

. . .

∫ ∞

tr−1

e−( 1
θ
+n−1

r
ω1−ω2)t1−( 1

θ
−ω1

r )
∑r−1

j=2 tj−(n−r+1)( 1
θ
−ω1

r )trdtr . . . dt1

=
n! e

nµ
θ

θr (n− r)!P [N = 0]

×

∫ ∞

max{τ, µ}

∫ ∞

t1

. . .

∫ ∞

tr−2

e−( 1
θ
+n−1

r
ω1−ω2)t1−( 1

θ
−ω1

r )
∑r−1

j=2 tj

×
e−(n−r+1)( 1

θ
−ω1

r )tr−1

(n− r + 1)
(

1
θ
− ω1

r

)dtr−1 . . . dt1

...

=
n e

nµ
θ

P [N = 0]θr
×

1
(

1
θ
− ω1

r

)r−1

∫ ∞

max{τ, µ}
e−(n

θ
−ω2)t1dt1

=
n e

nµ
θ

P [N = 0]θr
×

e−(n
θ
−ω2)max{τ, µ}

(
1
θ
− ω1

r

)r−1 (n
θ
− ω2

)

=
e−n

max{τ, µ}−µ

θ
+ω2 max{τ, µ}

P [N = 0]
(
1 − θ

r
ω1

)r−1 (
1 − θ

n
ω2

) .
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Hence, for ω1 <
r
θ

and ω2 <
1
θ

+ n−1
r
ω1

E[eω1
�θ+ω2 �µ |N = 0] × P [N = 0]

= e−n
max{τ,µ}−µ

θ
+ω2 max{τ,µ} ×

1
(
1 − θ

r
ω1

)r−1 (
1 − θ

n
ω2

) . (2.15)

Now for i = 1, 2, . . . , r − 1 and ω1 <
r
θ
, using (2.4) and Lemma 2.A.2

E[eω1
�θ+ω2 �µ |N = i]

=
n!

(n− r)!P [N = i]θr

×

∫ τ

µ

. . .

∫ τ

ti−1

∫ ∞

τ

. . .

∫ ∞

tr−1

{
e

ω1
r {

∑r−1
j=2 tj−(n−1)t1+(n−r+1)tr}+ω2 t1

×e
−

∑r
j=1

(
tj−µ

θ

)
−(n−r)( tr−µ

θ )
}
dtr . . . dt1

Consider the exponential term of the integrand

ω1

r

{
r−1∑

j=2

tj − (n− 1) t1 + (n− r + 1) tr

}
+ ω2 t1 −

r∑

j=1

(
tj − µ

θ

)
− (n− r)

(
tr − µ

θ

)

= −

(
1

θ
+
n− 1

r
ω1 − ω2

)
t1 −

(
1

θ
−
ω1

r

) r−1∑

j=2

tj − (n− r + 1)

(
1

θ
−
ω1

r

)
tr +

nµ

θ

= −

(
1

θ
+
n− 1

r
ω1 − ω2

)
(t1 − τ) −

(
1

θ
+
n− 1

r
ω1 − ω2

)
τ −

(
1

θ
−
ω1

r

) i∑

j=2

(tj − τ)

−

(
1

θ
−
ω1

r

)
(i− 1) τ −

(
1

θ
−
ω1

r

) r−1∑

j=i+1

tj − (n− r + 1)

(
1

θ
−
ω1

r

)
tr +

nµ

θ

= −

(
1

θ
+
n− 1

r
ω1 − ω2

)
(t1 − τ) −

(
1

θ
−
ω1

r

) i∑

j=2

(tj − τ) −

(
1

θ
−
ω1

r

) r−1∑

j=i+1

tj

− (n− r + 1)

(
1

θ
−
ω1

r

)
tr +

nµ

θ
−
iτ

θ
−
n− i

r
τω1 + ω2 τ.

Hence, for i = 1, 2, . . . , r − 1 and for ω1 <
r
θ
,

E[eω1
�θ+ω2 �µ |N = i]

=
n! e

nµ
θ
− iτ

θ
−n−i

r
τω1+ω2 τ

(n− r)!P [N = i]θr

×

{∫ τ

µ

∫ τ

t1

. . .

∫ τ

ti−1

e−( 1
θ
+n−1

r
ω1−ω2)(t1−τ)−( 1

θ
−ω1

r )
∑i

j=2(tj−τ)dti . . . dt1

}
(2.16)
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×

{∫ ∞

τ

∫ ∞

ti+1

. . .

∫ ∞

tr−1

e−( 1
θ
−ω1

r )
∑r−1

j=i+1 tj−(n−r+1)( 1
θ
−ω1

r )trdtr . . . dti+1

}
. (2.17)

Consider the integration in the first braces in the above expression

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ti−1

e−( 1
θ
+n−1

r
ω1−ω2)(t1−τ)−( 1

θ
−ω1

r )
∑i

j=2(tj−τ)dti . . . dt1

=
i−1∑

j=0

(−1)i−j−1 (i−1
j

){
e(

j+1
θ

+n−j−1
r

ω1−ω2)(τ−µ) − 1
}

(i− 1)!
(

1
θ
− ω1

r

)i−1 ( j+1
θ

+ n−j−1
r

ω1 − ω2

) . (2.18)

This equality is due to (2.13). Consider the integration inside the second braces in

(2.17)

∫ ∞

τ

∫ ∞

ti+1

. . .

∫ ∞

tr−1

e−( 1
θ
−ω1

r )
∑r−1

j=i+1 tj−(n−r+1)( 1
θ
−ω1

r )trdtr . . . dti+1

=

∫ ∞

τ

∫ ∞

ti+1

. . .

∫ ∞

tr−2

e−( 1
θ
−ω1

r )
∑r−1

j=i+1 tj ×
e−(n−r+1)( 1

θ
−ω1

r )tr−1

(n− r + 1)
(

1
θ
− ω1

r

)dtr−1 . . . dti+1

...

=
(n− r)! e−(n−i)( 1

θ
−ω1

r )τ

(n− i)!
(

1
θ
− ω1

r

)r−i .

Hence, using above expression and (2.18) in (2.17), one will get for ω1 <
r
θ

E[eω1
�θ+ω2 �µ |N = i]

=
n! e

nµ
θ
− iτ

θ
−n−i

r
τω1+τω2

(n− r)!P [N = i]θr
×

(n− r)! e−(n−i)( 1
θ
−ω1

r )τ

(n− i)!
(

1
θ
− ω1

r

)r−i

×

i−1∑

j=0

(−1)i−j−1 (i−1
j

){
e(

j+1
θ

+n−j−1
r

ω1−ω2)(τ−µ) − 1
}

(i− 1)!
(

1
θ
− ω1

r

)i−1 ( j+1
θ

+ n−j−1
r

ω1 − ω2

)

=
e−n τ−µ

θ
+τω2

P [N = i]

i−1∑

j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
×

e(
j+1
θ

+n−j−1
r

ω1−ω2)(τ−µ) − 1
(
1 − θ

r
ω1

)r−1
(

1 + (n−j−1)θ
r(j+1)

ω1 −
θ

j+1
ω2

) .

Hence, for i = 1, 2, . . . , r − 1 and ω < r
θ
,

E[eω1
�θ+ω2 �µ |N = i] × P [N = i]

= e−n τ−µ
θ

+τω2

i−1∑

j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
×

e(
j+1
θ

+n−j−1
r

ω1−ω2)(τ−µ) − 1
(
1 − θ

r
ω1

)r−1
(

1 + (n−j−1)θ
r(j+1)

ω1 −
θ

j+1
ω2

)

(2.19)
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Now for i = r, r + 1, . . . , n, using (2.4) and Lemma 2.A.1

E[eω1
�θ+ω2 �µ |N = i]

=
n!

(n− i)!θiP [N = i]

×

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ti−1

e
ω1
i {

∑i
j=2 tj−(n−1)t1+(n−i)τ}+ω2 t1−

∑i
j=1

(
tj−µ

θ

)
−(n−i)( τ−µ

θ )dti . . . dt1

=
n! e−n τ−µ

θ
+τω2

(n− i)!θiP [N = i]

×

∫ τ

µ

∫ τ

t1

. . .

∫ τ

ti−1

e−( 1
θ
+n−1

i
ω1−ω2)(t1−τ)−( 1

θ
−ω1

i )
∑i

j=2(tj−τ)dti . . . dt1

=
n! e−n τ−µ

θ
+τω2

(n− i)!θiP [N = i]

i−1∑

j=0

(−1)i−j−1

(
i− 1

j

)
(i− 1)!

×
e(

j+1
θ

+n−j−1
i

ω1−ω2)(τ−µ) − 1
(
j+1
θ

+ n−j−1
i

ω1 − ω2

) (
1
θ
− ω1

i

)i−1 .

Last equality is due to (2.13). Hence, for i = r, r + 1, . . . , n,

E[eω1
�θ+ω2 �µ |N = i] × P [N = i]

= e−n τ−µ
θ

+τω2

i−1∑

j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
e(

j+1
θ

+n−j−1
i

ω1−ω2)(τ−µ) − 1
(
1 − θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 −
θ

j+1
ω2

) .

Hence, using the above expression, (2.15) and (2.19) in (2.14), we have for ω1 <
r
θ

and ω2 <
n
θ

E[eω1
�θ+ω2�µ]

=
qn eτω2

(
1 − ω1

λ1

)α1
(

1 − ω2

νn−1

) +
eµω2 − qneτω2

(
1 − ω1

λn

)αn
(

1 − ω2

νn−1

)

+
n−1∑

i=1

i−1∑

j=0

cij
eµij ω1+µω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

) −
n−1∑

i=1

i−1∑

j=0

dij
eτω2

(
1 − ω1

λi

)αi
(

1 + ω1

λij
− ω2

νj

)

+
n−2∑

j=0

cnj
eµnj ω1+µω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

) −
n−2∑

j=0

dnj
eτω2

(
1 − ω1

λn

)αn
(

1 + ω1

λnj
− ω2

νj

) ,

where q, µij, αi, λi, λij , cij and dij are as given in Theorem 2.3.1. Now using Lemmas

2.A.3, 2.A.4, one will get (2.9).





Chapter 3

Bayesian Analysis of Different
Hybrid and Progressive Life Tests1

3.1 Introduction

We have already discussed different censoring schemes in Section 1.2. Extensive work

has been done on different censoring schemes by several authors (see Section 1.5).

However, most of the analysis has been performed under the frequentist context and

very little attention is paid to Bayesian analysis. Moreover, it is worth mentioning

that the frequentist analysis of different HCSs and PCSs is not very easy even when

lifetime distribution is assumed to be an exponential distribution. Though finding

the MLE is not difficult, construction of associated CI involves a numerical compu-

tation. It seems that Bayesian approach is a natural choice in this case. Draper and

Guttman [62] considered Bayesian analysis of hybrid life tests with one-parameter

exponential failure times. The main aim of this chapter is to consider the Bayesian

inference of the unknown parameters of a two-parameter exponential distribution

when the data are obtained from different HCSs and PCSs. It is observed that the

Bayesian analysis can be performed quite conveniently, and it can be extended quite

naturally for many other censoring cases, which may not be that immediate in the

1A part of this work has been accepted for publication in Communications in Statistics - Sim-

ulation and Computation.
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frequentist context.

Rest of the chapter is organized as follows. In Section 3.2, we briefly mention the

model under consideration and prior information of the unknown parameters. In

Section 3.3, we provide the posterior analysis and the Bayes estimators in details for

HCS-I. Monte Carlo simulation results are presented in Section 3.4. In Section 3.5

we provide the analysis of a Type-I hybrid censored data set for illustrative purpose.

In Section 3.6 we have indicated how the proposed method can be implemented for

other censoring schemes also, and finally we conclude the chapter in Section 3.7.

3.2 Model Assumption and Prior Information

It is assumed that the failure times of the experimental units are independent and

identically distributed two-parameter exponential random variables with the follow-

ing PDF

f(t;λ, µ) = λe−λ(t−µ); t > µ, −∞ < µ < ∞, λ > 0.

We make the following prior assumptions on λ and µ. Note that for known µ, λ has

a conjugate gamma prior and this prior was used by Draper and Guttman [62]. It

is assumed that λ has a gamma distribution with the shape and scale parameters

a > 0 and b > 0, respectively, i.e., it has the following PDF

π1(λ) =
ba

Γ(a)
λa−1e−bλ; λ > 0.

It is further assumed that µ has a uniform prior over (M1, M2), where M1 < M2,

i.e., it has the following PDF

π2(µ) =
1

M2 −M1

; M1 < µ < M2.

It is also assumed that µ and λ are independently distributed. Note that if we take

a = b = 0, it becomes a non-informative prior, which is an improper prior also on
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λ. If we assume M1 → −∞ and M2 → ∞, we have a non-informative and improper

prior on µ over the whole real line.

3.3 Posterior Analysis under HCS-I

Let r(≤ n) be a pre-chosen positive integer, and τ be a pre-determined time. Recall

that under HCS-I the test is terminated when r-th item fails or time τ is reached

on the test, whichever is earlier, i.e., the termination time of the experiment is

τ ∗ = min{tr:n, τ}. The available data will be one of the forms:

(a) t1:n < t2:n < . . . < tr:n if τ ∗ = tr:n,

(b) t1:n < t2:n < . . . < tN :n if τ ∗ = τ ,

(c) there is no failure before the time τ ,

where N ∈ {1, . . . , r − 1} is the number of failures before the time τ . Note that

the probability of getting no data depends on the chosen value of τ . During the

planing stage one should not choose a value of τ such that the probability of getting

no data is significant. Therefore we ignore case (c). Based on the observations from

a HCS-I, the likelihood function can be written as

l(Data |λ, µ) ∝ λd
∗

e
−λ

(∑d∗

i=1(ti:n−µ)+(n−d∗)(U−µ)
)

.

Here for case (a), d∗ = r, and U = tr:n, and for case (b), d∗ = N , 0 < N ≤ r − 1,

and U = τ . Therefore, based on the priors π1(·) and π2(·) as mentioned above the

joint posterior density function of λ and µ becomes

l(µ, λ |Data) ∝ λa+d∗−1e−λ(b+
∑d∗

i=1(ti:n−µ)+(n−d∗)(U−µ)); λ > 0, M1 < µ < M3,

(3.1)

where M3 = min{M2, t1:n}. Let D = {(µ, λ) : λ > 0,M1 < µ < M3}. Note that

l(µ, λ |Data) > 0 for (µ, θ) ∈ D. Let A0 = 1
n

(
b +

∑d∗

i=1 ti:n + (n− d∗)U
)

. Then for
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i = 1, 2

A0 −Mi =
1

n

{
b +

d∗∑

j=1

(tj:n −Mi) + (n− d∗)(U −Mi)

}
> 0,

as tj:n −Mi ≥ 0 for i = 1, 2, j = 1, 2, . . . , d∗, U −Mi ≥ 0 for i = 1, 2, and b > 0.

Now

∫ ∞

0

∫ M3

M1

l(µ, λ |Data)dµdλ

= (M3 −M1)

∫ ∞

0

λa+d∗−1 e−n(A0−M3)λ

{
1 − e−n(M3−M1)λ

n(M3 −M1)λ

}
dλ,

which imply l(µ, λ |Data) is integrable if a + d∗ > 0 as

lim
λ↓0

1 − e−n(M3−M1)λ

n(M3 −M1)λ
= 1.

Now consider the reverse integration

∫ M3

M1

∫ ∞

0

l(µ, λ, |Data)dλdµ

=

∫ M3

M1

Γ(a + d∗)

{n(A0 − µ)}a+d∗
if a + d∗ > 0.

As M1 < M3 < A0, the last integral exists and hence,

∫ M3

M1

∫ ∞

0

l(µ, λ)dλdµ exists

if a + d∗ > 0. Using Fubini’s Theorem, one can conclude that l(µ, λ |Data) is

integrable over the region D = {(µ, λ) : λ > 0,M1 < µ < M3} if a + d∗ > 0.

If we want to compute the Bayes estimate of some function of µ and λ, say g(µ, λ),

with respect to the squared error loss function, it will be posterior expectation of

g(µ, λ), i.e.,

�gB(µ, λ) =

∫ ∞

0

∫ M3

M1

g(µ, λ)l(µ, λ |Data)dµdλ, (3.2)

provided it exists and is finite. Unfortunately (3.2) cannot be obtained in explicit

form in most of the cases. Even when the integration (3.2) can be performed ex-

plicitly, it may not be possible to construct the corresponding CRI. For example,

let us consider the p-th percentile point, say ηp, of the two-parameter exponential
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distribution, i.e.,

g(µ, λ) = ηp = µ−
1

λ
ln (1 − p).

The Bayes estimate of ηp with respect to the squared error loss function exists when

a + d∗ − 1 > 0 and d∗ > 0, and it is

�ηp =





A0 −
A0−M1

a+d∗−2
×

(
A0−M1
A0−M3

)a+d∗−2
−1

(
A0−M1
A0−M3

)a+d∗−1
−1

× {a + d∗ − 1 + n log (1 − p)}

if a + d∗ ̸= 2

A0 − (A0 −M1)
(
A0−M1

A0−M3
− 1

)−1

(n log(1 − p) + 1) log
(
A0−M1

A0−M3

)

if a + d∗ = 2.

However, the posterior distribution of ηp cannot be obtained explicitly, and hence,

finding the credible interval analytically is not a trivial issue. We propose to use the

Monte Carlo sampling to construct the associated symmetric CRI of ηp.

Note that (3.1) can be written as

l(µ, λ |Data) = l(λ |µ,Data) × l(µ |Data), (3.3)

where

λ | {µ,Data} ∼ Gamma (a + d∗, n(A0 − µ)) , (3.4)

l(µ |Data) =
c(a + d∗ − 1)

(A0 − µ)a+d∗
; M1 < µ < M3,

c =

{
1

(A0 −M3)a+d∗−1
−

1

(A0 −M1)a+d∗−1

}−1

.

Moreover, the posterior distribution of µ |Data has a compact and invertible CDF

as

F (x) = c

{
1

(A0 − x)a+d∗−1
−

1

(A0 −M1)a+d∗−1

}
for M1 ≤ x < M3 (3.5)

and hence, random numbers can be generated quite easily from l(µ |Data). Now

we suggest to use the following procedure to compute the Bayes estimate of g(µ, λ),

and also to construct the associated CRI.

Step 1. Generate µ1 from (3.5).
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Step 2. Generate λ1 from l(λ |µ,Data) as given in (3.4).

Step 3. Continue the process M times, and obtain {(µ1, λ1), · · · , (µM , λM)}.

Step 4. Obtain {g(µ1, λ1), · · · , g(µM , λM)}.

Step 5. Compute the Bayes estimate of g(µ, λ) as

�gBE(µ, λ) =
1

M

M∑

i=1

g(µi, λi).

Step 6. To construct a 100(1-γ)% symmetric CRI of g(µ, λ), first order g(µi, λi)’s,

say g1 < g2 < · · · < gM , and obtain the symmetric CRI as (g[Mγ/2], g[M(1−γ/2)]).

Here [x] denotes the largest integer less than or equal to x. HPD CRI is given

by (gj∗ , g[M(1−γ)+j∗]), where j∗ is such that

g[M(1−γ)+j∗] − gj∗ ≤ g[M(1−γ)+j] − gj for j = 1, 2, . . . , [Mγ].

Similar methodology can be applied for other censoring schemes also, and we

will briefly mention different cases in Section 3.6 for completeness purposes.

Next we shall examine BE and associate CRI when prior on µ is assumed to be

a uniform non-informative over the whole real line R, i.e., π3(µ) = dµ. Clearly, it is

a non-proper prior. Other assumptions are as before. Therefore, based on the priors

π1(·) and π3(·) the joint posterior density function of µ and λ becomes

�l(µ, λ |Data) ∝ λd
∗+a−1e−λ(b+

∑d∗

i=1(ti:n−µ)+(n−d∗)(U−µ)); λ > 0, µ < t1:n. (3.6)

Note that (3.6) is a proper joint density function if d∗ +a−1 > 0. Like the previous

section BE of g(α, λ) with respect to the squared error loss function is given by

�gB(µ, λ) =

∫ ∞

0

∫ t1:n

−∞
g(µ, λ)�l(µ, λ |Data)dµdλ, (3.7)

provided it exists and finite. Here also (3.7) cannot be obtained in explicit form in

most of the cases. In this case the BE of ηp with respect to the squared error loss

function exists when a + d∗ − 2 > 0 and d∗ > 0, and it is given by

�ηp =
(a + d∗ − 1)t1:n − A0

a + d∗ − 2
−
n(A0 − t1:n)

a + d∗ − 2
ln (1 − p).
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However, the posterior distribution of �ηp cannot be obtained explicitly in this case

also, and hence, finding the CRI analytically is not a trivial issue. We propose

to use the Monte Carlo random sampling technique to construct the associated

symmetric CRI of g(µ, λ). Note that (3.6) can be written in the form of (3.3),

where l(λ |µ, Data) is given in (3.4) and

l(µ |Data) =
�c

(A0 − µ)a+d∗
; µ < t1:n,

�c = (a + d∗ − 1) × (A0 − x1:n)a+d∗−1 .

Moreover, the posterior distribution of µ |Data has a compact cumulative distribu-

tion function as

F (x) =
(A0 − t1:n)a+d∗−1

(A0 − x)a+d∗−1
for µ < t1:n. (3.8)

Therefore generation from µ |Data is very straight forward. Now we suggest to

use the following procedure to compute the Bayes estimate of g(µ, λ), and also to

construct the associated CRI.

Step 1. Generate µ1 from (3.8).

Step 2. Generate λ1 from l(λ |µ,Data) as given in (3.4).

Step 3. Continue the process M times to obtain {(µ1, λ1), · · · , (µM , λM)}, and also

obtain {g(µ1, λ1), · · · , g(µM , λM)}.

Step 4. Compute the Bayes estimate of g(µ, λ) as

�gBE(µ, λ) =
1

M

M∑

i=1

g(µi, λi).

Step 5. To construct a 100(1-γ)% symmetric CRI of g(µ, λ), first order g(µi, λi) for

i = 1, 2, . . . , M , say g1 < g2 < · · · < gM , and obtain the symmetric CRI as

(g[Mγ/2], g[M(1−γ/2)]). Here [x] denotes the largest integer less than or equal to

x. HPD CRI is given by (gj∗ , g[M(1−γ)+j∗]), where j∗ is such that

g[M(1−γ)+j∗] − gj∗ ≤ g[M(1−γ)+j] − gj for j = 1, 2, . . . , [Mγ].
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3.4 Simulation Study

In this section we present some simulation results to examine how the proposed

Bayes estimate and the associate credible interval behave for different sample sizes

in case of HCS-I. We consider three parametric functions, viz. µ, λ, and η 0.90, and

through out we assume a = 2, b = 0.1, M1 = −100, M2 = 100, and n = 15. In all

these cases we have considered µ = 0 and λ = 10. Note that Bayes estimate of µ

and λ exist if a + d∗ > 0 and they are given by

�µ =





A0 + (M3 −M1)
{

ln
(
A0−M3

A0−M1

)}−1

if a + d∗ = 1

A0 + 1
(A0−M3)

ln
(
A0−M3

A0−M1

){
1 − A0−M3

A0−M1

}
if a + d∗ = 2

A0 −
a+d∗−1
a+d∗−2

(A0 −M3) ×
1−

(
A0−M3
A0−M1

)a+d∗−2

1−
(

A0−M3
A0−M1

)a+d∗−1 otherwise

and

�λ =
a + d∗ − 1

n(A0 −M3)
×

1 −
(
A0−M3

A0−M1

)a+d∗

1 −
(
A0−M3

A0−M1

)a+d∗−1
.

We computed the Bayes estimate both theoretically and by Monte Carlo sampling.

We computed the 90%, 95% and 99% symmetric CRIs using Monte Carlo sampling

as suggested in the previous section. We report the AE and MSE of the Bayes

estimates, and the CPs, the ALs of symmetric CRIs based on 5000 replications and

M = 5000 in each case. The results are reported in Tables 3.1-3.3.

It is observed that in each case as τ increases the biases and the MSEs decrease,

it verifies the consistency properties of the estimates. In all the cases the coverage

percentages are also quite close to the nominal levels even for very small sizes. For

fixed sample size n and effective sample size, the coverage percentages decrease as τ

increases. For fixed n, as r increases the biases, MSEs and the length of the credible

intervals decrease. Moreover, in all the cases the theoretical and simulated Bayes

estimates match very well.
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Table 3.1: Average estimates and the corresponding MSEs of µ and average

lengths of the three different credible intervals and the associated coverage

percentages

r τ
Sim. Theo. 90% 95% 99%

AE MSE AE MSE CP AL CP AL CP AL

5 0.050 -0.00065 0.0001 -0.00041 0.0001 89.72 0.024 95.00 0.032 99.00 0.056
0.075 -0.00015 0.0001 0.00007 0.0001 89.30 0.022 94.46 0.029 99.02 0.049
0.100 -0.00008 0.0001 0.00016 0.0001 88.70 0.021 93.84 0.028 98.48 0.047
0.125 -0.00009 0.0001 0.00018 0.0001 88.56 0.021 94.40 0.028 98.78 0.047
0.150 -0.00009 0.0001 0.00018 0.0001 88.56 0.021 94.40 0.028 98.78 0.047

10 0.050 -0.00113 0.0001 -0.00083 0.0001 90.12 0.025 95.12 0.033 99.02 0.057
0.075 -0.00061 0.0001 -0.00041 0.0001 90.24 0.023 95.28 0.030 99.08 0.049
0.100 -0.00039 0.0000 -0.00015 0.0001 89.52 0.022 94.88 0.028 98.94 0.044
0.125 -0.00017 0.0001 0.00001 0.0001 88.88 0.021 93.70 0.027 98.64 0.043
0.150 -0.00006 0.0000 0.00010 0.0001 89.48 0.021 94.28 0.027 98.96 0.042

15 0.050 -0.00112 0.0001 -0.00084 0.0001 90.28 0.024 95.08 0.032 99.08 0.055
0.075 -0.00052 0.0001 -0.00045 0.0001 90.06 0.023 94.76 0.030 98.90 0.048
0.100 -0.00049 0.0000 -0.00026 0.0001 90.46 0.022 95.32 0.028 98.76 0.045
0.125 -0.00024 0.0000 -0.00015 0.0001 89.48 0.022 94.52 0.028 98.98 0.044
0.150 -0.00026 0.0000 -0.00009 0.0001 89.76 0.021 94.92 0.027 98.96 0.042

Table 3.2: Average estimates and the corresponding MSEs of λ and average

lengths of the three different credible intervals and the associated coverage

percentages

r τ
Sim. Theo. 90% 95% 99%

AE MSE CP AL CP AL CP AL CP AL

5 0.050 13.78 49.0096 13.93 51.4781 90.48 18.519 96.12 22.185 99.72 29.527
0.075 13.86 48.7823 14.07 50.9108 90.02 18.285 96.24 21.897 99.70 29.104
0.100 14.09 51.6411 14.09 50.7609 90.08 18.553 95.76 22.217 99.62 29.533
0.125 14.11 52.0124 14.09 50.7301 90.18 18.579 96.06 22.249 99.52 29.578
0.150 14.11 52.0124 14.09 50.7285 90.18 18.579 96.06 22.249 99.52 29.578

10 0.050 11.95 20.6322 12.15 22.7665 92.74 14.550 96.18 17.415 99.22 23.129
0.075 11.69 18.0393 11.91 20.7534 90.38 12.648 95.88 15.113 99.26 20.007
0.100 11.97 19.9217 11.98 20.8835 89.60 12.163 94.88 14.530 99.28 19.212
0.125 12.01 19.9753 12.07 20.8048 89.02 11.928 95.02 14.248 99.10 18.823
0.150 11.97 18.6423 12.12 20.6603 90.22 11.791 95.02 14.078 99.00 18.596

15 0.050 12.09 21.3983 12.10 21.4073 92.04 14.628 96.02 17.506 99.28 23.253
0.075 11.64 16.0866 11.71 16.5803 91.10 12.481 95.92 14.916 99.22 19.739
0.100 11.47 13.6284 11.54 14.4483 90.82 11.373 95.62 13.587 99.26 17.948
0.125 11.36 12.4393 11.46 13.2163 90.96 10.700 95.40 12.777 99.04 16.879
0.150 11.41 12.4330 11.43 12.6241 90.26 10.342 94.92 12.346 98.94 16.292

3.5 Data Analysis

For illustrative purposes, we present the analysis of HCS-I data set. The data set

has been obtained from Bain and Englehardt [8]. In this case 20 items were put on
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Table 3.3: AE and the corresponding MSE of η 0.90 and AL of the three different

CRIs and the associated CP

r τ
Sim. Theo. 90% 95% 99%

AE MSE AE MSE CP AL CP AL CP AL

5 0.050 0.25 0.0226 0.25 0.0227 90.46 0.394 96.16 0.517 99.72 0.865
0.075 0.24 0.0099 0.24 0.0100 89.76 0.334 96.22 0.428 99.70 0.671
0.100 0.23 0.0089 0.23 0.0089 89.88 0.324 95.60 0.414 99.62 0.646
0.125 0.23 0.0083 0.23 0.0083 90.14 0.322 95.92 0.411 99.50 0.640
0.150 0.23 0.0083 0.23 0.0083 90.14 0.322 95.92 0.411 99.50 0.640

10 0.050 0.27 0.0186 0.27 0.0187 92.60 0.389 96.30 0.506 99.12 0.827
0.075 0.25 0.0107 0.25 0.0107 90.16 0.308 95.88 0.389 99.16 0.588
0.100 0.24 0.0071 0.24 0.0071 89.74 0.262 94.74 0.326 99.24 0.478
0.125 0.24 0.0064 0.24 0.0064 89.22 0.246 95.12 0.306 99.04 0.442
0.150 0.23 0.0055 0.23 0.0055 90.20 0.238 94.86 0.295 98.92 0.424

15 0.050 0.26 0.0161 0.26 0.0161 91.96 0.377 96.06 0.488 99.24 0.791
0.075 0.25 0.0095 0.25 0.0095 91.08 0.303 95.98 0.382 99.24 0.575
0.100 0.24 0.0067 0.24 0.0068 90.96 0.265 95.66 0.330 99.28 0.482
0.125 0.24 0.0064 0.24 0.0064 90.94 0.246 95.50 0.304 98.92 0.439
0.150 0.24 0.0051 0.24 0.0051 90.08 0.228 94.86 0.281 98.88 0.401

a life test and they were observed for 150 hours. During that period 13 items failed

with the following lifetime, measured in hours,: 3, 19, 23, 26, 37, 38, 41, 45, 58, 84,

90, 109, and 138. In this case n = 20, r = 13, and τ = 150.

For this data set we obtain the Bayes estimates of η 0.90 and the associated sym-

metric CRI with a = 5, b = 0.1, M1 = −100, and M2 = 100. The results are as

follows: �η 0.90(Theoretical) = 374.98 and �η 0.90(Simulation) = 376.22. The associ-

ated 90%, 95%, and 99% symmetric CRI are (245.58, 561.08), (229.70, 615.92), and

(199.24, 751.54) respectively. If a = 2, b = 0.1, M1 = 0, and M2 = 3, the Bayes

estimate of η 0.90 is 363.03 (theoretical) and 364.00 (simulated). The associated 90%,

95%, and 99% symmetric credible intervals are (228.19, 559.13), (213.48, 608.33),

and (186.72, 770.18) respectively.

Now we will provide the empirical Bayes estimator of η 0.90. Note that in empirical

Bayes analysis a popular choice of the hyper-parameters are argument maximum of

the integrated posterior density function. In this case for a+ d∗ > 1, the integrated
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posterior density function, say I(a, b, M1, M2), can be written as

I(a, b, M1, M2) =

∫ ∫

D

l(µ, λ |Data)dλdµ

=
ba Γ(a + d∗ − 1)

n (M1 −M2) Γ(a)
×

[
1

(b + A1)a+d∗−1
−

1

(b + A2)a+d∗−1

]
,

where D = {(µ, λ) : M1 < µ < M3, λ > 0}, A1 =
d∗∑

i=1

ti:n + (n − d∗)U − nM3, and

A2 =
d∗∑

i=1

ti:n + (n− d∗)U − nM1. Here we assume M1 and M2 are known and want

to maximize I(a, b, M1, M2) with respect to a and b only. When M1 and M2 are

known, we denote I(a, b, M1, M2) by I(a, b) for simplicity. For fixed a, the value of

b, say b∗(a), which maximizes the integrated posterior density function, is a positive

solution of the equation

h(x) = 0,

where

h(x) = a(x + A1)(x + A2)
a+d∗ − a(x + A1)

a+d∗(x + A2)

+ (a + d∗ − 1)x(x + A1)
a+d∗ − (a + d∗ − 1)x(x + A2)

a+d∗ .

Analytically we could not prove that I(a, b) does not have a maximum for finite

(a, b). However, the contour plot of log {I(a, b)} (see Figure 3.1), suggests that

I(a, b) does not possess a maximum.

Next empirical Bayes estimator of η 0.90 is considered when prior π3(·) is assumed

on the parameter µ. In this case the integrated posterior density function exists if

a + d∗ − 1 > 0, and is given by

�I(a, b) =
ba Γ(a + d∗ − 1)

nΓ(a)
×

1

(b + A1)a+d∗−1
. (3.9)

In this case for fixed a, the value of b, say b∗(a), which maximizes (3.9), is given by

b∗(a) =
Aa

d∗ − 1
, (3.10)

when d∗ > 1. It can be shown, see in the Appendix, that �I(a, b∗(a)) is an increasing
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function of a. Contour plot of log {�I(a, b)} is reported in the Figure 3.1 along with

the contour plot of log {I(a, b)} with M1 = −100 and M2 = 100. These two contour

plots are not distinguishable as we take quite large range for the prior distribution

of µ.
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Figure 3.1: Contour plots of the logarithm of the integrated posterior density

functions.

3.6 Posterior Analysis under Other CSs

The results corresponding to HCS-II, GHCS-I, and GHCS-II (see Section 1.2.2) can

be obtained in a very similar way as the HCS-I. Now we will briefly discuss the

Bayesian inference of the unknown parameters based on the observations obtained

from different progressive censoring schemes.
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Type-I Progressive Censoring Scheme

Based on the observations from a PCS-I (see Section 1.2.3), the likelihood function

can be written as

l(Data |λ, µ) ∝ λke−λW (µ),

here

W (µ) =
k∑

i=1

(ti:n − µ) +
k∑

j=1

Rj(τj − µ) =
k∑

i=1

ti:n +
k∑

j=1

Rjτj − nµ.

The posterior density function of λ and µ can be written as

l(µ, λ |Data) = l(λ |µ,Data) × l(µ |Data); λ > 0, M1 < µ < M3,

here

λ | {µ, Data} ∼ Gamma (a + k, b + W (µ)) ,

l(µ |Data) =
c1 (a + k − 1)

(A3 − µ)a+m
; M1 < µ < M3,

where

A3 =
1

n
×

(
b +

k∑

i=1

ti:n +
k∑

j=1

RjTj

)
,

and

c1 =

{
1

(A3 −M3)a+m−1
−

1

(A3 −M1)a+m−1

}−1

.

Therefore, in this case also the Bayes estimate and the associated credible interval

can be constructed in a very similar way.

Type-II Progressive Censoring Scheme

Based on the data obtained from a PCS-II (see Section 1.2.3), the likelihood function

in this case can be written as

l(Data |λ, µ) ∝ λke−λW (µ),

here

W (µ) =
k∑

i=1

(ti:n − µ) +
k∑

i=1

Rj(ti:n − µ) =
k∑

i=1

(Ri + 1)ti:n − nµ.
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The posterior density function of λ and µ can be written as

l(µ, λ |Data) = l(λ |µ,Data) × l(µ |Data); λ > 0, M1 < µ < M3,

where

λ | {µ,Data} ∼ Gamma (a + k, b + W (µ)) ,

l(µ |Data) =
c2 (a + k − 1)

(A4 − µ)a+k
; M1 < µ < M3,

A4 =
1

n
×

(
b +

k∑

i=1

(Ri + 1)ti:n

)
,

and

c2 =

{
1

(A4 −M3)a+k−1
−

1

(A4 −M1)a+k−1

}−1

.

Therefore, in this case also the Bayes estimate and the associated credible interval

can be constructed in a very similar way.

Progressive Hybrid Type-II Censoring Scheme

Based on the observations from a PHCS-II (see Section 1.2.3), the likelihood function

can be written as

l(Data |λ, µ) ∝ λd
∗

e−λW (µ),

where for Case (a), d∗ = k and W (µ) =
k∑

i=1

(1 + Ri)(ti:n − µ), and for Case (b),

d∗ = N , and W (µ) =
∑N

i=1(1 + Ri)(ti:n − µ) + (τ − µ)R∗
N . The posterior density

function of λ and µ can be written as

l(µ, λ |Data) = l(λ |µ, Data) × l(µ |Data); λ > 0, M1 < µ < M3,

where

λ | {µ,Data} ∼ Gamma (a + d∗, b + W (µ)) ,

l(µ |Data) =
c3 (a + d∗ − 1)

(A5 − µ)a∗+d
; M1 < µ < M3,
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A5 =





1
n
×

(
b +

∑k
i=1(1 + Ri)ti:n

)
for Case (a)

1
n
×

(
b +

∑N
i=1(1 + Ri)ti:n + R∗

Nτ
)

for Case (b),

and

c3 =

{
1

(A5 −M3)a+d∗−1
−

1

(A5 −M1)a+d∗−1

}−1

.

Therefore, in this case also the Bayes estimate and the associated credible interval

can be constructed in a very similar way.

3.7 Conclusion

In this chapter we have considered the Bayesian inference of the two-parameter

exponential model when the data are hybrid or progressively censored. We have

assumed a uniform prior on the location parameter and gamma prior on the scale

parameter. The Bayes estimates may not be obtained explicitly in many cases, even

when they exist. We have suggested to use the Monte Carlo sampling to compute

simulation consistent Bayes estimators and also to construct the credible intervals.

Monte Carlo simulation results suggest that the proposed Bayes estimators work

quite well.

3.A Appendix

In this section we provide a formal proof that J(a) = n�I(a, b∗(a)), where b∗(a) =

Aa

d∗ − 1
, is an increasing function of a. Now we will show that log J(a) is an increasing

function of a. Let us consider

d ln J(a)

da
=

d∗−2∑

i=0

1

a + i
− log

(
1 +

d∗ − 1

a

)
. (3.11)



78 Bayesian Analysis of HCSs and PCSs

We will show that the right hand side of (3.11) is positive and we will show it by

induction on d∗. Note that for d∗ = 2, the right hand side of (3.11) is clearly positive.

Now consider d∗ = 3, and let

f(a) = log(1 +
2

a
) − log(1 +

1

a
) −

1

a + 1
.

Using x =
1

a
, consider the function

g(x) = f

(
1

a

)
= log(1 + 2x) − log(1 + x) −

x

x + 1
,

therefore for x ≥ 0,

g′(x) =
2

1 + 2x
−

1

1 + x
−

1

(1 + x)2
= −

x

(1 + 2x)(1 + x)2
≤ 0.

This implies that g(x) is a decreasing function of x for x ≥ 0. Since g(0) = 0,

g(x) ≤ 0 for x ≥ 0. Moreover, since log(1 + x) ≤ x, for x ≥ 0, we have

log(1 + 2x) ≤ log(1 + x) +
x

1 + x
≤ x +

x

1 + x
. (3.12)

From (3.12) it immediately follows

1

a
+

1

a + 1
− log(1 +

2

a
) ≥ 0.

Hence, log J(a) is an increasing function of a for d∗ = 3. Let it be true for d∗ = m

and will prove that it is true for d∗ = m + 1 also. Let

fm(a) = log(1 +
m− 1

a
) − log(1 +

1

a
) −

m−2∑

i=1

1

a + i

fm+1(a) = log(1 +
m

a
) − log(1 +

1

a
) −

m−1∑

i=1

1

a + i
= fm(a) + hm(a),

where

hm(a) = log
(

1 +
m

a

)
− log

(
1 +

m− 1

a

)
−

1

a + m− 1
.

Using x =
1

a
we consider the new function

gm(x) = hm

(
1

a

)
= log(1 + mx) − log(1 + (m− 1)x) −

x

1 + (m− 1)x
.
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Since for x ≥ 0,

g′m(x) =
m

1 + mx
−

m− 1

1 + (m− 1)x
−

1
(
1 + (m− 1)x

)2 =
−x

(1 + mx)(1 + (m− 1)x)
≤ 0,

gm(x) is a decreasing function of x. As gm(0) = 0, gm(x) ≤ 0 for all x ≥ 0, hm(a) ≤ 0

for a ≥ 0. Since fm(a) ≤ 0 due to induction hypothesis, fm+1(a) ≤ 0. Therefore,

log
(

1 +
m

a

)
≤ log

(
1 +

1

a

)
+

m−1∑

i=1

1

a + i
≤

m−1∑

i=0

1

a + i
,

hence,
m−1∑

i=0

1

a + i
− log

(
1 +

m

a

)
≥ 0.





Chapter 4

Order Restricted Bayesian
Inference for Exponential
Step-stress Model

4.1 Introduction

In the last two chapters we have considered the frequentist and Bayesian analysis

of a two parameter exponential model under different censoring schemes. In this

chapter we consider a simple step-stress model, and it is assumed that the lifetimes

are exponentially distributed with mean λ−1
1 and λ−1

2 at the stress level s1 and s2,

respectively. The analysis has been performed based on CEM assumptions. Simple

step-stress models under different censoring schemes are extensively studied based

on the assumption that the lifetime of the experimental units follow exponential dis-

tributions (with different scale parameters) at different stress levels. In most of the

cases CEM has been assumed. Interested readers are referred to the review article

by Balakrishnan [10] in this respect. In all these cases the exact distributions of

the unknown parameters are obtained, and they can be used to construct exact CIs.

However, it is observed that the exact distribution and therefore the construction

of associated CI is quite complicated in all these cases. It may be mentioned that

although extensive amount of work has been done on step-stress models, not much
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attention has been paid to develop the inference imposing the restriction λ1 < λ2,

which is a very natural choice for a simple SSLT. Balakrishnan et al. [13] considered

the order restricted inference for step-stress models when the lifetimes are indepen-

dently and exponentially distributed and the data are Type-I or Type-II censored.

They have mainly adopted the frequentist approach, and the MLEs of the unknown

parameters are obtained using isotonic regression. It is observed that obtaining

the exact joint distribution of the MLEs is not very easy, hence, they derived the

asymptotic distribution of the MLEs. Based on the asymptotic distribution, the

asymptotic CIs of the unknown parameters can be constructed. It is not immediate

that how this method can be extended for more general censoring schemes. It seems

that Bayesian analysis is a natural choice in these cases. Though some work has

been done on the Bayesian inference of the step-stress model, see for example Drop

et al. [64], Lee and Pan [94], Leu and Shen [95] or Fan et al. [71], none of them dealt

with the ordered restricted inference.

The main aim of this chapter is to consider the order restricted Bayesian inference

of the unknown parameters of a simple step-stress model under different censoring

schemes when the lifetimes of the experimental units are assumed to be exponentially

distributed. We have assumed fairly flexible priors on the unknown parameters. It is

observed that in all the cases the Bayes estimates of the unknown parameters cannot

be obtained in explicit form. We propose to use importance sampling technique to

compute Bayes estimate and also to construct associated CRI. Extensive Monte

Carlo simulations are performed to see the effectiveness of the proposed method in

case of CS-I, and the performances are quite satisfactory. The analysis of two data

sets have been performed for illustrative purposes.

Rest of the chapter is organized as follows. Model assumptions and the prior in-

formation of the unknown parameters are considered in Section 4.2. In Section 4.3,

maximum likelihood estimation of the unknown parameters imposing the order re-

striction on them is briefly discussed, when data are Type-I censored. In Section 4.4,
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we provide the posterior analysis and the Bayes estimators in details in case of CS-I.

Monte Carlo simulation results and data analysis are presented in Section 4.5. In

Section 4.6, we have indicated how the proposed method can be implemented for

other censoring schemes. Finally, we conclude the chapter in Section 4.7.

4.2 Model Assumption and Prior Information

We consider a simple SSLT, where n identical units are placed on a life testing

experiment at the initial stress level s1. The stress level is increased to a higher level

s2 at a prefixed time τ1. It is assumed that the lifetimes of the experimental units are

independently and exponentially distributed random variables with different scale

parameters at different stress levels. PDF and the CDF of the lifetime under stress

level si for i = 1, 2, is given by

f(t;λi) = λi e
−λit for 0 < t < ∞ λi > 0 (4.1)

and

F (t;λi) = 1 − e−λit for 0 < t < ∞ λi > 0, (4.2)

respectively. Let us assume that the stress level is changed from s1 to s2 at the

time point τ1 and τ2 be the time of the termination of the experiment. It is further

assumed that the failure time data comes from a CEM, hence, it has the following

CDF;

G(t; λ1, λ2) =





F (t;λ1) if 0 < t ≤ τ1

F
(
t−

(
1 − λ1

λ2

)
τ1;λ2

)
if τ1 < t < ∞.

(4.3)

The corresponding PDF is given by

g(t; λ1, λ2) =





λ1e
−λ1t if 0 < t ≤ τ1

λ2e
−λ2(t+

λ1
λ2

τ1−τ1) if τ1 < t < ∞.
(4.4)

For developing the Bayesian inference, we need to assume some priors on the
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unknown parameters. We want the prior assumption on λ1 and λ2, so that it

maintains the order restriction, namely, λ1 < λ2. We take the following priors

on λ1 and λ2. It is assumed that λ2 has a Gamma(a, b) distribution with a > 0 and

b > 0, i.e., it has the following PDF

π1(λ2) =
ba

Γ(a)
λa−1

2 e−bλ2 for λ2 > 0. (4.5)

Moreover, λ1 = αλ2 and α has a beta distribution with parameters c > 0 and d > 0,

i.e., the PDF of α is given by

π2(α) =
1

B(c, d)
αc−1(1 − α)d−1 for 0 < α < 1, (4.6)

and the distribution of α is independent of λ2. Therefore, the joint prior of (λ1, λ2)

can be written as;

π(λ1, λ2) =
ba

Γ(a)B(c, d)
λa−c−d

2 e−bλ2λc−1
1 (λ2 − λ1)

d−1 for 0 < λ1 < λ2 < ∞.

(4.7)

As the joint prior on (λ1, λ2) is little complicated, a gray-scale plot is provided in

Figure 4.1 for different values of hyper-parameters. In the plot black color represents

the maximum value of density function, whereas white color represents the minimum

value, which is zero in all the plots. We have taken b = 1.0 only, as different values

of b only effects the spread of the density function keeping the shape fix.

4.3 Maximum Likelihood Estimator under CS-I

In this section we present maximum likelihood estimation of the scale parameters

under the restriction λ1 ≤ λ2, when data are Type-I censored. Recall that the form

of the ordered observed data under CS-I can have one of the following forms.

(a) τ1 < t1:n < . . . < tn2:n < τ2,

(b) t1:n < . . . < tn1:n < τ1 < tn1+1:n < . . . < tn1+n2:n < τ2,

(c) t1:n < . . . < tn1:n < τ1 < τ2.
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Figure 4.1: Plot of prior density for different values of hyper-parameters.
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Let n∗
1 and n∗

2 be the number of failures at the stress level s1 and s2, respectively.

Let τ ∗ be the termination time of the experiment. In case of CS-I, τ ∗ = τ2. For

Case (a): n∗
1 = 0, n∗

2 = n2 ≤ n, Case (b): n∗
1 = n1 > 0, n∗

2 = n2 > 0, Case (c):

n∗
1 = n1 > 0, n∗

2 = 0. In all the cases n∗ = n∗
1 + n∗

2. Based on the observations from

a simple SSLT under CS-I, the likelihood can be written as

l1(λ1, λ2 |Data) = λ
n∗
1

1 λ
n∗
2

2 e−λ1 d1−λ2 d2 , (4.8)

where d1 =
∑n∗

1
j=1 tj:n + (n−n∗

1)τ1, d2 =
∑n∗

j=n∗
1+1(tj:n− τ1) + (n−n∗)(τ ∗− τ1). Note

that d1 and d2 are the total time elapsed by all the units at stress level s1 and s2,

respectively. The unrestricted MLE of λ1 and λ2 is given by

�λ∗
1 =

n∗
1

d1

and �λ∗
2 =

n∗
2

d2

.

Clearly, if �λ∗
1 ≤ �λ∗

2, MLE of the scale parameters under the restriction λ1 ≤ λ2 is

given by

�λ1 = �λ∗
1 =

n∗
1

d1

and �λ1 = �λ∗
1 =

n∗
2

d2

.

As l1(λ1, λ2 |Data) is unimodal function, if �λ∗
1 >

�λ∗
2, maximization of l1(λ1, λ2 |Data)

under the order restriction λ1 ≤ λ2 is equivalent to maximization of l1(λ1, λ2 |Data)

under λ1 = λ2, and hence, in this case the MLEs of the scale parameters under the

restriction λ1 ≤ λ2 is given by

�λ1 = �λ2 =
n∗

1 + n∗
2

d1 + d2

.

4.4 Posterior Analysis under CS-I

Based on the likelihood function in (4.8), priors π1(·) and π2(·) mentioned in Sec-

tion 4.2, posterior density function of (α, λ2) becomes

l2(α, λ2 |Data) ∝αn∗
1+c−1(1 − α)d−1λn

∗+a−1
2 e−λ2(d1α+d2+b) if 0 < α < 1, λ2 > 0.

(4.9)
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The right hand side of (4.9) is integrable if n∗
1+c > 0 and n∗+a > 0. Bayes estimate

of some function of α and λ2, say g(α, λ2), with respect to the squared error loss

function, is posterior expectation of g(α, λ2), i.e.,

�g(α, λ2) =

∫ 1

0

∫ ∞

0

g(α, λ2)l2(α, λ2 | Data)dλ2dα. (4.10)

Unfortunately, the close form of (4.10) cannot be obtained in most of the cases. One

may use numerical techniques to compute (4.10). Alternatively, other approximation

can be used to compute (4.10). However, CRI for a parametric function cannot be

constructed by these numerical methods. So here we propose to use importance

sampling to compute Bayes estimate as well as to construct CRI of a parametric

function. Note that for 0 < α < 1 and λ2 > 0, l2(α, λ2 |Data) can be expressed as

l2(α, λ2 |Data) = l3(α |Data) × l4(λ |λ2, Data), (4.11)

where

l3(α |Data) = c1
αn∗

1+c−1(1 − α)d−1

(d1α + d2 + b)a+n∗ , (4.12)

and

l4(λ2 |α, Data) =
{d1α + d2 + b}a+n∗

Γ(a + n∗)
λa+n∗−1

2 e−λ2(d1α+d2+b). (4.13)

The proportionality constant, c1, for the posterior distribution of α given in (4.12)

can be found using numerical techniques. However, generation from (4.12) is not

a trivial issue. Hence, we propose to use the importance sampling (see Algo-

rithm 4.4.1) to compute the Bayes estimate and as well as to construct CRI of

g(α, λ2) noting the following representation of l2(α, λ2 |Data). For 0 < α < 1 and

λ2 > 0

l2(α, λ2 |Data) = c1w1(α) × l4(λ2 |α, Data), (4.14)

where

w1(α) =
αn∗

1+c−1(1 − α)d−1

(d1α + d2 + b)a+n∗ . (4.15)
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Algorithm 4.4.1

Step 1. Generate α1 from U(0, 1) distribution.

Step 2. For the given α1, generate λ21 from (4.13).

Step 3. Continue the process M times to get {(α1, λ21), . . ., (αM , λ2M)}.

Step 4. Compute gi = g(αi, λ2i); i = 1(1)M .

Step 5. Calculate the weights w1i = c1w1(αi); i = 1(1)M .

Step 6. Compute the Bayes estimate of g(α, λ2) as

�g(α, λ2) =
1

M

M∑

j=1

w1jgj.

Step 7. To construct a 100(1 − γ)%, 0 < γ < 1, CRI of g(α, λ2), first order gj for

j = 1, . . . , M , say g(1) < g(2) < . . . < g(M), and order w1j accordingly to get

w1(1), w1(2), . . ., w1(M). Note that w1(1), w1(2), . . ., w1(M) may not be ordered.

A 100(1 − γ)% CRI can be obtained as (g(j1), g(j2)), where j1 and j2 satisfy

j1, j2 ∈ {1, 2, . . . , M}, j1 < j2,

j2∑

i=j1

w1(i) ≤ 1 − γ <

j2+1∑

i=j1

w1(i). (4.16)

The 100(1 − γ)% HPD CRI of g(α, λ2) becomes (g(j∗1 ), g(j∗2 )), where j∗1 < j∗2

satisfy

j∗1 , j
∗
2 ∈ {1, 2, . . . , M},

j∗2∑

i=j∗1

w1(i) ≤ 1 − γ <

j∗2+1∑

i=j∗1

w1(i), g(j∗2 ) − g(j∗1 ) ≤ g(j2) − g(j1),

for all j1 and j2 satisfying (4.16).

Next we consider HPD credible set for (α, λ2). Note that a subset C of R
2 is

said to be a 100(1 − γ)%, 0 < γ < 1, HPD credible set for (α, λ2) if

Cγ =
{

(α, λ2) ∈ R
2 : l(α, λ2 |Data) ≥ cγ

}
,

where cγ is such that
∫ ∫

Cγ
l(α, λ2 |Data)dλ2 dα = γ

∫ ∫

R2

l(α, λ2 |Data)dλ2 dα.
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However, close form of the set C cannot be obtained, as the integration of the

function l(α, λ2 |Data) is not possible analytically. Hence, we suggest the following

algorithm to construct 100(1 − γ)% HPD credible set for (α, λ2).

Algorithm 4.4.2

Step 1. Follow the first 5 steps of Algorithm 4.4.1.

Step 2. Arrange {(α1, λ21, w11), . . . , (αM , λ2M , w1M)} according to the descend-

ing magnitude of the function l(α, λ2 |Data) at those points to get {(�αi, �λ2i,

�wi), . . . , (�αM , �λ2M , �wM)}.

Step 3. Find the integer Mγ such that

Mγ∑

i=1

�wi ≤ γ <

Mγ+1∑

i=1

�wi.

Step 4. Construct the HPD credible set for (α, λ2) as

C =
{

(α, λ2) : l(α, λ2 |Data) ≥ l(�αMγ
, �λ2Mγ

|Data)
}
.

Similar methodology can be applied for other censoring schemes, and we will briefly

mention all the cases in Section 4.6 for completeness purposes.

4.5 Simulations and Data Analysis

4.5.1 Simulation Results

In this section we present some simulation results to see how the BE works for

different sample sizes and for different values of τ1 and τ2. Along with the CP

and AL of symmetric CRI, HPD CRI, same of bootstrap CI is also presented for a

comparison purpose. Here we choose λ1 = 1/12 ⋍ 0.083 and λ2 = 1/4.5 ⋍ 0.222.

We also choose a = 0, b = 0, c = 1 and d = 1, i.e., the non-informative prior and

hence, the comparison with MLE is meaningful. All the results are based on 5000
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Table 4.1: AE and MSE of MLE and BE of λ1 based on 5000 simulations with

λ1 = 0.083, λ2 = 0.222, a = 0, b = 0, c = 1, and d = 1 for the Type-I censored

case.

λ1 λ2

BE MLE BE MLE

n τ1 τ2 AE MSE AE MSE AE MSE AE MSE

10 5 6 0.090 0.0018 0.082 0.0019 0.267 0.0223 0.321 0.0499
8 0.092 0.0017 0.087 0.0021 0.236 0.0154 0.256 0.0290
10 0.094 0.0017 0.087 0.0022 0.238 0.0136 0.256 0.0230

10 7 8 0.087 0.0014 0.081 0.0015 0.283 0.0369 0.359 0.1009
10 0.090 0.0015 0.086 0.0018 0.243 0.0189 0.270 0.0454
12 0.091 0.0015 0.087 0.0019 0.241 0.0164 0.264 0.0350

10 9 10 0.085 0.0012 0.079 0.0012 0.301 0.0409 0.411 0.1463
12 0.088 0.0012 0.084 0.0014 0.257 0.0538 0.310 0.4920
14 0.089 0.0013 0.085 0.0015 0.251 0.0271 0.288 0.0916

20 5 6 0.086 0.0009 0.083 0.0010 0.227 0.0111 0.248 0.0210
8 0.088 0.0009 0.084 0.0011 0.221 0.0065 0.235 0.0096
10 0.090 0.0009 0.084 0.0010 0.221 0.0053 0.234 0.0073

20 7 8 0.086 0.0008 0.083 0.0009 0.230 0.0116 0.255 0.0239
10 0.088 0.0007 0.085 0.0008 0.219 0.0070 0.235 0.0115
12 0.088 0.0007 0.084 0.0008 0.222 0.0059 0.238 0.0088

20 9 10 0.084 0.0006 0.082 0.0006 0.240 0.0142 0.275 0.0319
12 0.087 0.0006 0.084 0.0007 0.224 0.0090 0.243 0.0156
14 0.087 0.0006 0.084 0.0007 0.225 0.0078 0.242 0.0125

30 5 6 0.084 0.0006 0.082 0.0007 0.216 0.0079 0.233 0.0139
8 0.088 0.0006 0.083 0.0007 0.217 0.0044 0.230 0.0059
10 0.089 0.0007 0.083 0.0007 0.220 0.0034 0.231 0.0043

30 7 8 0.084 0.0005 0.083 0.0005 0.217 0.0077 0.234 0.0148
10 0.087 0.0005 0.083 0.0005 0.216 0.0048 0.230 0.0067
12 0.088 0.0005 0.084 0.0005 0.218 0.0041 0.231 0.0054

30 9 10 0.084 0.0004 0.082 0.0004 0.223 0.0091 0.244 0.0185
12 0.086 0.0004 0.084 0.0004 0.219 0.0058 0.235 0.0089
14 0.086 0.0004 0.083 0.0005 0.217 0.0049 0.232 0.0066

40 5 6 0.085 0.0005 0.083 0.0005 0.213 0.0061 0.229 0.0099
8 0.087 0.0005 0.083 0.0005 0.218 0.0035 0.230 0.0043
10 0.088 0.0005 0.083 0.0005 0.218 0.0026 0.227 0.0031

40 7 8 0.085 0.0004 0.083 0.0004 0.214 0.0067 0.231 0.0118
10 0.086 0.0004 0.083 0.0004 0.214 0.0039 0.228 0.0050
12 0.086 0.0004 0.082 0.0004 0.218 0.0033 0.230 0.0040

40 9 10 0.084 0.0003 0.082 0.0003 0.217 0.0078 0.235 0.0145
12 0.085 0.0003 0.083 0.0003 0.217 0.0048 0.232 0.0065
14 0.085 0.0003 0.083 0.0003 0.217 0.0038 0.230 0.0048

simulations and M = 8000. We chose n = 10 (small sample size), 20 (moderate

sample size), 30, and 40 (large sample size). AE and MSE of BE along with that

of MLE for λ1 and λ2 are presented in the Table 4.1 for different values of τ1 and

τ2. The CP and AL of symmetric CRI, HPD CRI, and bootstrap CI for same n,

τ1, and τ2 are reported in the Tables 4.2, 4.3, and 4.4. We also report the CP of
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Table 4.2: CP and AL of 90% CRIs and CI for λ1 and λ2 based on 5000
simulations with λ1 = 0.083, λ2 = 0.222, a = 0, b = 0, c = 1, and d = 1 for the

Type-I censored case.

λ1 λ2

Symm. CRI HPD CRI Boot. CI Symm. CRI HPD CRI Boot. CI

n τ1 τ2 CP AL CP AL CP AL CP AL CP AL

10 5 6 92.58 0.140 88.48 0.132 86.92 0.123 97.96 0.545 95.74 0.469 98.62 0.679
8 93.92 0.136 89.64 0.128 89.62 0.125 91.56 0.361 85.96 0.332 91.96 0.458

10 94.26 0.137 89.90 0.130 89.40 0.128 90.12 0.328 86.00 0.307 91.02 0.431

10 7 8 89.80 0.124 87.18 0.118 84.54 0.111 97.12 0.608 94.48 0.512 98.18 0.875
10 91.84 0.123 88.88 0.117 86.20 0.117 92.16 0.409 88.76 0.365 93.04 0.605
12 92.22 0.123 90.46 0.118 86.18 0.119 91.12 0.364 87.66 0.333 92.08 0.543

10 9 10 90.32 0.114 87.20 0.109 81.88 0.103 98.16 0.687 97.66 0.567 97.30 1.139
12 91.80 0.114 90.02 0.109 84.34 0.109 93.84 0.450 88.26 0.395 94.90 0.766
14 92.30 0.115 91.62 0.111 86.02 0.112 91.62 0.415 87.24 0.372 92.48 0.702

20 5 6 90.14 0.100 89.02 0.096 84.12 0.098 94.94 0.359 88.80 0.324 92.58 0.407
8 92.04 0.100 91.64 0.097 85.96 0.099 90.36 0.256 85.46 0.243 89.64 0.291

10 91.58 0.100 91.38 0.097 84.82 0.098 89.78 0.229 86.40 0.221 90.12 0.261

20 7 8 89.64 0.089 87.86 0.087 88.76 0.089 95.64 0.388 89.84 0.344 95.92 0.452
10 92.22 0.089 91.26 0.087 91.12 0.090 90.18 0.278 85.74 0.261 89.34 0.325
12 92.34 0.090 91.16 0.088 90.54 0.090 90.08 0.249 86.70 0.238 90.00 0.293

20 9 10 90.60 0.082 88.90 0.080 88.52 0.082 96.94 0.423 92.34 0.368 98.18 0.513
12 91.46 0.083 90.84 0.081 89.30 0.084 90.78 0.298 85.94 0.276 89.96 0.360
14 92.40 0.083 91.72 0.081 89.88 0.084 90.30 0.270 86.20 0.255 89.72 0.331

30 5 6 90.42 0.083 88.16 0.081 85.48 0.083 91.40 0.301 85.98 0.277 88.70 0.336
8 91.98 0.083 90.52 0.081 87.38 0.082 89.24 0.215 85.62 0.207 88.46 0.236

10 91.12 0.084 89.76 0.082 87.18 0.083 89.34 0.191 86.52 0.186 89.84 0.209

30 7 8 90.40 0.074 89.64 0.072 87.96 0.074 93.28 0.320 86.54 0.291 91.70 0.366
10 90.52 0.074 90.10 0.073 88.14 0.074 88.96 0.231 84.60 0.220 88.08 0.258
12 90.24 0.074 90.28 0.073 88.00 0.075 89.76 0.206 86.90 0.199 90.00 0.230

30 9 10 90.46 0.068 89.48 0.067 88.46 0.068 95.00 0.344 88.76 0.308 92.94 0.402
12 90.64 0.068 90.48 0.067 88.74 0.069 89.70 0.249 84.24 0.236 88.02 0.284
14 90.12 0.068 90.06 0.067 88.14 0.069 89.20 0.222 85.08 0.213 89.14 0.254

40 5 6 90.50 0.072 89.58 0.071 87.66 0.072 89.80 0.266 84.06 0.248 87.48 0.292
8 91.30 0.073 90.72 0.072 87.82 0.073 88.72 0.191 85.16 0.185 88.24 0.205

10 90.70 0.074 90.92 0.072 87.84 0.073 89.38 0.167 86.38 0.163 89.46 0.179

40 7 8 90.80 0.064 90.62 0.063 89.10 0.065 91.22 0.281 84.08 0.259 88.04 0.312
10 89.70 0.065 89.34 0.064 87.26 0.065 89.42 0.205 85.02 0.197 88.46 0.223
12 90.76 0.065 90.72 0.064 88.46 0.065 89.44 0.181 86.18 0.177 89.66 0.197

40 9 10 90.80 0.059 89.80 0.058 89.00 0.059 91.86 0.301 84.98 0.273 89.42 0.340
12 90.82 0.059 90.70 0.058 89.16 0.060 88.56 0.218 83.82 0.209 87.30 0.242
14 90.66 0.060 90.82 0.059 88.92 0.060 88.80 0.195 85.42 0.189 88.62 0.215

the HPD credible set for (α, λ2) in the Table 4.5 using Algorithm 4.4.2 for the same

parametric values.

The following points are quite clear from the simulation results. MSE of estima-

tor of λ1 decreases as τ1 increases when other parameters are held constant. MSE of

estimator of λ2 decreases as τ2 increases, whereas it increases as τ1 increases. Also
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Table 4.3: CP and AL of 95% CRIs and CI for λ1 and λ2 based on 5000
simulations with λ1 = 0.083, λ2 = 0.222, a = 0, b = 0, c = 1, and d = 1 for the

Type-I censored case.

λ1 λ2

Symm. CRI HPD CRI Boot. CI Symm. CRI HPD CRI Boot. CI

n τ1 τ2 CP AL CP AL CP AL CP AL CP AL

10 5 6 96.40 0.169 95.46 0.158 89.64 0.147 99.22 0.680 99.44 0.594 99.42 0.877
8 97.52 0.163 96.52 0.154 91.10 0.150 96.12 0.439 93.82 0.406 96.28 0.592

10 97.70 0.164 97.44 0.156 91.30 0.154 95.24 0.397 93.32 0.372 95.40 0.567

10 7 8 95.70 0.149 92.56 0.141 86.48 0.134 99.20 0.766 98.72 0.658 99.22 1.203
10 95.74 0.147 94.68 0.141 87.80 0.141 96.90 0.502 94.12 0.455 97.82 0.844
12 96.14 0.148 95.60 0.141 88.26 0.143 95.60 0.443 93.20 0.409 96.54 0.767

10 9 10 95.52 0.137 93.46 0.131 89.06 0.123 99.34 0.871 99.58 0.737 98.52 1.670
12 96.26 0.136 94.64 0.131 92.92 0.131 97.36 0.556 95.62 0.496 97.96 1.151
14 96.74 0.138 95.34 0.133 93.94 0.136 95.82 0.510 94.32 0.461 96.60 1.056

20 5 6 95.36 0.119 93.56 0.115 93.30 0.118 97.96 0.440 96.14 0.400 98.12 0.493
8 96.32 0.120 96.10 0.116 94.08 0.119 95.60 0.308 93.02 0.293 95.18 0.354

10 96.48 0.120 96.10 0.116 93.48 0.118 95.18 0.275 93.22 0.265 95.10 0.320

20 7 8 94.36 0.106 93.74 0.103 92.76 0.107 98.36 0.478 97.00 0.429 99.02 0.553
10 96.18 0.107 96.06 0.104 94.78 0.108 95.34 0.336 92.82 0.317 95.16 0.399
12 96.22 0.107 96.18 0.105 94.30 0.109 95.38 0.299 93.14 0.286 95.32 0.363

20 9 10 95.38 0.098 94.52 0.096 94.36 0.098 99.34 0.524 97.92 0.464 99.62 0.636
12 95.96 0.099 95.28 0.097 94.72 0.101 95.72 0.361 92.96 0.336 95.84 0.450
14 96.30 0.099 95.78 0.096 95.16 0.101 95.34 0.325 93.22 0.308 95.74 0.419

30 5 6 95.12 0.099 94.36 0.097 91.02 0.099 97.04 0.365 93.60 0.338 95.90 0.403
8 96.04 0.099 95.36 0.097 92.08 0.099 94.90 0.258 92.62 0.248 94.66 0.284

10 95.82 0.100 95.08 0.098 92.02 0.099 94.84 0.228 92.68 0.222 94.96 0.253

30 7 8 95.08 0.088 94.66 0.086 93.94 0.089 97.68 0.390 95.20 0.357 97.06 0.440
10 95.50 0.088 95.16 0.087 93.80 0.089 94.90 0.277 91.94 0.265 94.10 0.312
12 95.50 0.089 95.20 0.087 93.84 0.089 94.92 0.247 93.26 0.239 94.68 0.279

30 9 10 95.08 0.081 94.70 0.080 94.16 0.082 98.72 0.421 96.30 0.381 97.84 0.486
12 95.48 0.082 95.34 0.080 94.30 0.083 94.90 0.299 92.40 0.284 94.32 0.346
14 95.36 0.081 94.98 0.080 93.68 0.083 94.00 0.266 91.78 0.256 94.46 0.311

40 5 6 95.24 0.086 94.74 0.085 94.02 0.086 95.58 0.321 92.22 0.301 93.92 0.349
8 95.74 0.087 95.44 0.086 94.44 0.087 94.02 0.228 91.76 0.221 93.46 0.246

10 95.60 0.088 95.52 0.086 94.32 0.087 94.36 0.199 92.68 0.195 94.78 0.215

40 7 9 95.46 0.077 95.48 0.075 94.98 0.077 96.42 0.340 93.06 0.315 94.92 0.374
10 94.98 0.077 94.66 0.076 94.02 0.078 94.72 0.245 92.48 0.236 94.40 0.269
12 95.22 0.077 95.34 0.076 94.74 0.078 94.76 0.217 93.00 0.211 94.72 0.238

40 9 10 95.22 0.070 94.78 0.069 94.16 0.071 97.06 0.366 93.80 0.335 96.52 0.409
12 95.38 0.071 94.92 0.070 94.14 0.071 94.42 0.261 91.38 0.251 93.66 0.292
14 95.16 0.071 95.56 0.070 94.64 0.072 94.34 0.233 92.02 0.225 94.50 0.261

MSEs of all the estimators decrease as n increases. MSE of MLE is close to that

of BE for λ1, but MSE of MLE is larger than MSE of BE for λ2. This difference

decreases as τ2 increases.

The performance of CI and CRIs of λ1 are quite satisfactory for all the sample

sizes. We note that average length of HPD CRI of λ1 decreases as τ1 or n increases,
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Table 4.4: CP and AL of 99% CRIs and CI for λ1 and λ2 based on 5000
simulations with λ1 = 0.083, λ2 = 0.222, a = 0, b = 0, c = 1, and d = 1 for the

Type-I censored case.

λ1 λ2

Symm. CRI HPD CRI Boot. CI Symm. CRI HPD CRI Boot. CI

n τ1 τ2 CP AL CP AL CP AL CP AL CP AL

10 5 6 99.76 0.226 99.90 0.214 99.94 0.201 99.86 0.985 99.96 0.883 99.88 1.548
8 99.72 0.218 99.82 0.207 99.94 0.205 99.60 0.606 99.00 0.565 99.56 1.044

10 99.58 0.218 99.70 0.208 99.72 0.210 98.96 0.540 98.60 0.509 98.80 1.046

10 7 8 99.36 0.199 98.44 0.190 96.72 0.182 99.88 1.127 99.98 1.001 99.58 2.749
10 99.44 0.196 99.40 0.187 97.30 0.191 99.52 0.703 99.36 0.646 99.58 2.097
12 99.50 0.196 99.54 0.188 97.32 0.195 99.24 0.613 98.64 0.571 99.22 1.880

10 9 10 99.24 0.182 98.78 0.174 96.10 0.168 99.90 1.297 99.94 1.142 99.22 4.755
12 99.32 0.181 98.96 0.174 97.50 0.178 99.86 0.802 99.52 0.724 99.42 3.422
14 99.36 0.184 99.08 0.177 97.82 0.184 99.36 0.711 98.82 0.656 99.28 3.110

20 5 6 99.00 0.159 98.66 0.153 98.00 0.157 99.92 0.615 99.78 0.568 99.96 0.680
8 99.38 0.158 99.48 0.153 98.52 0.158 99.32 0.415 98.92 0.396 99.22 0.495

10 99.34 0.158 99.44 0.153 98.38 0.157 99.00 0.367 98.74 0.354 98.96 0.454

20 7 8 98.94 0.141 98.46 0.137 97.10 0.143 99.90 0.675 99.82 0.618 99.96 0.789
10 99.28 0.141 99.08 0.137 97.92 0.145 99.32 0.454 98.62 0.431 99.22 0.578
12 99.32 0.141 99.20 0.138 97.84 0.146 99.12 0.401 98.68 0.384 99.16 0.536

20 9 10 99.04 0.130 98.60 0.127 98.26 0.132 99.90 0.748 99.94 0.679 99.94 0.960
12 99.14 0.131 99.02 0.127 98.18 0.136 99.50 0.492 98.76 0.462 99.40 0.698
14 99.14 0.130 98.96 0.127 98.48 0.135 99.32 0.438 98.84 0.416 99.42 0.673

30 5 6 99.24 0.131 98.70 0.127 97.18 0.131 99.76 0.500 99.58 0.468 99.58 0.541
8 99.20 0.131 98.98 0.128 97.20 0.131 98.84 0.343 98.38 0.331 98.70 0.385

10 99.36 0.132 99.20 0.129 97.52 0.132 98.82 0.302 98.32 0.294 98.98 0.346

30 7 8 99.00 0.116 98.80 0.114 98.08 0.118 99.86 0.540 99.80 0.502 99.78 0.598
10 99.02 0.116 99.06 0.114 98.14 0.119 99.08 0.369 98.40 0.355 98.96 0.428
12 99.14 0.117 99.02 0.115 98.22 0.119 99.06 0.327 98.38 0.317 99.14 0.388

30 9 10 99.06 0.107 98.82 0.105 98.30 0.109 99.88 0.587 99.88 0.541 99.88 0.671
12 99.16 0.107 99.02 0.105 98.58 0.110 99.44 0.401 98.80 0.383 99.30 0.484
14 99.18 0.107 99.10 0.105 98.42 0.110 98.90 0.354 98.40 0.341 98.94 0.441

40 5 6 99.14 0.114 98.86 0.112 98.12 0.114 99.60 0.434 98.84 0.411 98.96 0.462
8 99.28 0.115 99.00 0.113 98.44 0.115 98.70 0.301 97.90 0.293 98.38 0.329

10 99.06 0.115 98.88 0.113 98.32 0.115 98.84 0.263 98.34 0.257 98.80 0.290

40 7 8 99.24 0.101 99.04 0.099 98.78 0.103 99.80 0.464 99.32 0.435 99.64 0.500
10 99.12 0.102 99.04 0.100 98.64 0.103 99.00 0.325 98.42 0.314 98.80 0.361
12 99.26 0.102 99.12 0.100 98.76 0.103 98.98 0.286 98.46 0.278 98.84 0.324

40 9 10 99.08 0.093 98.90 0.091 98.68 0.094 99.80 0.502 99.60 0.468 99.70 0.554
12 98.94 0.093 98.78 0.091 98.42 0.095 99.28 0.348 98.36 0.334 99.02 0.397
14 99.10 0.094 99.08 0.092 98.80 0.095 99.08 0.308 98.30 0.298 99.00 0.359

keeping the other fixed. HPD CRI of λ1 performs quite well compared to the sym-

metric CRI and bootstrap CI with respect to CP of the respective intervals, though

AL of HPD CRI is larger than that of the bootstrap CI, but smaller than that of

symmetric CRI. For moderate and large sample sizes, AL of symmetric CRI, HPD

CRI and bootstrap CI are very close to each other.
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Table 4.5: CP of credible set for (α, λ2) based on 5000 simulations with

λ1 = 0.083, λ2 = 0.222, a = 0, b = 0, c = 1, and d = 1 for the Type-I censored

case.

τ1 = 5 τ1 = 7 τ1 = 9

CP CP CP

n τ2 90% 95% 99% τ2 90% 95% 99% τ2 90% 95% 99%

10 6 87.26 91.20 98.16 8 86.90 91.56 97.30 10 85.70 94.40 98.92
8 85.26 91.08 97.98 10 84.08 92.76 98.50 12 87.08 92.86 98.04

10 85.20 92.12 98.54 12 85.34 94.02 98.32 14 86.50 92.76 98.20

20 6 84.84 92.66 98.30 8 87.02 93.48 98.54 10 86.84 93.70 98.72
8 85.44 92.38 98.28 10 84.36 93.00 98.80 12 85.34 93.08 98.82

10 86.48 92.56 98.56 12 85.50 92.56 98.36 14 85.20 92.68 98.78

30 6 84.30 92.28 98.26 8 85.52 93.54 98.82 10 84.84 93.66 98.70
8 85.14 92.00 98.24 10 85.54 92.76 98.50 12 85.74 93.00 98.68

10 85.54 92.70 98.48 12 86.12 92.76 98.46 14 86.32 93.10 98.42

40 6 84.42 91.76 98.30 8 83.34 91.96 98.60 10 85.94 93.60 98.86
8 85.74 91.84 98.36 10 84.96 91.94 98.26 12 85.30 92.26 98.38

10 86.72 93.12 98.68 12 86.70 93.14 98.66 14 85.56 92.46 98.40

The performance of the HPD CRI is not so satisfactory for λ2 with respect to

CP. However, CP of symmetric CRI and bootstrap CI is close to nominal level when

(τ2 − τ1) is large. For small sample size performance of CRIs as well as bootstrap

CI for λ2 not at all satisfactory, specially when (τ2 − τ1) is small. ALs of CRIs

and bootstrap CI of λ2 decrease as τ2 or n increases, keeping the other parameter

constant. Also note that ALs of bootstrap CI and HPD CRI of the same parameter

increase as τ1 increases.

4.5.2 Data Analysis

Example 1

Here we consider the data (see Table 4.6) presented by Xiong [136] to illustrate the

methods of estimation discussed previously. This is actually a Type-II censored data

from a simple step stress life experiment, where n = 20 units are placed on the test,

the data is right censored at 16th failure time and stress changing time is τ1 = 5.

Balakrishnan et al. [36] used this data for illustrative example for step-stress model

under Type-I censoring scheme choosing τ2 = 7, 8, 9, and 12. They reported the
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Table 4.6: Data of Example 1.

Stress Level Failure Times

λ1 = e−2.5 2.01 3.60 4.12 4.34
λ2 = e−1.5 5.04 5.94 6.68 7.09 7.17 7.49

7.60 8.23 8.24 8.25 8.69 12.05

Table 4.7: Estimates of 1/λ1 and associated CRIs and bootstrap CI for the data

in Table 4.6.

Symm. CRI HPD CRI Boot. CI

Level τ2 BE MLE LL UL LL UL LL UL

90% 7 27.495 23.517 12.232 54.633 9.628 45.987 10.844 49.290
8 23.933 23.517 10.925 48.281 8.625 40.377 10.602 49.286
9 23.367 23.517 10.389 47.056 7.695 38.585 10.352 49.108

12 23.600 23.517 10.528 46.885 7.878 39.072 10.352 49.106

95% 7 - - 11.007 64.662 9.066 55.794 10.983 98.112
8 - - 9.682 58.370 7.304 49.108 10.854 98.272
9 - - 9.232 57.491 7.306 47.484 10.879 98.395

12 - - 9.477 57.757 7.517 47.627 10.854 98.336

99% 7 - - 9.022 97.388 7.297 82.415 9.655 99.983
8 - - 7.785 84.090 6.032 73.248 9.507 99.991
9 - - 7.632 82.255 6.156 71.762 9.425 99.990

12 - - 7.837 86.340 6.275 73.292 9.425 99.990

Table 4.8: Estimates of 1/λ2 and associated CRIs and bootstrap CI with a = 0,
b = 0, c = 1, d = 1 for the data in Table 4.6

Symm. CRI HPD CRI Boot. CI

Level τ2 BE MLE LL UL LL UL LL UL

90% 7 13.285 9.553 5.356 26.544 3.712 22.596 3.245 18.778
8 7.426 5.573 3.649 13.735 3.024 11.965 2.391 10.097
9 5.055 4.129 2.895 8.425 2.462 7.478 2.034 6.468

12 6.684 5.493 3.837 11.052 3.271 9.853 2.966 8.400

95% 7 - - 4.605 31.846 3.343 26.910 2.718 25.117
8 - - 3.293 15.705 2.737 13.918 2.315 12.330
9 - - 2.680 9.527 2.167 8.506 2.025 7.613

12 - - 3.502 12.297 3.109 11.322 2.703 9.398

99% 7 - - 3.635 46.657 2.625 38.544 2.718 35.850
8 - - 2.745 20.340 2.273 18.528 1.908 17.677
9 - - 2.200 12.091 2.035 11.120 1.531 10.028

12 - - 2.973 15.747 2.685 14.395 2.164 11.752

Table 4.9: Credible set for (α, λ2) with a = 0, b = 0, c = 1, and d = 1 for data

in Table 4.6.

τ2 n2 d2 c0 c0.90 c0.95 c0.99

7 3 28.66 3.95873×1010 0.000345079 0.000185004 0.000042293
8 7 39.01 4.26825×1018 0.000302864 0.000170350 0.000035177
9 11 54.42 3.43915×1026 0.000275705 0.000127509 0.000032715
2 11 60.42 6.06288×1027 0.000310440 0.000167296 0.000048826
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Figure 4.2: Credible set of (α, λ2) with a = 0, b = 0, c = 1, and d = 1 for the

data in Table 4.6.

MLE of 1/λ1 and 1/λ2 and associated CIs for above mentioned τ1 and τ2’s under the

assumption that the data are coming form exponential CEM. The BE and Bayesian

CRIs for 1/λ1 and 1/λ2 are reported in Tables 4.7 and 4.8, respectively for the same

values of parameters and under the same assumption. Here we choose a = 0, b = 0,

c = 1, d = 1 and M = 8000. We also find out HPD credible set for (α, λ2) and is

given by

Cγ =

{
(α, λ2) ∈ R

2 :
c0

Γ(n2 + 4)
α4 λn2+3

2 e 94.07α+d2 ≥ cγ

}
,

where c0, n2, and d2 depend on τ2 and are presented in Table 4.9. Figure 4.2 shows

the plot of the HPD credible set of (α, λ2) for different values of τ2.

Example 2

Next, we consider the data (see Table 4.10) presented by Balakrishnan et al. [36].

Choice made by Balakrishnan et al. [36] were n = 35, λ1 = e−3.5, λ2 = e−2.0 and
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Table 4.10: Data of Example 2.

Stress Level Failure Times

λ1 = e−3.5 1.46 2.22 3.92 4.24 5.47 5.60 6.12 6.57
λ2 = e−2.0 8.19 8.30 8.74 8.98 9.43 9.87 11.14 11.76 11.85

12.14 13.05 13.49 14.04 14.19 14.24 14.33 15.28 16.58
16.85 16.92 17.80 20.45 20.98 21.09 22.01 26.34 28.66

Table 4.11: Estimates of 1/λ1 and associated CRIs and bootstrap CI with a = 0,
b = 0, c = 1, d = 1 for the data in Table 4.10

Symm. CRI HPD CRI Boot. CI

Level τ2 BE MLE LL UL LL UL LL UL

90% 12 31.967 31.450 17.991 53.803 15.222 47.454 16.733 53.478
16 31.613 31.450 17.367 53.615 15.116 47.665 16.431 53.524
20 31.487 31.450 17.566 54.091 14.503 47.439 16.392 53.596
24 31.260 31.450 17.285 53.291 14.810 47.399 16.667 53.328

95% 12 - - 16.531 61.203 14.826 55.588 16.144 66.821
16 - - 16.078 61.470 14.121 55.428 16.450 67.424
20 - - 16.012 60.247 13.845 55.387 16.392 67.377
24 - - 15.801 60.956 13.762 53.914 16.591 67.321

99% 12 - - 13.954 79.227 12.098 72.962 13.651 91.571
16 - - 13.568 81.695 11.584 73.471 13.814 91.436
20 - - 13.715 77.763 11.791 70.883 12.953 91.560
24 - - 13.720 81.838 11.594 73.771 13.551 91.087

Table 4.12: Estimates of 1/λ2 and associated CRIs and bootstrap CI with a = 0,
b = 0, c = 1, d = 1 for the data in Table 4.10

Symm. CRI HPD CRI Boot. CI

Level τ2 BE MLE LL UL LL UL LL UL

90% 12 12.225 9.807 6.628 20.765 5.717 18.738 5.135 16.472
16 9.548 8.413 6.160 14.233 5.707 13.287 5.321 12.149
20 9.021 8.151 6.143 13.031 5.877 12.451 5.337 11.255
24 7.979 7.348 5.605 11.139 5.208 10.444 4.867 9.860

95% 12 - - 6.041 23.307 5.091 21.052 4.517 18.763
16 - - 5.767 15.699 5.261 14.510 4.675 13.169
20 - - 5.767 14.095 5.312 13.223 4.851 12.109
24 - - 5.289 11.942 5.025 11.355 4.526 10.556

99% 12 - - 5.217 29.326 4.899 27.208 3.966 25.171
16 - - 5.136 18.469 4.796 17.246 4.178 16.308
20 - - 5.143 16.804 4.921 15.681 4.274 14.424
24 - - 4.933 13.693 4.726 13.009 4.088 12.253

Table 4.13: Credible set for (α, λ2) with a = 0, b = 0, c = 1, and d = 1 for data

in Table 4.10.

τ2 n2 d2 c0 c0.90 c0.95 c0.99

12 9 88.26 1.98906×1038 0.000634529 0.000363521 0.000084468
16 17 143.02 1.83135×1059 0.000683449 0.000368794 0.000030347
20 21 171.17 1.46811×1070 0.000751840 0.000368533 0.000087536
24 25 183.70 2.77355×1080 0.000804461 0.000399712 0.000078281
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Figure 4.3: Credible set of (α, λ2) with a = 0, b = 0, c = 1, and d = 1 for the

data in Table 4.10.

τ1 = 8. This is a complete data set. To make it a Type-I censored data one may take

any τ2 greater than 8. Balakrishnan et al. [36] took different choices for τ2, viz., 16,

20 and 24. Along these choices of τ2, we take τ2 = 12 also. Assuming that the data

are coming form the exponential CEM under Type-I censoring, they presented MLE

and associated CIs of 1/λ1 and 1/λ2. Here we present the BE of 1/λ1 and 1/λ2 and

associated CRIs for the above mentioned values of τ2 under the same assumption.

The results are presented in Tables 4.11 and 4.12. Here also we choose a = 0, b = 0,

c = 1, d = 1, and M = 8000. Like the previous example, we also find out HPD

credible set for (α, λ2) and is given by

Cγ =

{
(α, λ2) ∈ R

2 :
c0

Γ(n2 + 8)
α8 λn2+7

2 e 251.60α+d2 ≥ cγ

}
,

where c0, n2, and d2 depend on τ2 and are presented in Table 4.13. Figure 4.3 shows

the plot of the HPD credible set of (α, λ2) for different values of τ2.
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4.6 Posterior Analysis under Other Censoring

Schemes

Type-II Censoring Scheme

Based on the observed sample, the likelihood function is given in (4.8), where τ ∗ =

tr:n, in Case I, N∗
1 = 0, N∗

2 = r, in Case II, N∗
1 = n1, N

∗
2 = r − n1 and in Case III,

N∗
1 = r, N∗

2 = 0. d1 and d2 have the same expression as given in case of Type-I

censoring.

Type-I Hybrid Censoring Scheme

Based on the data from Type-I HCS, the likelihood function is same as (4.8), where

in Case I, N∗
1 = 0, N∗

2 = r, in Case II, N∗
1 = n1, N

∗
2 = r − n1, in Case III, N∗

1 = r,

N∗
2 = 0, in Case IV, N∗

1 = 0, N∗
2 = n2, in Case V, N∗

1 = n1, N
∗
2 = n2, and in

Case VI, N∗
1 = n1, N

∗
2 = 0. Also in the Cases I-III, τ ∗ = tr:n, where for the rest of

the cases τ ∗ = τ2. d1 and d2 have the same expression as given in case of Type-I

censoring.

Type-II Hybrid Censoring Scheme

Based on the observed sample from Type-II HCS, the likelihood function is given in

(4.8), where in Case I, N∗
1 = 0, N∗

2 = r, for Case II, N∗
1 = n1, N

∗
2 = r − n1, in Case

III, N∗
1 = 0, N∗

2 = n2, for Case IV, N∗
1 = n1, N

∗
2 = n2 and for Case V, N∗

1 = n1,

N∗
2 = 0. τ ∗ = tr:n for Cases I and II, where for the rest of the cases τ ∗ = τ2. d1 and

d2 have the same expression as given in case of Type-I censoring.

Progressive Type-II Censoring Scheme

With the observed progressive Type-II censoring data, the likelihood function is

given by (4.8), where for Case I, N∗
1 = 0, N∗

2 = m, for Case II, N∗
1 = n1, N

∗
2 =
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m − n1 and for Case III N∗
1 = m, N∗

2 = 0. For all the cases τ ∗ = tm:n, d1 =
∑N∗

1
k=1(Rk + 1)tk:n + (n−N∗

1 −
∑N∗

k=1 Rk)τ1 and d2 =
∑m

k=N∗
1 +1(Rk + 1)(tk:n − τ1).

In all the above cases, likelihood function are in the same form as Type-I censor-

ing scheme and hence, the posterior density will also be in the same form as given

in (4.9). In all these cases we will be able to compute the BE and construct the

associated CRI for some function of α and λ2 exactly along the same line. One can

also construct credible set for α and λ2 following the same methodology.

4.7 Conclusion

We have considered the Bayesian estimation of the unknown parameters in a simple

SSLT under the restriction λ1 < λ2 and under different censoring schemes. The

analysis is performed under exponentially distributed lifetimes and under CEM as-

sumption. We have taken mainly the squared error loss function, though other loss

functions can also be handled in a very similar way. We have seen that the BE of

some parametric function under the square error loss function does not exist in close

form in most of the cases. An algorithm based on importance sampling is proposed

to compute BE and CRIs. We have done a simulation study to judge the perfor-

mance of the procedures described. We also considered two data sets to illustrate

the estimation procedures. We have noticed that the performance of BE and CRIs

for λ1 is quite satisfactory. It is also noticed that the performance of BE and CRI

for λ1 is better than that of MLE and bootstrap CI for small sample size and for

the small values of τ1. For moderate and large sample sizes the performance of BE

and CRI is quite close to that of MLE and bootstrap CI. We have also noticed that

the performance of BE, CRI, MLE and bootstrap CI of λ2 are not at all satisfactory

for small values of n and small τ2 − τ1. However, BE and CRI work quite well for

moderate or large sample sizes and for large τ2 − τ1 and the performance of BE and

CRI is close to that of MLE and bootstrap CI of λ2 in these cases. It is also noticed
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that HPD CRI works well for λ1, where symmetric CRI works well for λ2. Therefore

we recommend to use HPD CRI for λ1 and symmetric CRI for λ2. Note that one

may generate α form other distributions having support on (0,1) instead of uniform

distribution as mentioned in Algorithm 4.4.1. A right truncated gamma distribution

and the distribution obtained by spline fitting to the posterior distribution of α have

been tried. However, no significant improvement has been noticed.





Chapter 5

Simple Step-stress Model for
Two-Parameter Exponential
Distribution1

5.1 Introduction

In the previous chapter we have considered the analysis of a simple step-stress model,

when the lifetimes of the experimental units follow one-parameter exponential distri-

bution. The purpose of this chapter is to consider the analysis of a simple step-stress

model based on the assumption that the lifetime of the experimental units follows

two-parameter exponential distribution. The analysis has been performed based on

the assumption that the model satisfies CEM assumption, and the data are Type-II

censored. One of the justifications for incorporating the location parameter is the

presence of possible bias in the experimental data due to calibration. It is assumed

that as the stress level changes from s1 to s2, the scale parameter of the exponential

distribution changes from θ1 to θ2, but the location parameter µ remains unchanged.

The data are assumed to be Type-II censored. It is observed that the MLEs of the

unknown parameters do not always exist. Whenever they exist, they can be ob-

tained in closed form. We obtain the exact conditional distributions of the MLEs of

1Part of this work is under revision in Statistical Methodology.
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the scale parameters. Since the conditional distributions of the MLEs of the scale

parameters depend on the unknown location parameter µ, it is not possible to obtain

the exact CIs of the scale parameters based on the exact conditional distributions.

We propose to use the Fisher information matrix to construct the asymptotic CIs

of the unknown scale parameters, assuming the location parameter to be known.

We also propose to use the parametric bootstrap method for constructing CI for the

scale parameters, and it is very easy to implement in practice. We further consider

the Bayesian inference of the unknown parameters θ1, θ2 and µ. It is assumed that

θ2 has an inverted gamma prior, and α has a beta prior, where θ1α = θ2. The loca-

tion parameter µ is assumed to have a non-informative prior. Based on the above

priors the Bayes estimates and the associate credible intervals are obtained using im-

portance sampling technique. Extensive simulations are performed to compare the

performances of the different methods and the performances are quite satisfactory.

One data analysis has been performed for illustrative purposes.

Rest of the chapter is organized as follows. In Section 5.2 first we discuss the

model formulation and then provide the MLEs of the three unknown parameters.

The conditional distribution of the MLEs of the scale parameters are presented

in Section 5.3. In Section 5.4 we discuss the construction of different confidence

intervals for the scale parameters. Bayesian inference of the model parameters is

indicated in Section 5.5. Simulation results and a data analysis are provided in

Section 5.6, and finally conclusions appear in Section 5.7.

5.2 Model Description and MLEs

5.2.1 Model Description

We consider a simple SSLT, where n identical units are placed on a life testing

experiment at the initial stress level s1. The stress level is changed to a higher
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level s2 at a prefixed time τ . Let r(≤ n) be a prefixed positive integer. Further,

the experiment is terminated as soon as the rth failure occurs. The failure times

t1:n < · · · < tr:n denote the observed data. The following cases may be observed:

(a) t1:n < · · · < tr:n < τ ,

(b) t1:n < · · · < tN :n < τ < tN+1:n < · · · < tr:n,

(c) τ < t1:n < · · · < tr:n,

where N is the number of failures at the stress level s1. Note that for Case (a) and

Case (c), N = r and N = 0, respectively.

We also assume that the lifetime distributions at the stress levels s1 and s2 are

exponential with scale parameters θ1 and θ2, respectively and a common location

parameter µ. The lifetimes of the experimental units are assumed to be indepen-

dently distributed. Then under the assumption of the CEM, the CDF, FT (·), of a

lifetime of an item is given by

FT (t) =





1 − e
− t−µ

θ1 if µ < t ≤ τ

1 − e
− t−τ

θ2
− τ−µ

θ1 if τ < t < ∞,

(5.1)

when µ < τ . When µ ≥ τ the same is given by

FT (t) = 1 − e
− t−µ

θ2 if t > µ.

The corresponding PDF, fT (t), is given by

fT (t) =





1
θ1
e
− t−µ

θ1 if µ < t ≤ τ

1
θ2
e
− t−τ

θ2
− τ−µ

θ1 if τ < t < ∞.

(5.2)

when µ < τ , when µ ≥ τ the same is given by

fT (t) =
1

θ2
e
− t−µ

θ2 if t > µ.
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5.2.2 Likelihood Function and MLEs

In this section we consider the likelihood function of the observed data and obtain

the MLEs of the unknown parameters. Note that if µ > τ , θ1 > 0 and θ2 > 0 the

likelihood of the observed data is given by

L(µ, θ1, θ2) =
1

θ2
e
− 1

θ2
{
∑r

j=1 ti:n+(n−r)tr:n−nµ},

which is maximum at µ = t1:n, θ2 = 1
r

{∑r
j=1 tj:n + (n− r)tr:n − nt1:n

}
for any value

of θ1, as the likelihood does not depends on θ1. This is actually equivalent to a CS-II

life test under the second stress level. For this reason we assume that µ < τ , so that

the experiment is a proper simple SSLT. Now using (5.1) and (5.2), the likelihood

of the observed data is given by

L(µ, θ1, θ2) =





1

θr2
e
− n

θ1
τ+ n

θ1
µ−D2

θ2 if N = 0

1

θN1 θ
r−N
2

e
−D1

θ1
− n

θ1
(t1:n−µ)−D2

θ2 if 1 ≤ N ≤ r − 1

1

θr1
e
−D1

θ1
− n

θ1
(t1:n−µ)

if N = r,

(5.3)

where D1 =
N∑

j=1

tj:n + (n−N)m− nt1:n, D2 =
r∑

j=N+1

tj:n + (n− r)tr:n − (n−N)m,

and m = min{τ, tr:n}. For N = 0 and for fixed θ1 and θ2, L(µ, θ1, θ2) is maximum

at µ = t1:n > τ . Now for N = 0

L(t1:n, θ1, θ2) =
1

θr2
e

1
θ1

n(t1:n−τ)−D2
θ2 θ1 > 0, θ2 > 0,

which increases as θ1 decreases. Hence, there exists a path along which L(µ, θ1, θ2)

in (5.3) increases for N = 0, and MLE of (µ, θ1, θ2) does not exist in this case.

Similarly, MLE of (µ, θ1, θ2) does not exist also for N = r. For 1 ≤ N ≤ r − 1,

MLE of (µ, θ1, θ2) exists and is given by (�µ, �θ1, �θ2), where

�µ = t1:n, �θ1 =
D1

N
, and �θ2 =

D2

r −N
. (5.4)
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Clearly this MLE is conditional MLE of (µ, θ1, θ2) conditioning on the event 1 ≤

N ≤ r − 1.

5.3 Conditional Distribution of MLEs

In this section we provide the marginal distributions of the MLEs conditioning on

1 ≤ N ≤ r− 1. It can be obtained by inverting the conditional MGFs as it was first

suggested by Bartholmew [39]. Note that conditional distribution of �µ = t1:n is same

as that of lowest order statistics of a sample of size n from two-parameter exponential

distribution with location parameter µ and scale parameter θ1, conditioning on the

event that it lies between µ and τ . As this distribution has been well studied in

literature, we do not pursue it under frequentist setup in this dissertation. The

conditional MGF of �θ1, conditioning on the event A = {1 ≤ N ≤ r − 1}, can be

written as

E[eω
�θ1 |A] =

r−1∑

i=1

E[eω
�θ1 |N = i] × P [N = i|1 ≤ N ≤ r − 1]. (5.5)

Now the number of the failures before time τ , N , is a non-negative random variable

with PMF

P [N = i] =

(
n

i

)
(1 − e

− τ−µ
θ1 )i e

−(n−i) τ−µ
θ1 = pi (say) for i = 0, 1, · · · , n,

so that for i = 1, . . . , r − 1

P [N = i|1 ≤ N ≤ r − 1] =
pi∑r−1
j=1 pj

.

The exact derivations of E[eω
�θ1 |A] is provided in Appendix 5.A. Using the inversion

formula, the exact conditional distribution of �θ1 can be obtained from conditional

MGF and the corresponding PDF is given in Theorem 5.3.1.
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Theorem 5.3.1. The PDF of �θ1 conditioning on A = {1 ≤ N ≤ r − 1} is given by

f �θ1(t) = c10 f4 (t− τ10; θ1 (n− 1)) − d10 f4 (t; θ1 (n− 1))

+
r−1∑

i=2

i−1∑

j=0

cij f3

(
t− τij ; i− 1,

θ1
i
,
(n− j − 1)θ1

i(j + 1)

)

−
r−1∑

i=2

i−1∑

j=0

dij f3

(
t; i− 1,

θ1
i
,
(n− j − 1)θ1

i(j + 1)

)
, (5.6)

where

dij = (−1)i−j−1

∑r−1
k=1 pk

(
n
i

) (
i

j+1

)
e
− n

θ1
(τ−µ)

,

cij = (−1)i−j−1

∑r−1
k=1 pk

(
n
i

) (
i

j+1

)
e
−n−j−1

θ1
(τ−µ)

,

τij = 1
i
(n− j − 1)(τ − µ),

(5.7)

f3(t; η, ξ1, ξ2) =
1

ξ2 (1 + ξ1/ξ2)
η e

t/ξ2

∫ ∞

max{0,(1/ξ1+1/ξ2)t}

1

Γ(η)
zη−1e−zdz for t ∈ R,

and

f4(t; ξ) =





1
ξ
et/ξ if t ∈ (−∞, 0)

0 otherwise.

Proof: See Appendix 5.A.

Similarly, inverting the conditional MGF of �θ2, conditional PDF of �θ2 is given in

Theorem 5.3.2.

Theorem 5.3.2. The PDF of �θ2 conditioning on {1 ≤ N ≤ r − 1} is given by

f �θ2(t) =
r−1∑

i=1

ci f1

(
t, r − i,

θ2
r − i

)
,

where ci =
pi∑r−1
k=1 pk

and f1(t, η, ξ) =
1

ξη Γ(ξ)
tη−1 e−t/ξ if t > 0.

Proof: See Appendix 5.A.



5.3 Conditional Distribution of MLEs 109

Since the shape of the conditional PDF of �θ1 as given in Theorem 5.3.1 is difficult

to analyze analytically, we provide the plots in Figure 5.1 of the PDFs of �θ1 for

n = 20, µ = 0, θ1 = 12, θ2 = 4.5, and r = 20 (complete sample). We consider four

different values of τ , viz., 4, 6, 8, and 10. For comparison purposes, we have also

generated samples from the same CEM model as given in (5.1), and compute the

MLEs of θ1, θ2 and µ, whenever they exist. We provide the histograms of �θ1 and �θ2
based on 10000 replications along with the true conditional PDFs of �θ1 and �θ2. It is

clear that the true PDFs match very well with the corresponding histograms. The

PDF plot of �θ2 which is a mixture of gamma distributions is provided in Figure 5.2

for the above mentioned parameters.
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(a) τ = 4

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

re
la

ti
v
e

 f
re

q
u

e
n

c
y
 d

e
n

s
it
y

(b) τ = 6
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(c) τ = 8
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(d) τ = 10

Figure 5.1: PDF-plot of �θ1 for different values of τ and for n = r = 20, µ = 0,
θ1 = 12, and θ2 = 4.5.
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(a) τ = 4
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(b) τ = 6
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(c) τ = 8
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(d) τ = 10

Figure 5.2: PDF-plot of �θ2 for different values of τ and for n = 20, r = 20,
µ = 0, θ1 = 12, and θ2 = 4.5.

5.4 Different Types of Confidence Intervals

5.4.1 Asymptotic Confidence Interval

In the absence of a closed form of the conditional CDFs of the parameter estimates �θ1
and �θ2, we cannot obtain the exact CIs. Because of the complicated nature of these

integrals, we cannot consider the tail probabilities of �θ1 and �θ2 for the construction

of exact CIs as in Chen and Bhattacharya [47]. Moreover, it is observed empirically

that Pθ1(
�θ1 < b) is not a monotone function of θ1, which is depicted in the Figure

5.3 taking θ1 = e−2.5, θ2 = e−1.5, µ = 0, n = 20, r = 15, τ = 4, and b = 5. Hence,

the construction of the exact confidence intervals become very difficult. Due to

this reason, we proceed to obtain the asymptotic CIs of θ1 and θ2. We provide the

elements of the Fisher information matrix. Though we have three parameters µ, θ1,

θ2, we obtain the Fisher information matrix for θ1 and θ2 only, assuming µ is known
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and use the estimate of µ in the final expressions. We then use the asymptotic

normality of the MLEs to construct asymptotic CIs of θ1 and θ2. For the purpose

of comparison we also use parametric bootstrap methods, see Efron and Tibshirani

[68], to construct CIs for the two scale parameters.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

θ1

Figure 5.3: Non-monotonicity of tail probability of �θ1 as a function of θ1.

Let I(θ1, θ2) = (Iij(θ1, θ2)); i, j = 1, 2 denote the Fisher information matrix of

θ1 and θ2, where

I11(θ1, θ2) = E
[
− N

θ21
+ 2D1

θ31

]
, I12(θ1, θ2) = 0,

I21(θ1, θ2) = 0, I22(θ1, θ2) = E
[
− r−N

θ22
+ 2D2

θ32

]
.

The observed information matrix is


O11 O12

O21 O22


 =




N
�θ21

0

0 r−N
�θ22


 .

An estimate of variance of �θ1 and �θ2 can be obtained through the observed informa-

tion matrix as

V1 =
�θ2
1

N
and V2 =

�θ2
2

r −N
.

The asymptotic distributions of the pivotal quantities
�θ1−E(�θ1)√

V 1
and

�θ2−E(�θ2)√
V 2

may then

be used to construct 100(1 − γ)%, 0 < γ < 1, CIs for θ1 and θ2, respectively. The
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100(1 − γ)% confidence interval for θ1 and θ2 are given by

[�θ1 ± z1− γ
2

√
V1

]
and

[�θ2 ± z1− γ
2

√
V2

]
.

5.4.2 Bootstrap Confidence Interval

In this subsection, we construct bootstrap CIs based on parametric bootstrapping

method. Later we show that bootstrap CIs has better coverage probabilities than

asymptotic CIs unless the sample size is quite large. Now we describe the algorithm

to obtain bootstrap CIs for θ1 and θ2.

Parametric Bootstrap:

Step 1. Given τ , n and the original sample t = (t1:n, t2:n, · · · , tr:n) obtain �µ, �θ1 and

�θ2, the MLEs of µ, θ1, and θ2, respectively.

Step 2. Simulate a sample of size n from uniform (0, 1) distribution, denote the

ordered sample as U1:n, U2:n, · · · , Un:n.

Step 3. Find N, such that UN :n ≤ 1 − e
− τ−�µ

�θ1 ≤ UN+1:n.

Step 4. If 1 ≤ N ≤ r − 1, proceed to the next step. Otherwise go back to Step 2.

Step 5. For j = 1, 2, · · · , N , Tj:n = �µ − �θ1 ln(1 − Uj:n). For j = N + 1, · · · , r,

Tj:n = τ −
�θ2
�θ1

(τ − �µ) − �θ2 ln(1 − Uj:n).

Step 6. Compute the MLEs of θ1 and θ2 based on T1:n, T2:n, · · · , Tr:n, say �θ1
(1)

and

�θ2
(1)
.

Step 7. Repeat Steps 2-5 M times and obtain �θ1
(1)
, �θ2

(1)
, �θ1

(2)
, �θ2

(2)
, · · · , �θ1

(M)
, �θ2

(M)
.

Step 8. Arrange �θ1
(1)
, �θ1

(2)
, · · · , �θ1

(M)
in ascending order to obtain �θ1

[1]
, �θ1

[2]
, · · · ,

�θ1
[M ]

. Similarly, arrange �θ2
(1)

, �θ2
(2)

, · · · , �θ2
(M)

in ascending order to obtain
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�θ2
[1]

, �θ2
[2]

, · · · , �θ2
[M ]

. A two-sided 100(1 − γ)% bootstrap confidence interval

of θi, (i = 1, 2) is then given by

(
�θ [ γ

2
M ]

i , �θ [(1− γ
2
)M ]

i

)
,

where [x] denotes the largest integer less than or equal to x.

5.5 Bayesian Inference

As the conditional distribution of the MLEs of the unknown parameters are quite

complicated, Bayesian analysis seems to be a reasonable alternative. Also it is well

known that the bootstrap CI of the threshold parameter µ does not work well, but

a proper Bayesian CRI for µ can be obtained in a standard manner. In this section

we mainly consider the square error loss function, although any other loss functions

can be considered in a similar fashion. Here we assume that the data are coming

form the distribution as mentioned in (5.1). To proceed further, we need to make

some prior assumptions on the unknown parameters. Note that the basic aim of

the step-stress life tests is to get more failures at the higher stress level, hence, it

is reasonable to assume that θ1 > θ2. One of the prior assumption that supports

θ1 > θ2 is θ1 =
θ2
α

, where 0 < α < 1. Here we assume that θ2 has an inverted

gamma (IG) distribution with parameters a > 0, b > 0, α has a beta distribution

with parameters c > 0, d > 0, and the location parameter µ has a non-informative

prior over (−∞, τ). The prior density for θ2, α and µ are given by

π1(θ2) =
ba

Γ(a)

e−b/θ2

θa+1
2

if θ2 > 0,

π2(α) =
1

B(c, d)
αc−1(1 − α)d−1 if 0 < α < 1,

π3(µ) = 1 if −∞ < µ < τ,
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respectively. We also assume that µ, α, and θ2 are independently distributed. Like-

lihood function of the data for given (µ, α, θ2) can be expressed as

l(Data|µ, α, θ2) ∝





αN

θ r
2

e
− 1

θ2
{αD3+D2−nαµ}

if µ < t1:n < · · · < tN :n < τ

< tN+1:n < · · · < tr:n,

1 ≤ N ≤ r − 1

αr

θ r
2

e
− 1

θ2
{αD3−nαµ}

if µ < t1:n < · · · < tr:n < τ

1

θ r
2

e
− 1

θ2
{n τ α+D2−nαµ}

if µ < τ < t1:n < · · · < tr:n,

where D3 = D1 + nt1:n. Hence, for 0 < α < 1, θ2 > 0, the posterior density of the

parameters given data can be written as

Case-I : N = 0

l(µ, α, θ2|Data) ∝
1

θ r+a+1
2

αc−1 (1 − α)d−1 e
− 1

θ2
{nα τ+D2+b−nαµ}

if µ < τ.

Case-II : N = 1, 2, · · · , r

l(µ, α, θ2|Data) ∝
1

θ r+a+1
2

αN+c−1 (1 − α)d−1 e
− 1

θ2
{αD3+D2+b−nαµ}

if µ < t1:n.

Note that l(µ, α, θ2|Data) is integrable if r + a − 1 > 0 and N + c − 1 > 0. The

Bayes estimate �g(µ, α, θ2) of some function, say g(µ, α, θ2), with respect to the

square error loss function is the posterior expectation of g(µ, α, θ2), i.e., it can be

expressed as

�g(µ, α, θ2) =

∫ 1

0

∫ ∞

0

∫ t1:n

−∞
g(µ, α, θ2) l(µ, α, θ2|Data)dµ dθ2 dα. (5.8)

Unfortunately, (5.8) cannot be found explicitly for general function g(µ, α, θ2). One

can use numerical methods to compute (5.8). Alternatively, Lindley’s approxima-

tion, see Lindley [99], can be used to approximate (5.8). However CRI cannot be

found by any of the above methods. Hence, we propose importance sampling to

compute the Bayes estimate and as well as to construct CRI. In Case-II, (5.8) can



5.5 Bayesian Inference 115

be written as

�g(µ, α, θ2) =

∫ 1

0

∫ ∞

0

∫ t1:n

−∞
g1(µ, α, θ2)l1(α)l2(θ2|α)l3(µ|α, θ2)dµ dθ2 dα

∫ 1

0

∫ ∞

0

∫ t1:n

−∞
g2(µ, α, θ2)l1(α)l2(θ2|α)l3(µ|α, θ2)dµ dθ2 dα

, (5.9)

where

g1(µ, α, θ2) =
g(µ, α, θ2)α

N+c−2(1 − α)d−1

(D1α + D2 + b)r+a−1
,

g2(µ, α, θ2) =
αN+c−2(1 − α)d−1

(D1α + D2 + b)r+a−1
,

l1(α) = 1, 0 < α < 1,

l2(θ2|α) =
(D1α + D2 + b)r+a−1

Γ(r + a− 1)
×
e−(D1α+D2+b)/θ2

θ r+a
2

, θ2 > 0,

l3(µ|α, θ2) =
nα

θ2
enα(µ−t1:n)/θ2 , µ < t1:n.

Note that l3(µ|α, θ2) has a closed and invertible distribution function, and hence,

one can easily draw sample from this density function. It may be noted that the

above choice of g1, g2, l1, l2, and l3 functions are not unique, but the performance

based on them are quite satisfactory.

Algorithm 5.5.1

Step 1. Generate α from U(0, 1).

Step 2. Generate θ2 from IG(r + a− 1, D1α + D2 + b).

Step 3. Generate µ from l3(µ|α, θ2).

Step 4. Repeat steps 1-3 M times to obtain {(µ1, α1, θ21), . . . , (µM , αM , θ2M)}.

Step 5. Calculate gi = g1(µi, αi, θ2i) for i = 1, 2, . . . , M .

Step 6. Calculate wi = g2(µi, αi, θ2i) for i = 1, 2, . . . , M .

Step 7. Calculate normalizing weight w∗
i =

wi∑M
j=1 wj

for i = 1, 2, . . . , M .

Step 8. Approximate (5.8) by

�g(µ, α, θ2) =
M∑

i=i

w∗
i gi.
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Step 9. To find a 100 (1 − γ)%, 0 < γ < 1, CRI for g(µ, α, θ2), arrange the

{g1, g2, . . . , gM} to get
{
g(1) < g(2) < . . . < g(M)

}
. Arrange {w∗

1, w
∗
2, . . . , w

∗
M}

accordingly to get
{
w∗

(1), w
∗
(2), . . . , w

∗
(M)

}
. Note that w∗

(i)’s are not ordered.

A 100 (1 − γ)% CRI is then given by
(
g(j1), g(j2)

)
, where 1 ≤ j1 ≤ M and

1 ≤ j2 ≤ M satisfy

j1 < j2,

j2∑

i=j1

w1(i) ≤ 1 − γ <

j2+1∑

i=j1

w1(i). (5.10)

The 100(1 − γ)% HPD CRI of g(α, λ2) becomes (g(j∗1 ), g(j∗2 )), where 1 ≤ j∗1 <

j∗2 ≤ M satisfy

j∗2∑

i=j∗1

w1(i) ≤ 1 − γ <

j∗2+1∑

i=j∗1

w1(i), g(j∗2 ) − g(j∗1 ) ≤ g(j2) − g(j1),

for all j1 and j2 satisfying (5.10).

For Case-I, (5.8) can be expressed in the same fashion as given in (5.9) with

g1(µ, α, θ2) =
1

α
g(µ, α, θ2),

g2(µ, α, θ2) =
1

α
,

l1(α) =
1

B(c, d)
αc−1(1 − α)d−1, 0 < α < 1,

l2(θ2|α) =
(D2 + b)r+a−1

Γ(r + a− 1)

e−(D2+b)/θ2

θ r+a
2

, θ2 > 0,

l3(µ|α, θ2) =
nα

θ2
e−nα(τ−µ)/θ2 , µ < τ.

Hence, Bayes estimate and credible interval for g(µ, α, θ2) can be found using im-

portance sampling in Case-I in the same manner as in Case-II.

5.6 Simulation Results and Data Analysis

To evaluate the performance of the CIs and CRIs we conduct simulation studies to

obtain the CP and AL of the CIs and CRIs described in Section 5.4. The results are
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Table 5.1: CP and AL of bootstrap and asymptotic confidence interval along with

AE and MSE for MLE of θ1.

BCI ACI

95% 99% 95% 99%

n r τ AE MSE CP AL CP AL CP AL CP AL

30 30 2.5 11.961 48.339 92.46 22.365 98.20 35.873 84.10 23.112 90.90 30.374
3.0 11.962 38.754 92.72 21.315 98.38 35.269 84.42 20.647 91.48 27.135
3.5 11.984 33.486 92.36 20.527 98.38 34.286 86.22 19.134 91.66 25.147

30 20 2.5 11.961 48.339 92.22 22.722 98.26 36.159 84.36 23.532 90.62 30.927
3.0 11.962 38.754 93.22 21.977 98.34 36.415 86.18 21.007 92.08 27.607
3.5 11.984 33.486 93.56 20.231 98.66 33.849 86.26 18.652 93.06 24.513

40 40 2.5 12.025 36.666 93.82 20.608 98.90 34.520 87.22 19.212 92.90 25.249
3.0 12.010 27.018 94.02 19.224 98.74 32.005 87.54 17.418 93.52 22.892
3.5 11.982 22.815 93.96 17.491 98.70 28.649 88.72 15.899 94.10 20.894

40 26 2.5 12.025 36.666 93.04 20.584 98.62 34.535 86.24 19.078 92.14 25.072
3.0 12.010 27.018 93.52 19.110 98.92 32.063 87.80 17.292 93.04 22.726
3.5 11.982 22.815 93.54 17.439 98.72 28.653 88.28 15.782 93.66 20.741

50 50 2.5 12.040 24.564 93.82 18.475 98.74 30.612 87.48 16.757 93.50 22.023
3.0 11.993 18.326 94.10 16.599 98.88 26.894 89.28 15.084 94.02 19.824
3.5 11.968 14.545 94.08 15.250 98.72 23.995 90.18 13.964 94.78 18.351

50 33 2.5 12.040 24.564 93.82 18.474 98.74 30.610 87.50 16.756 93.50 22.022
3.0 11.993 18.326 93.62 16.589 98.84 26.954 88.30 15.039 93.66 19.764
3.5 11.968 14.545 94.22 15.293 98.90 24.077 90.10 13.994 94.96 18.391

Table 5.2: CP and AL of bootstrap and asymptotic confidence interval along with

AE and MSE for MLE of θ2.

BCI ACI

95% 99% 95% 99%

n r τ AE MSE CP AL CP AL CP AL CP AL

30 30 2.5 4.486 0.811 94.30 3.609 98.34 4.776 93.10 3.591 96.98 4.719
3.0 4.484 0.841 94.54 3.687 98.24 4.885 93.24 3.664 96.92 4.815
3.5 4.482 0.883 94.24 3.753 98.02 4.977 93.00 3.726 96.52 4.896

30 20 2.5 4.502 1.374 93.28 4.740 97.56 6.355 91.50 4.661 95.50 6.126
3.0 4.499 1.458 92.78 5.006 97.50 6.761 90.88 4.893 94.98 6.431
3.5 4.498 1.621 93.46 5.253 97.50 7.152 91.06 5.091 95.08 6.691

40 40 2.5 4.483 0.609 94.40 3.110 98.38 4.108 93.62 3.101 97.40 4.075
3.0 4.483 0.636 93.88 3.162 98.24 4.184 92.64 3.151 96.94 4.141
3.5 4.482 0.660 94.42 3.257 98.48 4.309 93.46 3.241 97.40 4.259

40 26 2.5 4.492 1.064 93.72 4.182 98.12 5.578 92.10 4.132 96.24 5.430
3.0 4.492 1.144 93.60 4.362 97.90 5.843 91.94 4.289 96.10 5.636
3.5 4.490 1.243 93.28 4.583 97.46 6.181 91.22 4.476 95.62 5.882

50 50 2.5 4.482 0.496 94.68 2.779 98.52 3.667 94.12 2.772 97.84 3.643
3.0 4.481 0.517 93.94 2.843 98.34 3.756 93.38 2.833 97.56 3.723
3.5 4.480 0.537 94.04 2.903 98.32 3.837 93.34 2.891 97.46 3.799

50 33 2.5 4.487 0.839 93.92 3.686 98.14 4.894 92.84 3.654 96.76 4.802
3.0 4.485 0.906 94.08 3.838 98.10 5.111 92.70 3.791 96.70 4.983
3.5 4.485 0.979 93.98 3.982 98.26 5.326 92.42 3.920 96.40 5.152
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based on 5000 simulations with µ = 0, θ1 = 12, θ2 = 4.5, M = 3000. We consider

different values of n, viz., 30, 40, and 60 and different values for τ , viz., 2.5, 3.0, and

3.5. For each value of n, we consider r = n and r = 0.65n. We choose a = b = 0,

c = d = 1, and M = 8000 for Bayesian analysis. Non-informative priors are chosen

so that comparison with frequentist approach can be carried out. The results are

provided in Tables 5.1, 5.2, 5.3, 5.4, and 5.5.

Table 5.3: CP and AL of different CRIs along with AE and MSE for BE of µ.

Per. CRI HPD CRI

95% 99% 95% 99%

n r τ AE MSE CP AL CP AL CP AL CP AL

30 30 2.5 -0.116 0.247 95.72 2.266 99.38 4.277 95.56 1.653 99.14 3.255
3.0 -0.089 0.242 94.82 2.126 99.24 3.832 94.58 1.583 99.02 2.974
3.5 -0.058 0.213 94.58 1.955 98.86 3.391 94.32 1.482 99.04 2.686

30 20 2.5 -0.148 0.271 96.30 2.399 99.52 4.545 96.12 1.751 99.60 3.454
3.0 -0.116 0.248 95.18 2.197 98.92 3.954 95.66 1.638 99.18 3.077
3.5 -0.090 0.231 95.44 2.075 99.06 3.578 95.44 1.573 99.20 2.845

40 40 2.5 -0.061 0.129 94.98 1.527 99.12 2.652 94.80 1.152 98.84 2.099
3.0 -0.039 0.112 94.40 1.401 98.92 2.317 94.82 1.077 98.92 1.880
3.5 -0.031 0.113 94.78 1.339 98.88 2.171 94.22 1.040 98.90 1.781

40 26 2.5 -0.062 0.124 95.16 1.540 98.98 2.665 94.86 1.167 98.92 2.112
3.0 -0.053 0.120 94.62 1.459 99.02 2.424 94.86 1.120 98.88 1.963
3.5 -0.044 0.110 94.82 1.387 99.04 2.240 94.60 1.078 98.92 1.840

50 50 2.5 -0.037 0.077 95.20 1.139 99.08 1.873 94.86 0.878 98.84 1.525
3.0 -0.027 0.070 94.12 1.081 98.88 1.726 94.52 0.846 98.82 1.426
3.5 -0.020 0.067 94.16 1.036 98.82 1.619 94.50 0.816 98.92 1.354

50 33 2.5 -0.037 0.072 95.12 1.126 99.04 1.848 94.66 0.869 98.84 1.506
3.0 -0.024 0.065 95.38 1.056 99.12 1.682 94.66 0.826 99.14 1.394
3.5 -0.019 0.066 94.80 1.030 99.08 1.615 94.42 0.810 99.06 1.344

From Tables 5.1 and 5.2, we see that the bootstrap CIs perform better than

asymptotic CIs in terms of CP, though AL is larger in case of the bootstrap CIs

compared to asymptotic CIs. For fixed n and r as the value of τ increases, perfor-

mance of CIs for θ1 improves on the account of availability of more data points and

as expected, that of θ2 deteriorates, but very marginally.

Performance of Bayesian CRIs are quite satisfactory (see Tables 5.3, 5.4, and

5.5). It is noticed that for fixed n and r as τ increases the performance of Bayes

estimator and CRI of µ and θ1 get improved, whereas performance of that of θ2

get deteriorated, in the sense that MSE of the estimator and AL of corresponding
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Table 5.4: CP and AL of different CRIs along with AE and MSE for BE of θ1.

Per. CRI HPD CRI

95% 99% 95% 99%

n r τ AE MSE CP AL CP AL CP AL CP AL

30 30 2.5 15.079 105.064 96.40 35.701 99.38 66.879 93.30 28.138 98.66 52.901
3.0 14.601 89.321 95.42 30.692 99.32 54.440 93.28 25.038 98.60 44.213
3.5 13.857 67.058 95.52 25.760 99.38 43.465 92.98 21.663 98.96 36.356

30 20 2.5 15.954 122.545 97.40 38.004 99.60 72.048 95.54 30.000 99.18 56.524
3.0 15.128 99.949 96.48 31.652 99.30 55.989 95.14 25.943 98.86 45.593
3.5 14.656 71.814 96.28 27.416 99.34 45.724 95.72 23.120 98.94 38.491

40 40 2.5 14.272 77.026 95.14 27.478 99.14 46.506 92.72 22.927 98.62 38.835
3.0 13.511 46.246 95.06 22.233 99.28 35.339 93.00 19.320 98.58 30.584
3.5 13.174 41.242 94.60 19.632 98.98 30.246 92.88 17.378 98.58 26.653

40 26 2.5 14.492 72.320 96.22 27.394 99.38 45.984 95.06 23.003 99.08 38.598
3.0 14.069 57.961 95.72 23.493 99.26 37.357 94.22 20.278 99.02 32.368
3.5 13.657 38.565 95.68 20.319 99.18 31.043 94.66 18.034 98.92 27.539

50 50 2.5 13.847 48.502 94.98 22.162 99.30 34.815 94.10 19.360 98.80 30.308
3.0 13.453 32.858 94.84 18.962 99.08 28.462 94.36 17.012 98.96 25.508
3.5 13.078 22.031 94.86 16.590 98.98 24.224 93.66 15.148 98.88 22.133

50 33 2.5 13.683 45.501 95.32 21.787 99.14 34.319 94.10 19.048 98.80 29.879
3.0 13.149 28.774 95.12 18.259 99.14 27.352 94.00 16.384 98.64 24.554
3.5 12.962 24.986 94.96 16.407 99.02 24.059 93.70 14.969 98.82 21.899

Table 5.5: CP and AL of different CRIs along with AE and MSE for BE of θ2.

Per. CRI HPD CRI

95% 99% 95% 99%

n r τ AE MSE CP AL CP AL CP AL CP AL

30 30 2.5 4.618 0.773 95.64 3.606 99.04 4.891 95.02 3.468 99.02 4.683
3.0 4.647 0.831 95.42 3.708 99.22 5.031 94.90 3.565 98.94 4.816
3.5 4.677 0.892 95.58 3.820 99.10 5.184 94.78 3.668 98.94 4.958

30 20 2.5 4.959 1.644 95.46 5.209 99.18 7.227 95.72 4.916 99.38 6.798
3.0 5.040 1.840 95.28 5.458 99.14 7.571 96.22 5.142 99.20 7.117
3.5 5.048 1.911 95.72 5.666 99.16 7.855 96.10 5.330 99.34 7.381

40 40 2.5 4.611 0.625 95.04 3.149 98.94 4.238 94.58 3.046 98.76 4.081
3.0 4.630 0.661 94.92 3.238 99.04 4.361 94.52 3.128 98.92 4.197
3.5 4.650 0.699 94.90 3.331 99.02 4.487 94.64 3.216 98.86 4.318

40 26 2.5 4.875 1.284 95.22 4.519 99.02 6.191 95.92 4.304 99.04 5.876
3.0 4.913 1.383 95.60 4.727 99.10 6.474 96.08 4.494 99.50 6.144
3.5 4.949 1.516 95.56 4.944 98.98 6.776 95.86 4.693 99.38 6.424

50 50 2.5 4.687 0.564 94.54 2.929 99.02 3.930 94.62 2.840 98.88 3.794
3.0 4.701 0.598 94.48 3.008 98.98 4.035 94.66 2.913 98.96 3.894
3.5 4.718 0.634 94.56 3.089 98.88 4.149 94.92 2.991 98.90 4.001

50 33 2.5 4.753 0.886 95.84 3.838 99.08 5.203 96.00 3.687 99.12 4.981
3.0 4.783 0.970 95.92 4.014 99.14 5.444 95.84 3.850 99.06 5.209
3.5 4.822 1.067 95.86 4.211 99.14 5.711 95.72 4.033 99.06 5.460
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Table 5.6: Data for illustrative example.

Stress level Data

1 10.05 10.59 12.73 12.99 13.71 14.03
14.34

2 14.53 14.97 15.37 15.43 15.48 15.60
15.76 16.18 16.46 16.86 16.90 17.02
17.36 17.62 18.06 18.31 18.69 18.94
18.95 22.65 22.89 24.51 25.39

Table 5.7: Results of data analysis.

Type µ θ1 θ2

of 95% 99% 95% 99% 95% 99%

r CI/CRI LL UL LL UL LL UL LL UL LL UL LL UL

30 ACI – – – – 4.46 29.98 0.45 33.96 2.07 4.93 1.62 5.38
BCI – – – – 7.39 20.70 6.27 23.62 2.24 5.05 2.07 4.83

Per.CRI 9.89 9.96 9.88 9.97 6.54 11.10 5.86 12.10 4.29 7.27 3.84 7.93
HPD CRI 9.90 9.96 9.89 9.97 6.34 10.76 5.70 11.68 4.15 7.05 3.73 7.66

20 ACI – – – – 4.46 29.98 0.45 33.96 1.69 5.70 1.05 6.33
BCI – – – – 7.39 20.70 6.27 23.62 2.09 5.27 1.90 5.90

Per.CRI 9.84 9.94 9.83 9.95 8.15 14.78 7.30 15.52 5.34 9.69 4.78 10.17
HPD CRI 9.84 9.93 9.83 9.94 8.28 14.84 7.59 15.55 5.43 9.73 4.97 10.19

CRI increase. Again for fixed τ , as n increases performance of estimator of all

the parameters and all CRIs improve. As r increases the performance of all the

estimators increases for fixed n and τ . We have also noticed that though the CP of

the Bayesian CRIs are better than that of classical CIs, but the AL of classical CIs

are less than that of Bayesian CRIs.

Next we provide a data analysis to illustrate the procedures described in sec-

tions 5.2, 5.4, and 5.5. A artificial data is generated from the CEM given in (5.1)

with n = 30, µ = 10.0, θ1 = e2.5, θ2 = e1.5, and τ = 14.5 and is given in Table 5.6.

We take a = b = 0, c = d = 1, and M = 8000. Based on the assumption that

the data given in Table 5.6 is coming from exponential CEM, MLE of all the three

parameters can be found using (5.4) and Bayes estimates can be found using the

Algorithm 5.5.1. MLE of µ, θ1 and θ2 are 10.05, 17.22, and 3.50 and Bayes estimate

of that are 9.40, 20.07, and 3.88, respectively. Asymptotic and bootstrap CI, sym-

metric and HPD CRI are also computed and reported in Table 5.7. In this case it is
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observed that bootstrap CIs and HPD CRIs are very similar for both the parameters

θ1 and θ2.

5.7 Conclusion

The two-parameter exponential distribution has been considered in a simple step-

stress model. Presence of the location parameter is justified in view of the pos-

sibility of an unknown bias in the lifetime experiment data. We obtain the exact

distributions of the MLEs of the scale parameters at the two stress levels. The exact

confidence limits of the scale parameters are difficult to obtain, due to the compli-

cated nature of the model. We have proposed to use asymptotic and parametric

bootstrap confidence intervals, and the performance of the later is better. We have

further proposed Bayesian inference of the unknown parameters under fairly general

prior assumptions, and we obtained the Bayes estimates and the associated credible

intervals using importance sampling technique. The proposed Bayes estimates and

the credible intervals perform quite well.

5.A Appendix

Lemma 5.A.1. Let X1:n < · · · < Xn:n be the order statistics of a random sample

of size n from a continuous distribution with PDF f(x). Let D denote the number

of order statistics less than or equal to some pre-fixed number τ , such that F (τ) >

0, where F (.) is the distribution function of f(.). The conditional joint PDF of

X1:n, · · · , XD:n given that D = j is identical with the joint PDF of all order statistics

of size j from the right truncated density function

f∗(t) =





f(t)
F (τ)

for t < τ

0 otherwise.
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Proof: See Balakrishnan et al. [27]

Lemma 5.A.2. Let X1:n < · · · < Xn:n be the order statistics of a random sample

of size n from a continuous distribution with PDF f(x). Let D denote the number

of order statistics less than or equal to some pre-fixed number τ , such that F (τ) >

0, where F (.) is the distribution function of f(.). The conditional joint PDF of

XD+1:n, · · · , Xn:n given that D = j is identical with the joint PDF of all order

statistics of size n− j from the left truncated density function

f∗∗(t) =





f(t)
1−F (τ)

for τ < t

0 otherwise.

Proof: This can be proved following the same way of the prove of Lemma 5.A.1

Lemma 5.A.3. Let X be a Gamma(α, λ) random variable having the PDF

f1(x; α, λ) =





1
λα Γ(α)

xα−1 e−x/λ for x > 0

0 otherwise.

Then for any arbitrary constant A, the MGF of A + X is given by

MA+X = eAω (1 − λω)−α for ω < 1
λ

Proof: It can be proved by simple integration and hence, the proof is omitted.

Lemma 5.A.4. Let X be an Exponential(λ) random variable having PDF

f2(y; λ) =





e−λy for y > 0

0 otherwise.

Then for any arbitrary constant A, the MGF of A−X is given by

MA−X (ω) = eωA (1 + λω)−1 for ω > −
1

λ
.

Proof: It can be proved by simple integration and hence, the proof is omitted.
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Corollary 5.A.1. Let X be a Gamma(α, λ1) random variable, Y be an Exponential

random variable with mean λ−1
2 and they are independently distributed. Then for

any arbitrary constant A, the MGF of A + X − Y is

MA+X−Y (ω) = eωA (1 − λ1 ω)−α (1 + λ2 ω)−1 for −
1

λ2

< ω <
1

λ1

.

Proof: Using Lemmas 5.A.3 and 5.A.4, it can be proved easily.

Lemma 5.A.5. Let X be a Gamma(α, λ1), Y an Exponential(λ2) random variable

and they are independently distributed. Then the PDF of X − Y is given by

f(t;α, λ1, λ2) =
1

λα1 λ2 Γ(α)
et/λ2

∫ ∞

max{0,t}
zα−1e

−( 1
λ1

+ 1
λ2

)z
dz for t ∈ R.

Proof: It can be proved using transformation of variable.

Proof of Theorem 5.3.1

Using the lemma 5.A.1, we get

E[eω
�θ1|N = 1] =

1

θ1

(
1 − e

− τ−µ
θ1

)
∫ τ

µ

e
ω(t1−nt1+(n−1)τ)− 1

θ1
(t1−µ)

dt1

=
e
− 1

θ1
(τ−µ)

θ1

(
1 − e

− τ−µ
θ1

)
∫ τ

µ

e

(
ωn−ω+ 1

θ1

)
(t1−τ)

dt1

=
e
− 1

θ1
(τ−µ)

θ1

(
1 − e

− τ−µ
θ1

) ×
e

(
ωn−ω+ 1

θ1

)
(τ−µ)

− 1

ωn− ω + 1
θ1

. (5.11)

Using the lemma 5.A.1, we get for i = 2, 3, . . . , r − 1

E[eω
�θ1|N = i] =

i!

θi1

(
1 − e

− τ−µ
θ1

)i

×

∫ τ

µ

∫ τ

t1

· · ·

∫ τ

ti−2

∫ τ

ti−1

e
ω
i
(
∑i

j=1 tj−nt1+(n−i)τ)− 1
θ1

∑i
j=1(tj−µ)

dti · · · dt1
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=
i!e

− i
θ1

(τ−µ)

θi1

(
1 − e

− τ−µ
θ1

)i

×

∫ τ

µ

∫ τ

t1

· · ·

∫ τ

ti−2

∫ τ

ti−1

e
−
(

ωn
i
−ω

i
+ 1

θ1

)
(t1−τ)−

(
1
θ1

−ω
i

)∑i
j=2(tj−τ)

dti · · · dt1

=

(
1

θ1
−
ω

i

)−1 ∫ τ

µ

· · ·

∫ τ

ti−2

e
−
(

ωn
i
−ω

i
+ 1

θ1

)
(t1−µ)−

(
1
θ1

−ω
i

)∑i−1
j=2(tj−τ)

×

{
e
−
(

1
θ1

−ω
i

)
(ti−1−τ)

− 1

}
dti−1 · · · dt1

...

=
e
− i

θ1
(τ−µ)

(
1 − e

− 1
θ1

(τ−µ)
)i

×
i−1∑

j=0

(−1)i−j−1

(
i

j + 1

)
e

{
ω
i
(n−j−1)+ 1

θ1
(j+1)

}
(τ−µ)

− 1
(
1 − ω θ1

i

)i−1
(

1 + ω(n−j−1)θ1
j(i+1)

) . (5.12)

Hence, using (5.5), (5.11), and (5.12), we have

E(eω
�θ1 |A) =

r−1∑

i=1

i−1∑

j=0

(−1)i−j−1

∑n−1
k=1 pk

(
n

i

)(
i

j + 1

)
e
− n

θ1
(τ−µ) e

{
ω
i
(n−j−1)+ 1

θ1
(j+1)

}
(τ−µ)

− 1
(
1 − ωθ1

i

)i−1
(

1 + ω(n−j−1)θ1
i(j+1)

)

=
r−1∑

i=1

i−1∑

j=0

cij
eωτij

(
1 − θ1ω

i

)i−1
(

1 + (n−j−1)θ1ω
(j+1)i

)

−
r−1∑

i=1

i−1∑

j=0

dij
1

(
1 − θ1ω

i

)i−1
(

1 + (n−j−1)θ1ω
(j+1)i

) .

where τij, cij and dij are defined in (5.7). Now using Lemmas 5.A.3, 5.A.5 and

Corollary 5.A.1, we have (5.6) and this completes the proof of the Theorem 5.3.1.

Proof of Theorem 5.3.2

CMGF of �θ2 can be expressed as

E[eω
�θ2 |A] =

r−1∑

i=1

E[eω
�θ2 |N = i] × P (N = i|A).
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Using Lemma 5.A.2, for i = 1, 2, · · · , r − 1

E[eω
�θ2 |N = i] =

(n− i)!

(n− r)! θr−i
2

e
−
(

ω
r−i

− 1
θ2

)
(n−i)τ

×

∫ ∞

τ

∫ ∞

ti+1

· · ·

∫ ∞

tn−1

e
−

∑r−1
j=i+1

(
1
θ2

− ω
r−i

)
tj:n−

(
1
θ2

− ω
r−i

)
(n−r+1)tr:ndtn · · · dti+1

=
1

(
1 − θ2 ω

r−i

)r−i .

Therefore

E[eω
�θ2 |A] =

r−1∑

i=1

1
(
1 − θ2 ω

r−i

)r−i ×
pi∑r−1
k=1 pk

.

Using the Lemma 5.A.3, we have the Theorem 5.3.2.





Chapter 6

Bayesian Analysis of Simple
Step-stress Model under Weibull
Lifetimes

6.1 Introduction

In the last two chapters we have discussed the frequentist and Bayesian inference of

a simple step-stress model, when the lifetimes of the experimental units follow one-

parameter exponential and two-parameter exponential distributions, respectively.

Analysis of simple step-stress model has been performed when lifetimes have a

Weibull distribution, mainly under frequentist setup. Properties of the CEM under

Weibull distribution were studied in Komori [86]. Inferential aspects of step-stress

model under CS-I and CS-II were addressed by Bai and Kim [6] and Kateri and

Balakrishnan [83], respectively, when the distribution of lifetimes is assumed to be

Weibull. Liu [100] considered step-stress model for Weibull distributed lifetimes

under Bayesian setup. In all the cases it is assumed that the model satisfies CEM

assumptions. However, it is noticed that MLEs of the unknown parameters do not

exist in close form and therefore finding MLEs of the unknown parameters involves

quite heavy computation. Most of the further statistical analysis mainly rely on

asymptotic distribution of the MLEs. Moreover, extension of the analysis provide
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in Bai and Kim [6] and Kateri and Balakrishnan [83] are not immediate for more

general censoring situations. It seems that Bayesian analysis is a natural choice in

this case.

It may be worth mentioning that though some inferential issues on the param-

eters of Weibull distribution under step-stress model have been addressed in the

literature, no attention has been paid to develop the inference imposing the order

restriction on the mean lifetime at different stress levels. The frequentist approach

to the order restricted inference for parameters of Weibull distribution under step-

stress model is quit involved and hence, in this case also Bayesian approach is a

natural alternative. In this chapter we consider a simple step-stress model, when

the lifetimes are assumed to have two-parameter Weibull distribution. Though CEM

is the most popular model in case of exponential lifetimes, it is not mathematically

so tractable under Weibull lifetimes. Weibull CEM does not transform to exponen-

tial CEM under power transformation. Moreover, it may be worth mentioning that

the KHM and CEM for Weibull distributed lifetimes can be difficult to distinguish,

see Khamis and Higgins [85]. For these reasons analysis in this chapter has been

performed under KHM assumptions, which is mathematically more tractable than

CEM assumptions.

Rest of the chapter is organized as follows. Model assumptions and prior infor-

mation on the unknown parameters are considered in Section 6.2. In Section 6.3,

we provide the posterior analysis and the Bayes estimators in details for Type-I

censored data. In Section 6.4, simulation study has been performed to judge the

effectiveness of the procedures described in Section 6.3. In the same section we

provide data analysis to illustrate the procedures proposed in Section 6.3. In Sec-

tion 6.5, we have indicated how the proposed method can be implemented for other

censoring schemes. Finally, the chapter is concluded in Section 6.6.
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6.2 Model Assumption and Prior Information

It is assumed that the lifetime of the experimental units are independently dis-

tributed random variables having Weibull distribution. PDF and the CDF of the

lifetime under stress level si for i = 1, 2, is given by

f(t; β, λi) = βλit
β−1 e−λit

β

for 0 < t < ∞ β > 0 λi > 0 (6.1)

and

F (t; β, λi) = 1 − e−λit
β

for 0 < t < ∞ β > 0 λi > 0, (6.2)

respectively. It is further assumed that the failure time data come from a KHM

under the step-stress pattern, hence, it has the following CDF;

G(t; β λ1, λ2) =





1 − eλ1tβ if 0 < t < τ1

1 − e−λ2(tβ−τβ1 )−λ1τ
β
1 if τ1 ≤ t < ∞.

(6.3)

The corresponding PDF is given by

g(t; β, λ1, λ2) =





βλ1 t
β−1 e−λ1tβ if 0 < t < τ1

βλ2 t
β−1 e−λ2(tβ−τβ1 )−λ1τ

β
1 if τ1 ≤ t < ∞.

(6.4)

For developing the Bayesian inference, we need to assume some priors on the un-

known parameters. If β is known, λ1 and λ2 have conjugate gamma priors. However,

following the argument of Soland [128] it can be shown that there does not exist any

continuous conjugate prior for (β, λ1, λ2). A continuous-discrete conjugate prior do

exist, where continuous part corresponds to the scale parameters and discrete part

corresponds to the shape parameter. Kaminskiy and Krivtsov [82] criticized this

choice of priors in case of complete sample constant stress life test, for it is difficulty

to apply in real life and thus is not addressed further.

Following the approach of Berger and Sun [40], Kundu and Gupta [91], and

Kundu [88], here we assume that λi, i = 1, 2, has a gamma prior with shape and

scale parameters ai > 0 and bi > 0, respectively, i.e., the prior assumption on λi is
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summarized in the following PDF

πi(λi) ∝ λai−1
i e−λibi for λi > 0. (6.5)

The prior on the shape parameter β is also assumed to be a gamma distribution with

shape and scale parameter a3 > 0 and b3 > 0, respectively, i.e., the prior density of

β is given by

π3(β) ∝ βa3−1 e−b3β for β > 0. (6.6)

It is further assumed that β, λ1, and λ2 are independently distributed. We discuss

the posterior analysis of Type-I censored data in details in Section 6.3.1 under this

prior assumptions.

Next we consider order restricted inference of the parameters under the same

model assumptions. Note that the main aim of a SSLT is to get rapid failures by

imposing severe stress level on the product under test. Hence, it is natural to assume

that the mean lifetime at the stress level s1 is greater than that at the stress level s2,

which implies λ1 < λ2 under lifetime distribution (6.2). Therefore, λ1 = αλ2 with

0 < α < 1. The following priors are assumed under this order restricted situation.

It is assumed that priors on β and λ2 are same as the previous case, i.e., they have

priors π2(·) and π3(·), respectively, and α has a beta prior, with parameters a4 > 0

and b4 > 0, having PDF

π4(α) ∝ αa4−1 (1 − α)b4−1 for 0 < α < 1. (6.7)

Here also we assume that α, β, and θ2 are independently distributed. Note that the

joint prior density of (λ1, λ2) is same as given in (4.7). A detailed discussion of the

posterior analysis of Type-I censored data under this prior assumption is provided

in Section 6.3.2.
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6.3 Posterior Analysis under CS-I

6.3.1 Under Unrestricted Prior Assumption

Recall that the form of the ordered observed data under CS-I can have one of the

following forms:

(a) τ1 < t1:n < . . . < tn2:n < τ2,

(b) t1:n < . . . < tn1:n < τ1 < tn1+1:n < . . . < tn1+n2:n < τ2,

(c) t1:n < . . . < tn1:n < τ1 < τ2.

Let n∗
1 and n∗

2 be the number of failures at the stress level s1 and s2, respectively,

and τ ∗ be the experimental termination time. In case of CS-I, τ ∗ = τ2. For Case (a):

n∗
1 = 0, n∗

2 = n2 ≤ n, Case (b): n∗
1 = n1 > 0, n∗

2 = n2 > 0, Case (c): n∗
1 = n1 > 0,

n∗
2 = 0. Let n∗ = n∗

1 + n∗
2. Based on the observations from a simple SSLT under

Type-I censoring scheme, the likelihood function can be written as

l1(Data | β, λ1, λ2) ∝ βn∗
1+n∗

2 λ
n∗
1

1 λ
n∗
2

2




n∗
1+n∗

2∏

i=1

ti:n




β−1

e−λ1D1(β)−λ2D2(β), (6.8)

where D1(β) =
∑n∗

1
j=1 t

β
j:n + (n − n∗

1)τ
β
1 and D2(β) =

∑n∗

j=n∗
1+1(t

β
j:n − τβ1 ) + (n −

n∗)(τ ∗β − τβ1 ). Therefore, based on the prior π1(·), π2(·), and π3(·) mentioned above

posterior density function of β, λ1, and λ2 becomes

l2(β, λ1, λ2 |Data) ∝ βn∗+a3−1 λ
n∗
1+a1−1

1 λn2+a2−1
2 e−(b3−c1)β−λ1 A1(β)−λ2 A2(β)

if β > 0, λ1 > 0, λ2 > 0, (6.9)

where A1(β) = b1 + D1(β), A2(β) = b2 + D2(β), and c1 =
∑n∗

i=1 ln ti:n. Note that

the right hand side of (6.9) is integrable if we take proper priors on the unknown

parameters, see Appendix 6.A.1 for details. If we want to compute the Bayes esti-

mate of some function of β, λ1, and λ2, say g(β, λ1, λ2), with respect to the squared

error loss function, it will be posterior expectation of g(β, λ1, λ2), i.e.,

�g(β, λ1, λ2) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

g(β, λ1, λ2)l2(β, λ1, λ2 | Data) dλ2dλ1dβ. (6.10)
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Unfortunately, the close form of (6.10) cannot be obtained in most of the cases. One

may use numerical techniques to compute (6.10). Alternatively, other approximation

can be used to compute (6.10). However, CRI for a parametric function cannot be

constructed by these numerical methods. Hence, we propose to use importance

sampling to compute Bayes estimate as well as to construct CRI of a parametric

function. Note that

l2(β, λ1, λ2 | Data) = l3(λ1, | β, Data) × l4(λ2, | β, Data) × l5(β |Data), (6.11)

where

l3(λ1, | β, Data) =
{A1(β)}n

∗
1+a1

Γ(n∗
1 + a1)

λ
n∗
1+a1−1

1 e−λ1 A1(β) if λ1 > 0, (6.12)

l4(λ2, | β, Data) =
{A2(β)}n

∗
2+a2

Γ(n∗
2 + a2)

λ
n∗
2+a2−1

2 e−λ2 A2(β) if λ2 > 0, (6.13)

and

l5(β |Data) = c2
βn∗+a3−1e−(b3−c1)β

{A1(β)}n
∗
1+a1{A2(β)}n

∗
2+a2

if β > 0. (6.14)

The normalizing constant c2 in (6.14) can be found using numerical method. Though

it is not easy to prove the log-concavity of the l5(β |Data), the plots (see Figure 6.1)

suggest that l5(β |Data) is a unimodal function. Hence, we try to approximate

l5(β |Data) by a gamma density function, where the parameters of the gamma dis-

tribution are determined by equating mean and variance of l5(β |Data) to those of

a gamma distribution. Let m1 and m2 denote the mean and variance, respectively,

corresponding to the density l5(β |Data). The shape and scale parameters of the

approximating gamma distribution are given by a5 =
m2

1

m2

and b5 =
m1

m2

, respectively.

Let us define

l6(β |Data) =
ba55

Γ(a5)
βa5−1 e−b5β for β > 0.

Note that l2(β, λ1, λ2 |Data) can be expressed as follows.

l2(β, λ1, λ2 |Data) = w1(β) × l3(λ1, | β, Data) × l4(λ2, | β, Data) × l6(β |Data),



6.3 Posterior Analysis under CS-I 133

where w1(β) =
l5(β |Data)

l6(β |Data)
. Now we propose to use the following algorithm based

on importance sampling technique to compute Bayes estimate and to construct the

CRI of some function g(β, λ1, λ2).

Algorithm 6.3.1

Step 1. Generate β1 from Gamma(a5, b5) distribution.

Step 2. For the given β1, generate λ11 from (6.12).

Step 3. For the given β1, generate λ21 from (6.13).

Step 4. Continue the process M times to get {(β1, λ11, λ21), . . ., (βM , λ1M , λ2M)}.

Step 5. Compute gi = g(βi, λ1i, λ2i); i = 1, 2, . . . , M .

Step 6. Calculate the weights w1i = w1(βi); i = 1, 2, . . . , M .

Step 7. Compute the BE of g(β, λ1, λ2) as

�gBE(β, λ1, λ2) =
1

M

M∑

j=1

w1jgj.

Step 8. To construct a 100(1 − γ)% CRI of g(β, λ1, λ2), first order gj for j =

1, . . . , M , say g(1) < g(2) < . . . < g(M), and order wj accordingly to get

w1(1), w1(2), . . . , w1(M). Note that w1(1), w1(2), . . . , w1(M) may not be ordered.

A 100(1 − γ)% CRI can be obtained as (g(j1), g(j2)), where j1 and j2 satisfy

j1, j2 ∈ {1, 2, . . . , M}, j1 < j2,
1

M

j2∑

i=j1

w1(i) ≤ 1 − γ <
1

M

j2+1∑

i=j1

w1(i).

(6.15)

The 100(1−γ)% HPD CRI of g(β, λ1, λ2) becomes (g(j∗1 ), g(j∗2 )), where j∗1 < j∗2 ,

j∗1 , j
∗
2 ∈ {1, 2, . . . , M} satisfy

1

M

j∗2∑

i=j∗1

w1(i) ≤ 1 − γ <
1

M

j∗2+1∑

i=j∗1

w1(i), g(j∗2 ) − g(j∗1 ) ≤ g(j2) − g(j1),

for all j1 and j2 satisfying (6.15).
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6.3.2 Under Order Restricted Prior Assumption

Computations of Bayes estimate and construction of associated CRI of some para-

metric function g(β, λ1, λ2) under order restricted priors are addressed in this sub-

section. Using the reparameterization λ1 = αλ2 (0 < α < 1) and (6.5), (6.6), (6.7),

and (6.8), one can express the posterior density function of (α, β, λ2) as

l7(α, β, λ2 |Data) ∝ αn∗
1+a4−1(1 − α)b4−1βn∗+a3−1λn

∗+a2−1
2

× e−λ2(αD1(β)+D2(β)+b2)−(b3−c1)β if 0 < α < 1, β > 0, λ2 > 0.

(6.16)

Like the previous case, the right hand side of (6.16) is integrable if proper priors are

assumed on the unknown parameters, see Appendix 6.A.2 for details. Now under

squared error loss function Bayes estimate of some parametric function g(α, β, λ2)

is given by

�g(α, β, λ2) =

∫ 1

0

∫ ∞

0

∫ ∞

0

g(α, β, λ2)l7(α, β, λ2 | Data) dλ2dβdα. (6.17)

Note that

l7(α, β, λ2 |Data) ∝ w2(α, β) × l8(λ2 |α, β, Data) × l9(β |Data), (6.18)

where

w2(α, β) =
αn∗

1+a4−1(1 − α)b4−1

{αD1(β) + D2(β) + b2}
n∗+a2

, (6.19)

l8(λ2 |α, β, Data) =
{αD1(β) + D2(β) + b2}

n∗+a2

Γ(n∗ + a2)
λn

∗+a2−1
2 e−λ2(αD1(β)+D2(β)+b2),

(6.20)

and

l9(β |Data) =
(b3 − c1)

n∗+a3

Γ(n∗ + a3)
βn∗+a3−1 e−(b3−c1)β. (6.21)

Depending upon the previous expression of l7(α, β, λ2 |Data), the following algo-

rithm is proposed to compute Bayes estimate as well as to construct CRI.
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Algorithm 6.3.2

Step 1. Generate α1 from U(0, 1) distribution.

Step 2. Generate β1 from (6.21).

Step 3. For the given α1 and β1, generate λ21 from (6.20).

Step 4. Continue the process M times to get {(α1, β1, λ21), . . ., (αM , βM , λ2M)}.

Step 5. Calculate gi = g(αi, βi, λ2i); i = 1, 2, . . . , M .

Step 6. Calculate the weights w2i = w2(αi, βi); i = 1, 2, . . . , M .

Step 7. Calculate the normalize weights w∗
2i =

w2i∑M
j=1 w2j

; i = 1, 2, . . . , M .

Step 8. Compute the BE of g(α, β, λ2) as �gBE(β, λ1, λ2) =
M∑

j=1

w∗
2jgj.

Step 9. To construct a 100(1 − γ)% CRI of g(α, β, λ2), first order gj for j =

1, . . . , M , say g(1) < g(2) < . . . < g(M), and order w∗
2j accordingly to get

w∗
2(1), w

∗
2(2), . . . , w

∗
2(M). Note that w∗

2(1), w
∗
2(2), . . . , w

∗
2(M) may not be ordered.

A 100(1 − γ)% CRI can be obtained as (g(j1), g(j2)), where j1 and j2 satisfy

j1, j2 ∈ {1, 2, . . . , M}, j1 < j2,

j2∑

i=j1

w∗
2(i) ≤ 1 − γ <

j2+1∑

i=j1

w∗
2(i). (6.22)

The 100(1−γ)% HPD CRI of g(α, β, λ2) becomes (g(j∗1 ), g(j∗2 )), where j∗1 < j∗2 ,

j∗1 , j
∗
2 ∈ {1, 2, . . . , M} satisfy

j∗2∑

i=j∗1

w∗
2(i) ≤ 1 − γ <

j∗2+1∑

i=j∗1

w∗
2(i), g(j∗2 ) − g(j∗1 ) ≤ g(j2) − g(j1),

for all j1 and j2 satisfying (6.22).

6.4 Simulations and Data Analysis

6.4.1 Simulation Results

In this section we present some simulation results to judge how the proposed proce-

dures work for different values of τ1, τ2 and n. Here we choose β = 2, λ1 = 1/1.2 ⋍
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Table 6.1: AE and MSE of BE of β, λ1, and λ2 for unrestricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001, b3 = 0.0001,
β = 2, λ1 = 0.833, and λ2 = 2.222.

β λ1 λ2

n τ1 τ2 AE MSE AE MSE AE MSE

40 0.60 0.80 2.180 0.5033 1.087 0.4869 2.477 0.5826
1.20 2.105 0.3179 0.981 0.2372 2.429 0.4292

0.65 0.85 2.159 0.4464 0.997 0.2378 2.438 0.5955
1.25 2.099 0.2961 0.942 0.1559 2.437 0.4792

0.70 0.90 2.139 0.3707 0.939 0.1341 2.415 0.6383
1.30 2.103 0.2742 0.918 0.1143 2.424 0.5191

0.75 0.95 2.118 0.3147 0.902 0.0922 2.426 0.6838
1.35 2.105 0.2601 0.899 0.0848 2.425 0.5768

0.80 1.00 2.110 0.2934 0.881 0.0669 2.406 0.7211
1.40 2.111 0.2478 0.886 0.0650 2.435 0.6153

50 0.60 0.80 2.153 0.4111 1.028 0.3297 2.405 0.4110
1.20 2.071 0.2375 0.943 0.1611 2.395 0.3357

0.65 0.85 2.136 0.3322 0.959 0.1586 2.374 0.4159
1.25 2.085 0.2258 0.927 0.1198 2.384 0.3453

0.70 0.90 2.112 0.2841 0.921 0.1014 2.354 0.4610
1.30 2.082 0.2115 0.905 0.0843 2.384 0.4023

0.75 0.95 2.101 0.2445 0.895 0.0706 2.354 0.4933
1.35 2.091 0.2005 0.889 0.0638 2.369 0.4214

0.80 1.00 2.084 0.2096 0.874 0.0525 2.367 0.5525
1.40 2.091 0.1890 0.876 0.0495 2.358 0.4355

Table 6.2: CP and AL of Symmetric CRI of β for unrestricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001, b3 = 0.0001,
β = 2, λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.42 2.124 95.54 2.534 99.28 3.340
1.20 90.04 1.753 94.70 2.084 98.86 2.721

0.65 0.85 89.86 1.966 95.16 2.346 99.10 3.095
1.25 90.22 1.694 94.94 2.014 98.96 2.634

0.70 0.90 90.10 1.828 95.10 2.181 99.12 2.876
1.30 89.84 1.638 95.10 1.949 98.88 2.554

0.75 0.95 90.40 1.707 94.92 2.037 99.10 2.686
1.35 90.32 1.578 95.42 1.878 99.18 2.464

0.80 1.00 89.24 1.608 94.52 1.919 98.82 2.530
1.40 90.04 1.522 94.68 1.813 98.98 2.380

50 0.60 0.80 89.68 1.877 94.78 2.239 99.02 2.950
1.20 89.76 1.552 95.26 1.845 99.02 2.413

0.65 0.85 90.22 1.738 95.00 2.073 99.06 2.732
1.25 89.60 1.506 95.02 1.792 99.14 2.346

0.70 0.90 89.80 1.609 94.96 1.920 99.12 2.530
1.30 90.18 1.450 95.18 1.726 98.86 2.261

0.75 0.95 90.20 1.508 95.06 1.799 98.96 2.371
1.35 90.10 1.402 95.16 1.670 98.92 2.191

0.80 1.00 89.46 1.418 95.12 1.691 99.06 2.227
1.40 90.38 1.349 94.98 1.607 99.08 2.111
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Table 6.3: CP and AL of HPD CRI of β for unrestricted case with a1 = 0.0001,
b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001, b3 = 0.0001, β = 2,

λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 89.30 2.077 95.22 2.477 99.16 3.257
1.20 89.16 1.734 94.24 2.059 98.64 2.678

0.65 0.85 89.78 1.927 95.06 2.298 98.98 3.025
1.25 89.40 1.673 94.30 1.989 98.78 2.593

0.70 0.90 90.30 1.795 94.86 2.140 98.88 2.816
1.30 89.10 1.618 94.54 1.925 98.84 2.515

0.75 0.95 89.78 1.679 94.92 2.003 98.84 2.635
1.35 90.00 1.559 94.92 1.855 99.12 2.427

0.80 1.00 89.20 1.584 94.28 1.890 98.88 2.484
1.40 89.92 1.504 94.64 1.791 98.90 2.345

50 0.60 0.80 89.48 1.843 94.62 2.197 98.78 2.888
1.20 89.28 1.536 94.52 1.826 98.82 2.380

0.65 0.85 89.98 1.709 94.68 2.038 98.98 2.679
1.25 89.04 1.491 94.28 1.773 99.02 2.314

0.70 0.90 89.92 1.585 94.58 1.890 99.16 2.485
1.30 89.84 1.435 95.02 1.707 98.78 2.231

0.75 0.95 89.92 1.488 94.94 1.774 98.84 2.332
1.35 89.70 1.388 94.90 1.652 98.92 2.162

0.80 1.00 89.62 1.400 94.82 1.669 98.88 2.193
1.40 90.02 1.336 94.92 1.590 99.08 2.083

Table 6.4: CP and AL of Symmetric CRI of λ1 for unrestricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001, b3 = 0.0001,
β = 2, λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.52 1.803 95.02 2.322 98.90 3.712
1.20 89.40 1.392 94.56 1.723 98.86 2.482

0.65 0.85 89.92 1.384 94.74 1.734 99.12 2.584
1.25 89.88 1.183 94.94 1.451 98.98 2.043

0.70 0.90 90.60 1.115 95.22 1.370 99.20 1.945
1.30 89.14 1.028 94.90 1.251 98.98 1.730

0.75 0.95 89.82 0.937 94.92 1.138 98.84 1.569
1.35 89.66 0.905 94.70 1.094 99.04 1.490

0.80 1.00 89.90 0.820 95.12 0.989 98.88 1.339
1.40 90.30 0.809 95.44 0.974 99.12 1.312

50 0.60 0.80 89.64 1.497 94.96 1.889 98.78 2.867
1.20 89.16 1.187 94.56 1.456 98.54 2.057

0.65 0.85 90.42 1.171 95.38 1.447 98.96 2.083
1.25 89.64 1.035 94.48 1.262 99.18 1.751

0.70 0.90 89.42 0.965 94.50 1.177 98.64 1.639
1.30 89.86 0.901 94.40 1.092 98.74 1.493

0.75 0.95 89.40 0.826 94.48 0.999 98.70 1.362
1.35 89.86 0.799 95.34 0.963 98.78 1.302

0.80 1.00 89.22 0.723 94.70 0.870 98.86 1.170
1.40 90.24 0.715 95.26 0.859 99.10 1.151
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Table 6.5: CP and AL of HPD CRI of λ1 for unrestricted case with a1 = 0.0001,
b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001, b3 = 0.0001, β = 2,

λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.70 1.551 95.24 2.000 99.04 3.204
1.20 89.08 1.270 94.22 1.575 98.84 2.275

0.65 0.85 89.42 1.249 94.94 1.564 98.88 2.329
1.25 90.36 1.040 95.16 1.278 99.10 1.811

0.70 0.90 88.70 0.974 94.52 1.185 98.92 1.637
1.30 89.68 1.102 94.74 1.353 98.80 1.906

0.75 0.95 89.10 0.894 94.66 1.085 98.98 1.493
1.35 89.16 0.868 94.80 1.050 98.88 1.428

0.80 1.00 89.34 0.793 94.52 0.956 98.84 1.291
1.40 89.40 0.784 95.22 0.944 98.98 1.268

50 0.60 0.80 90.16 1.330 94.82 1.681 99.02 2.551
1.20 88.50 1.103 93.70 1.355 98.40 1.915

0.65 0.85 89.94 1.082 95.16 1.337 99.14 1.923
1.25 88.94 0.978 94.76 1.192 98.92 1.654

0.70 0.90 89.18 0.914 94.30 1.115 98.50 1.549
1.30 89.70 0.863 94.70 1.046 98.60 1.428

0.75 0.95 89.22 0.796 94.52 0.962 98.62 1.308
1.35 90.04 0.773 94.94 0.931 98.68 1.257

0.80 1.00 88.86 0.704 94.14 0.846 98.64 1.135
1.40 90.12 0.698 94.92 0.838 99.00 1.120

Table 6.6: CP and AL of Symmetric CRI of λ2 for unrestricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001, b3 = 0.0001,
β = 2, λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.00 2.393 95.08 2.919 99.06 4.097
1.20 90.34 2.057 94.90 2.529 98.88 3.616

0.65 0.85 89.62 2.402 94.76 2.927 98.90 4.085
1.25 90.20 2.171 95.50 2.660 98.90 3.764

0.70 0.90 89.10 2.455 94.18 2.989 98.76 4.158
1.30 89.64 2.264 95.00 2.769 99.02 3.890

0.75 0.95 89.18 2.555 94.20 3.111 98.92 4.320
1.35 89.98 2.360 94.86 2.882 98.92 4.027

0.80 1.00 89.14 2.628 94.60 3.198 98.92 4.428
1.40 89.94 2.456 94.84 2.994 99.08 4.166

50 0.60 0.80 90.74 2.060 95.18 2.496 99.14 3.446
1.20 89.60 1.798 94.80 2.193 98.96 3.068

0.65 0.85 90.40 2.075 95.20 2.511 99.04 3.444
1.25 90.20 1.880 94.98 2.288 98.94 3.180

0.70 0.90 89.36 2.138 94.72 2.590 98.88 3.552
1.30 89.88 1.977 94.70 2.403 98.98 3.324

0.75 0.95 89.40 2.217 94.72 2.686 98.92 3.681
1.35 89.80 2.050 94.84 2.488 98.70 3.429

0.80 1.00 88.82 2.308 94.18 2.797 98.88 3.829
1.40 90.20 2.122 95.34 2.575 99.10 3.538
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Table 6.7: CP and AL of HPD CRI of λ2 for unrestricted case with a1 = 0.0001,
b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001, b3 = 0.0001, β = 2,

λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.60 2.296 95.42 2.792 99.18 3.883
1.20 90.30 1.957 95.56 2.399 99.18 3.399

0.65 0.85 90.06 2.302 94.96 2.798 99.00 3.877
1.25 90.84 2.065 95.74 2.526 99.06 3.551

0.70 0.90 89.16 2.348 94.24 2.854 98.64 3.948
1.30 90.20 2.152 95.10 2.628 99.00 3.676

0.75 0.95 88.98 2.436 94.36 2.963 98.86 4.100
1.35 89.70 2.243 94.96 2.736 99.04 3.810

0.80 1.00 88.32 2.500 93.96 3.040 98.62 4.201
1.40 89.80 2.333 94.76 2.842 99.04 3.945

50 0.60 0.80 91.20 1.996 95.82 2.413 99.24 3.303
1.20 90.46 1.728 95.38 2.105 99.08 2.924

0.65 0.85 90.96 2.008 95.20 2.428 99.10 3.311
1.25 90.86 1.807 95.62 2.197 99.06 3.036

0.70 0.90 89.32 2.063 94.56 2.496 99.04 3.409
1.30 89.58 1.898 94.88 2.306 99.00 3.177

0.75 0.95 88.56 2.134 94.18 2.584 98.80 3.529
1.35 89.54 1.967 94.58 2.387 98.96 3.279

0.80 1.00 88.52 2.217 93.78 2.685 98.76 3.668
1.40 89.90 2.036 94.86 2.469 98.84 3.385

Table 6.8: AE and MSE of BE of β, λ1, and λ2 for order restricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a4 = 1, b4 = 1, β = 2,
λ1 = 0.833, and λ2 = 2.222.

β λ1 λ2

n τ1 τ2 AE MSE AE MSE AE MSE

40 0.60 0.80 2.156 0.2940 0.984 0.1186 2.302 0.3892
1.20 2.201 0.2457 0.997 0.1057 2.250 0.2503

0.65 0.85 2.191 0.3094 0.980 0.1040 2.272 0.3565
1.25 2.212 0.2410 0.976 0.0872 2.219 0.2576

0.70 0.90 2.215 0.3279 0.962 0.0866 2.233 0.3652
1.30 2.219 0.2404 0.960 0.0727 2.185 0.2832

0.75 0.95 2.196 0.2990 0.938 0.0668 2.226 0.4216
1.35 2.242 0.2616 0.944 0.0604 2.168 0.3476

0.80 1.00 2.197 0.2703 0.923 0.0565 2.186 0.4282
1.40 2.264 0.3077 0.932 0.0507 2.134 0.3644

50 0.60 0.80 2.110 0.2156 0.958 0.0915 2.250 0.2940
1.20 2.185 0.1990 0.985 0.0947 2.226 0.1973

0.65 0.85 2.158 0.2430 0.961 0.0851 2.239 0.3071
1.25 2.200 0.2048 0.965 0.0750 2.198 0.2100

0.70 0.90 2.169 0.2376 0.943 0.0676 2.214 0.3092
1.30 2.206 0.2089 0.948 0.0601 2.167 0.2413

0.75 0.95 2.168 0.2304 0.922 0.0552 2.205 0.3309
1.35 2.228 0.2169 0.937 0.0490 2.136 0.2883

0.80 1.00 2.161 0.2086 0.911 0.0443 2.178 0.3438
1.40 2.250 0.2350 0.926 0.0412 2.083 0.3050



140 Bayesian Analysis of Simple Step-stress Model under Weibull Lifetimes

Table 6.9: CP and AL of Symmetric CRI of β for order restricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a4 = 1, b4 = 1, β = 2,
λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 91.12 1.573 95.36 1.763 98.98 2.037
1.20 90.50 1.504 95.44 1.751 98.74 2.167

0.65 0.85 91.36 1.631 96.02 1.846 99.40 2.146
1.25 88.88 1.455 93.86 1.693 97.48 2.097

0.70 0.90 90.12 1.656 94.92 1.905 99.20 2.257
1.30 87.32 1.387 91.78 1.610 95.12 2.001

0.75 0.95 90.06 1.611 95.30 1.893 99.06 2.328
1.35 82.28 1.313 86.76 1.525 90.00 1.900

0.80 1.00 89.98 1.533 94.84 1.817 98.92 2.323
1.40 76.88 1.222 80.68 1.421 83.92 1.777

50 0.60 0.80 90.90 1.346 95.64 1.513 98.80 1.759
1.20 90.14 1.359 95.04 1.581 98.56 1.950

0.65 0.85 90.24 1.418 94.52 1.602 98.56 1.865
1.25 88.24 1.310 93.22 1.521 96.60 1.880

0.70 0.90 90.48 1.464 95.52 1.681 99.20 1.983
1.30 84.36 1.237 89.50 1.433 92.94 1.775

0.75 0.95 89.84 1.442 95.08 1.690 99.00 2.066
1.35 79.10 1.153 83.50 1.336 87.04 1.661

0.80 1.00 89.80 1.370 95.00 1.622 99.14 2.063
1.40 72.82 1.059 76.32 1.229 79.46 1.538

Table 6.10: CP and AL of HPD CRI of β for order restricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a4 = 1, b4 = 1, β = 2,
λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 84.06 1.438 92.12 1.636 98.38 1.948
1.20 87.86 1.427 93.70 1.659 98.48 2.062

0.65 0.85 83.64 1.516 92.12 1.729 98.84 2.057
1.25 87.02 1.371 92.84 1.595 97.22 1.991

0.70 0.90 82.84 1.565 91.12 1.801 98.22 2.163
1.30 85.68 1.291 90.98 1.507 94.98 1.894

0.75 0.95 87.00 1.545 91.96 1.805 98.20 2.227
1.35 80.68 1.208 85.82 1.415 89.96 1.791

0.80 1.00 88.36 1.485 93.56 1.750 98.52 2.220
1.40 75.24 1.110 79.98 1.306 83.82 1.670

50 0.60 0.80 83.90 1.219 91.84 1.395 97.98 1.677
1.20 87.68 1.284 93.56 1.493 98.22 1.850

0.65 0.85 83.04 1.310 90.82 1.493 97.64 1.783
1.25 86.30 1.226 91.96 1.427 96.46 1.781

0.70 0.90 83.92 1.379 91.40 1.584 98.38 1.899
1.30 82.94 1.142 88.58 1.332 92.64 1.676

0.75 0.95 85.72 1.382 91.56 1.610 98.20 1.973
1.35 77.74 1.050 82.78 1.231 86.84 1.562

0.80 1.00 88.64 1.326 93.38 1.561 98.12 1.970
1.40 71.40 0.950 75.68 1.121 79.50 1.440
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Table 6.11: CP and AL of Symmetric CRI of λ1 for order restricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a4 = 1, b4 = 1, β = 2,
λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 93.36 1.107 97.42 1.291 99.58 1.604
1.20 92.48 1.080 96.90 1.274 99.74 1.636

0.65 0.85 92.14 1.036 96.70 1.215 99.48 1.525
1.25 92.06 0.973 96.40 1.151 99.50 1.488

0.70 0.90 91.98 0.945 96.36 1.117 99.30 1.426
1.30 91.82 0.879 96.44 1.041 99.58 1.352

0.75 0.95 91.42 0.850 96.08 1.010 99.44 1.313
1.35 91.26 0.796 95.82 0.946 99.42 1.233

0.80 1.00 91.48 0.767 96.16 0.914 99.06 1.199
1.40 91.00 0.727 95.62 0.866 99.22 1.131

50 0.60 0.80 92.50 0.967 96.64 1.128 99.62 1.411
1.20 91.60 0.993 96.38 1.171 99.48 1.506

0.65 0.85 91.32 0.915 96.30 1.074 99.36 1.352
1.25 91.52 0.893 96.22 1.057 99.50 1.365

0.70 0.90 91.52 0.846 96.24 1.000 99.28 1.279
1.30 91.58 0.799 96.00 0.948 99.32 1.233

0.75 0.95 91.32 0.764 96.00 0.910 99.40 1.181
1.35 91.24 0.721 96.02 0.857 99.28 1.119

0.80 1.00 91.42 0.693 95.98 0.825 99.30 1.081
1.40 90.58 0.653 95.44 0.777 99.10 1.017

Table 6.12: CP and AL of HPD CRI of λ1 for order restricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a4 = 1, b4 = 1, β = 2,
λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.34 1.025 95.38 1.212 99.22 1.537
1.20 92.14 1.035 96.66 1.227 99.46 1.584

0.65 0.85 89.76 0.970 94.66 1.149 99.16 1.463
1.25 92.14 0.935 96.22 1.111 99.44 1.444

0.70 0.90 90.10 0.897 94.84 1.065 98.82 1.372
1.30 91.94 0.845 96.72 1.006 99.50 1.314

0.75 0.95 90.42 0.818 95.28 0.973 99.16 1.268
1.35 91.46 0.765 96.10 0.913 99.32 1.199

0.80 1.00 91.50 0.746 95.82 0.889 98.96 1.164
1.40 91.06 0.696 95.90 0.834 99.20 1.098

50 0.60 0.80 89.54 0.899 94.56 1.063 99.26 1.353
1.20 91.12 0.952 95.98 1.129 99.30 1.459

0.65 0.85 88.20 0.861 94.44 1.017 98.96 1.298
1.25 91.36 0.858 96.36 1.020 99.40 1.326

0.70 0.90 89.62 0.805 94.74 0.955 98.94 1.231
1.30 91.30 0.767 96.10 0.915 99.12 1.198

0.75 0.95 89.94 0.737 95.14 0.877 99.14 1.142
1.35 91.38 0.691 96.26 0.826 99.22 1.087

0.80 1.00 91.18 0.674 95.66 0.804 99.06 1.052
1.40 90.44 0.622 95.48 0.746 99.02 0.986
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Table 6.13: CP and AL of Symmetric CRI of λ2 for order restricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a4 = 1, b4 = 1, β = 2,
λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.00 2.393 95.08 2.919 99.06 4.097
1.20 90.34 2.057 94.90 2.529 98.88 3.616

0.65 0.85 89.62 2.402 94.76 2.927 98.90 4.085
1.25 89.10 2.455 94.18 2.989 98.76 4.158

0.70 0.90 89.64 2.264 95.00 2.769 99.02 3.890
1.30 90.20 2.171 95.50 2.660 98.90 3.764

0.75 0.95 89.18 2.555 94.20 3.111 98.92 4.320
1.35 89.98 2.360 94.86 2.882 98.92 4.027

0.80 1.00 89.14 2.628 94.60 3.198 98.92 4.428
1.40 89.94 2.456 94.84 2.994 99.08 4.166

50 0.60 0.80 90.74 2.060 95.18 2.496 99.14 3.446
1.20 89.60 1.798 94.80 2.193 98.96 3.068

0.65 0.85 90.40 2.075 95.20 2.511 99.04 3.444
1.25 90.20 1.880 94.98 2.288 98.94 3.180

0.70 0.90 89.36 2.138 94.72 2.590 98.88 3.552
1.30 89.88 1.977 94.70 2.403 98.98 3.324

0.75 0.95 89.40 2.217 94.72 2.686 98.92 3.681
1.35 89.80 2.050 94.84 2.488 98.70 3.429

0.80 1.00 88.82 2.308 94.18 2.797 98.88 3.829
1.40 90.20 2.122 95.34 2.575 99.10 3.538

Table 6.14: CP and AL of HPD CRI of λ2 for order restricted case with

a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a4 = 1, b4 = 1, β = 2,
λ1 = 0.833, and λ2 = 2.222.

90% 95% 99%

n τ1 τ2 CP AL CP AL CP AL

40 0.60 0.80 90.60 2.296 95.42 2.792 99.18 3.883
1.20 90.30 1.957 95.56 2.399 99.18 3.399

0.65 0.85 90.06 2.302 94.96 2.798 99.00 3.877
1.25 89.16 2.348 94.24 2.854 98.64 3.948

0.70 0.90 90.20 2.152 95.10 2.628 99.00 3.676
1.30 90.84 2.065 95.74 2.526 99.06 3.551

0.75 0.95 88.98 2.436 94.36 2.963 98.86 4.100
1.35 89.70 2.243 94.96 2.736 99.04 3.810

0.80 1.00 88.32 2.500 93.96 3.040 98.62 4.201
1.40 89.80 2.333 94.76 2.842 99.04 3.945

50 0.60 0.80 91.20 1.996 95.82 2.413 99.24 3.303
1.20 90.46 1.728 95.38 2.105 99.08 2.924

0.65 0.85 90.96 2.008 95.20 2.428 99.10 3.311
1.25 90.86 1.807 95.62 2.197 99.06 3.036

0.70 0.90 89.32 2.063 94.56 2.496 99.04 3.409
1.30 89.58 1.898 94.88 2.306 99.00 3.177

0.75 0.95 88.56 2.134 94.18 2.584 98.80 3.529
1.35 89.54 1.967 94.58 2.387 98.96 3.279

0.80 1.00 88.52 2.217 93.78 2.685 98.76 3.668
1.40 89.90 2.036 94.86 2.469 98.84 3.385
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0.833, and λ2 = 1/0.45 ⋍ 2.222. All the results are based on 5000 simulations and

M = 8000. We also choose a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001,

a3 = 0.0001, b3 = 0.0001, a4 = 1, and b4 = 1. The priors on β, λ1 and λ2 are

assumed to be very flat in unrestricted case and they are ‘almost’ non-informative.

Once again in order restricted case, priors on β and λ2 are ‘almost’ non-informative,

whereas the prior on α is a non-informative. For different values of τ1, τ2, and n,

AEs and MSEs of BE for β, λ1, and λ2 are presented in Table 6.1 for unrestricted

case and in Table 6.8 for order restricted case. The CPs and ALs of symmetric CRI

and HPD CRI of β, λ1, and λ2 are reported in Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7,

respectively, for unrestricted case and in Tables 6.9, 6.10, 6.11, 6.12, 6.13, and 6.14,

respectively, for order restricted case. In all the calculations we discard those sam-

ples for which BE of any of the parameters is greater than ten times of its original

value. We have noticed that for both values of n, there is only one sample for which

BE of λ1 is greater than 8.33 in case of unrestricted inference, when τ1 = 0.6 and

τ2 = 0.8.

The following points are quite clear from these tables. In the unrestricted case,

MSEs of all the unknown parameters decrease as n increases. As τ1 increases,

MSEs of β and λ1 decrease. MSEs of λ2 decrease as τ2 increases keeping τ1 fixed

under unrestricted framework. In the sane case MSEs of λ1 also decrease with

increase in τ2. CPs of symmetric and HPD CRI maintain its nominal level for all

the parameters. It is noticed that ALs of symmetric and HPD CRI for all unknown

parameters decrease as n increases keeping other parameters fixed. It is noticed that

MSEs of estimators of all unknown parameters decrease as τ2 increase keeping other

parameters fixed in the case of order restricted inference also. They also decrease as

n increases. It is also observed that MSEs of estimators of all unknown parameters

are smaller in case of order restricted inference than those in the unrestricted case.
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6.4.2 Data Analysis

Table 6.15: Data for illustrative example.

Stress Level Data

1 0.1526 0.3381 0.3891 0.3936 0.4684 0.4716 0.4783 0.5575
0.5685

2 0.6009 0.6144 0.6276 0.6563 0.6566 0.6591 0.6629 0.6693
0.6776 0.6948 0.6958 0.7089 0.7097 0.7113 0.7385 0.7679

Table 6.16: CRIs for unknown parameters for data in Table 6.15 under

unrestricted priors.

β λ1 λ2

Level Type of CRI LL UL LL UL LL UL

90% Symm. CRI 1.270 3.717 0.344 1.997 1.580 3.926
HPD CRI 1.095 3.474 0.228 1.643 1.448 3.725

95% Symm. CRI 1.120 4.038 0.290 2.382 1.437 4.249
HPD CRI 1.053 3.891 0.195 2.023 1.328 4.053

99% Symm. CRI 0.842 4.665 0.208 3.519 1.156 5.034
HPD CRI 0.816 4.568 0.173 3.007 1.048 4.739

Table 6.17: CRIs for unknown parameters for data in Table 6.15 under order

restricted priors.

β λ1 λ2

Level Type of CRI LL UL LL UL LL UL

90% Symm. CRI 1.4974 3.2713 0.4513 1.5690 1.5643 3.4564
HPD CRI 1.6980 3.2713 0.4037 1.4929 1.5643 3.4564

95% Symm. CRI 1.3286 3.2713 0.3842 1.8634 1.4331 3.8452
HPD CRI 1.4974 3.2713 0.3447 1.6308 1.3516 3.6096

99% Symm. CRI 1.0569 3.2713 0.2895 1.8881 1.1899 4.3495
HPD CRI 1.1487 3.2713 0.3213 1.9077 1.0110 4.0856

In this section we present a data analysis to illustrate the procedures described in

Section 6.3. The data given in Table 6.15 is considered for this purpose. This data

is artificially generated from KHM with β = 2, λ1 = 0.833, λ2 = 2.222, τ1 = 0.6,

τ2 = 0.8, and n = 40. The priors assumptions are same as in Section 6.4.1. The

estimates of β, λ1, and λ2 are 2.35, 0.93, and 2.61, respectively, in case of unrestricted

inference, whereas in case of order restricted inference they are 2.49, 1.01, and 2.50,

respectively. Symmetric and HPD CRI of unknown parameters are reported in

Table 6.16 for unrestricted priors and in Table 6.17. Plot of marginal posterior
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Figure 6.1: Gamma Approximation to l5(β |Data).

density function of β and its gamma approximation is provided in Figure 6.1 which

depicts that the approximation is quite nice at least for this data set.

6.5 Posterior Analysis under Other Censoring

Schemes

Type-II Censoring Scheme

Based on the observed sample, the likelihood function is given in (6.8), where τ ∗ =

tr:n, in Case (a), n∗
1 = 0, n∗

2 = r, in Case (b), n∗
1 = n1, n

∗
2 = r − n1 and in Case (c),

n∗
1 = r, n∗

2 = 0. D1(β) and D2(β) have the same expression as given in case of

Type-I censoring.

Type-I Hybrid Censoring Scheme

Based on the data from Type-I HCS, the likelihood function is same as (6.8), where

in Case (a), n∗
1 = 0, n∗

2 = r, in Case (b), n∗
1 = n1, n

∗
2 = r − n1, in Case (c), n∗

1 = r,

n∗
2 = 0, in Case (d), n∗

1 = 0, n∗
2 = n2, in Case (e), n∗

1 = n1, n
∗
2 = n2, and in Case (f),
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n∗
1 = n1, n

∗
2 = 0. Also in the Cases (a)-(b), τ ∗ = tr:n, where for the rest of the

cases τ ∗ = τ2. D1(β) and D2(β) have the same expression as given in case of Type-I

censoring.

Type-II Hybrid Censoring Scheme

Based on the observed sample from Type-II HCS, the likelihood function is given

in (6.8), where in Case (a), n∗
1 = 0, n∗

2 = r, for Case (b), n∗
1 = n1, n

∗
2 = r − n1, in

Case (c), n∗
1 = 0, n∗

2 = n2, for Case (d), n∗
1 = n1, n

∗
2 = n2 and for Case (e), n∗

1 = n1,

n∗
2 = 0. τ ∗ = tr:n for Cases (a) and (b), whereas for the rest of the cases τ ∗ = τ2.

D1(β) and D2(β) have the same expression as given in case of Type-I censoring.

Progressive Type-II Censoring Scheme

With the observed Progressive Type-II censoring data, the likelihood function is

given by (6.8), where for Case (a), n∗
1 = 0, n∗

2 = m, for Case (b), n∗
1 = n1, n

∗
2 =

m − n1 and for Case (c) n∗
1 = m, n∗

2 = 0. For all the cases τ ∗ = tm:n, D1(β) =
∑n∗

1
k=1(Rk + 1)tβk:n + (n−n∗

1 −
∑n∗

k=1 Rk)τ
β
1 and D2(β) =

∑m
k=n∗

1+1(Rk + 1)(tβk:n− τβ1 ).

In all the above cases, likelihood function are in the same form as Type-I censor-

ing scheme and hence, the posterior density will also be in the same form as given

in (6.9). In all these cases we will be able to compute the BE and construct the

associated CRI for some function of unknown parameters exactly along the same

line.

6.6 Conclusion

A simple SSLT has been considered under the Bayesian framework. It has been

assumed that the lifetimes at each stress level have a Weibull distribution with com-

mon shape parameter and different scale parameters. Analysis has been performed

under KHM assumption. We have discussed both unrestricted and order restricted
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inference of the unknown parameters. It is noticed that in most of the cases BE

of some function of unknown parameters cannot be obtained in close form, when

they do exist. We have proposed algorithms based on the importance sampling

to compute BE and to construct associate CRI of some parametric function. An

extensive simulation has been also performed to judge the performance of the al-

gorithms proposed. It is noticed that the proposed methods are working quite well

for large values of n. For small values of n, MSEs of unknown parameters are quite

large. Also the CPs of different CRIs are quite satisfactory for all the parameters

under unrestricted inference, when ‘almost’ non-informative priors are used. It is

also noticed that CPs of symmetric and HPD CRI of β are quite smaller than its

nominal level for some choices of τ1 and τ2 under the order restricted priors. How-

ever, CPs maintain its nominal level for other parameters under the same priors. It

is also noticed that MSEs of BE of unknown parameters are less in case of order

restricted inference than those of unrestricted case. However, the results are quite

prior dependent. The choice of proper priors is an important issue, which has not

been pursued here and more work is needed in that direction.

6.A Appendix

6.A.1 Integrability Conditions for Unrestricted Case

Note that A1(β) > 0 and A2(β) > 0 for all β > 0. Also n∗
1 + a1 > 0 and n∗

2 + a2 > 0.

Now

∫ ∞

0

∫ ∞

0

∫ ∞

0

l2(β, λ1, λ2 |Data)dλ1dλ2dβ ∝

∫ ∞

0

l5(β |Data)dβ,

where l5(β |Data) is given in (6.14). Let us define

τ ∗1 =





τ1 if n− n∗
1 > 0

tn:n if n− n∗
1 = 0,

τ ∗2 =





τ2 if n− n∗ > 0

tn:n if n− n∗ = 0.
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Case I : 0 < τ∗1 < τ∗2 < 1

In this case, 0 < ti:n < 1 for all i = 1, 2, . . . , n∗
1 + n∗

2 and hence, A1(β) → b1,

A2(β) → b2 as β → ∞. For some positive constants c2 and c3,

c2

∫ ∞

0

βn∗+a3−1e−(b3−c1)βdβ ≤

∫ ∞

0

l5(β |Data)dβ ≤ c3

∫ ∞

0

βn∗+a3−1e−(b3−c1)βdβ.

Clearly l5(β |Data) is integrable if n∗+a3 > 0 and b3−c1 > 0. As c1 =

n∗
1+n∗

2∑

i=1

ln ti:n <

0, l2(β, λ1, λ2 |Data) is integrable if n∗
1 + a1 > 0, n∗

2 + a2 > 0, n∗ + a3 > 0, and

b3 > 0.

Case II : 0 < τ∗1 < 1 < τ∗2

In this case, 0 < ti:n < 1 for i = 1, 2, . . . , n∗
1 and hence, A1(β) → b1 as β → ∞. As

β → ∞,
A2(β)

τ ∗β2

→ (n − n∗) if n − n∗ > 0. If n − n∗ = 0,
A2(β)

τ ∗β2

→ 1 as β → ∞.

Hence, for some positive constants c2 and c3,

c2

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗
2+a2) ln τ∗2 )βdβ ≤

∫ ∞

0

l5(β |Data)dβ

≤ c3

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗
2+a2) ln τ∗2 )βdβ.

Clearly l5(β |Data) is integrable if n∗ +a3 > 0 and b3− c1 + (n∗
2 +a2) ln τ ∗2 > 0. Now

b3 − c1 + (n∗
2 + a2) ln τ ∗2 = b3 −

n∗
1∑

i=1

ln ti:n +
n∗∑

i=n∗
1+1

(ln τ ∗2 − ln ti:n) + a2 ln τ ∗2 .

As 0 < ti:n < 1 for i = 1, 2, . . . , n∗
1 and ti:n ≤ τ ∗2 for i = n∗

1 + 1, n∗
1 + 2, . . . , n∗,

n∗
1∑

i=1

ln ti:n < 0 and
n∗∑

i=n∗
1+1

(ln τ ∗ − ln ti:n) > 0. Therefore l2(β, λ1, λ2 |Data) is inte-

grable if n∗
1 + a1 > 0, n∗

2 + a2 > 0, n∗ + a3 > 0, and b3 > 0.

Case III : 1 < τ∗1 < τ∗2

In this case,

A1(β)

τ ∗1
→





n− n∗
1 if n− n∗

1 > 0

1 if n− n∗
1 = 0,

A2(β)

τ ∗2
→





n− n∗ if n− n∗ > 0

1 if n− n∗ = 0,
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as β → ∞. Hence, for some positive constants c2 and c3,

c2

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗
1+a1) ln τ∗1 +(n∗

2+a2) ln τ∗2 )βdβ ≤

∫ ∞

0

l5(β |Data)dβ

≤ c3

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗
1+a1) ln τ∗1 +(n∗

2+a2) ln τ∗2 )βdβ.

Clearly l5(β |Data) is integrable if n∗ + a3 > 0 and b3 − c1 + (n∗
1 + a1) ln τ ∗1 + (n∗

2 +

a2) ln τ ∗2 > 0. Now

b3 − c1 + (n∗
1 + a1) ln τ ∗1 + (n∗

2 + a2) ln τ ∗2

= b3 +

n∗
1∑

i=1

(ln τ ∗1 − ln ti:n) +
n∗∑

i=n∗
1+1

(ln τ ∗ − ln ti:n) + a1 ln τ ∗1 + a2 ln τ ∗2 .

As ti:n ≤ τ ∗1 for i = 1, 2, . . . , n∗
1 and ti:n ≤ τ ∗2 for i = n∗

1 + 1, n∗
1 + 2, . . . , n∗,

n∗
1∑

i=1

(ln τ ∗1 − ln ti:n) > 0 and
n∗∑

i=n∗
1+1

(ln τ ∗ − ln ti:n) > 0. Therefore l2(β, λ1, λ2 |Data)

is integrable if n∗
1 + a1 > 0, n∗

2 + a2 > 0, n∗ + a3 > 0, and b3 > 0.

Thus l2(β, λ1, λ2, |Data) is integrable if proper priors are assumed on the un-

known parameters for unrestricted inference case.

6.A.2 Integrability Conditions for Restricted Case

Note that n∗ + a2 > 0 and αD1(β) + D2(β) + b2 > 0 for all β > 0 and α ∈ (0, 1).

Now

∫ ∞

0

l7(α, β, λ2 |Data)dλ2 ∝
αn∗

1+a4−1(1 − α)b4−1βn∗+a3−1e−(b3−c1)β

{αD1(β) + D2(β) + b2}
. (6.23)

Case I : 0 < τ∗2 < 1

For fixed α ∈ (0, 1), αD1(β) + D2(β) + b2 → b2 as β → ∞, and hence, right hand

side of (6.23) is integrable with respect to α ∈ (0, 1) and β > 0 if n∗+a4 > 0, b4 > 0,

n∗ + a3 > 0, and b3 > 0. Therefore l7(α, β, λ2 |Data) is integrable if proper priors

are assumed on the unknown parameters.
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Case II : τ∗2 ≥ 1

For fixed α ∈ (0, 1), as β → ∞,

αD1(β) + D2(β) + b2

τ ∗β2

→





n− n∗ if n− n∗ = 1

1 if n− n∗ = 0,

which is independent of α ∈ (0, 1). Hence, in this case also, right hand side of (6.23)

is integrable with respect to α ∈ (0, 1) and β > 0 if n∗ + a4 > 0, b4 > 0, n∗ + a3 > 0,

and b3 > 0. Therefore l7(α, β, λ2 |Data) is integrable under the same condition as

above. Thus l7(α, β, λ2 |Data) is a proper PDF whenever proper priors are assumed

on the unknown parameters in the case of order restricted inference.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In Chapter 2, we have considered the HCS-II, when lifetimes are assumed to have

two-parameter exponential distribution. We have found the MLEs for both the

parameters. We have considered different methods for construction of CI. We have

seen that the approximate and BCa bootstrap methods for construction of CI are

quite good. Also we approximate the distribution of the MLE of the scale parameter

by gamma distribution and find the associated CI. It is noticed that this method

of constructing CI is also performing quite well. Hence, we recommend to use the

gamma approximation or BCa bootstrap method for constructing CI specially when

n is large.

In Chapter 3, we have considered the Bayesian inference of the two-parameter

exponential model when the data are hybrid or progressively censored. We have

assumed a uniform prior on the location parameter and gamma prior on the scale

parameter. The Bayes estimates may not be obtained explicitly in many cases, even

when they exist. We have suggested to use the Monte Carlo sampling to compute

simulation consistent Bayes estimators and also to construct the credible intervals.

Monte Carlo simulation results suggest that the proposed Bayes estimators work

quite well.
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In Chapter 4, we have considered the Bayesian estimation in a simple SSLT

imposing the order restriction on mean lifetimes under different censoring schemes

where the data are coming from exponential CEM. We have taken mainly the square

error loss function, though other loss functions can also be handled in a very similar

way. We have seen that the BE of some parametric function under the square error

loss function does not exist in close form in most of the cases. We have proposed to

use the importance sampling to compute BE and CRIs. We have done a simulation

study to judge the performance of the procedures described. We also considered

two data sets to illustrate the estimation procedures. We have noticed that the

performance of the CRIs for λ1 and λ2 are not at all satisfactory for small values

of n. However, CRIs are quite well for moderate or large values of n, even if we do

not use any prior information. HPD CRI works well for λ1, where symmetric CRI

works well for λ2. Therefore we recommend to use HPD CRI for λ1 and symmetric

CRI for λ2.

The two-parameter exponential distribution has been considered under a simple

step-stress model in Chapter 5. The exact confidence limits of the scale parame-

ters are difficult to obtain, due to the complicated nature of the model. We have

proposed to use asymptotic and parametric bootstrap confidence intervals, and the

performance of the later is better. We have further proposed Bayesian inference of

the unknown parameters under fairly general prior assumptions, and we obtained

the Bayes estimates and the associated credible intervals using importance sampling

technique. The proposed Bayes estimates and the credible intervals perform quite

well.

In Chapter 6, a simple SSLT has been considered under the Bayesian framework.

It has been assumed that the lifetimes at each stress level have a Weibull distribution

with common shape parameter and different scale parameters. Analysis has been

performed under KHM assumption. We have discussed both unrestricted and order

restricted inference of the unknown parameters. It has been noticed that in most of
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the cases BE of some function of unknown parameters cannot be obtained in close

form as in Chapters 3 and 4. Algorithms based on the importance sampling have

been proposed to compute BE and to construct associate CRI of some parametric

function. An extensive simulation has been also performed to judge the performance

of the algorithms proposed. The proposed methods are working quite well for large

values of n. However, MSEs of unknown parameters are quite large for small values

of n. Also the CPs of different CRIs are quite satisfactory for all the parameters

under unrestricted and restricted inference, when ‘almost’ non-informative priors

are used. It has been also noted that MSEs of BE of unknown parameters are less

in case of order restricted inference than those of unrestricted case. However, the

whole analysis is quite prior dependent.

7.2 Future Work

Open Problem 1. In Chapter 2, approximate confidence interval of the scale pa-

rameter is discussed assuming the stochastic monotonicity of the MLE for the

scale parameter. Due to the complicated nature of the CDF of MLE for the

scale parameter, we have verified the assumption numerically. Therefore the

formal proof of the same remains an open problem.

Open Problem 2. In this dissertation, we have considered step-stress model,

where a stress level is changed to the next stress level at a pre-fixed time.

However, one may think of changing a stress level to the next stress level at a

random time. See Xiong and Milliken [138], Xiong et al. [139], and Kundu and

Balakrishnan [89] in this respect. In most of the cases the analysis is performed

under the assumption of exponential distribution, and other distributions are

not considered till now under this setup.

Open Problem 3. Several authors considered optimality of a SSLT in literature.

In all these articles optimality is done under frequentist setup. They derived



154 Conclusion and Future Work

the observed fisher information matrix and A-optimality or D-optimally crite-

ria are mainly used to get optimum step-stress plan. Bayesian analysis of SSLT

opens the door for finding optimal SSLT under the same paradigm. Note that

BE is found by minimizing Bayes risk and hence, one may think of minimizing

Bayes risk with respect to stress changing time to find optimum plan.

Open Problem 4. Prior elicitation is becoming a popular topic among Bayesian.

It will be a challenging task to find a subjective prior for step-stress life testing

models.



Bibliography

[1] Aggarwala, R. and Balakrishnan, N. Some properties of progressive censored
order statistics from arbitrary and uniform distribution with application to
inference and simulation. Journal of Statistical Planning and Inference, 70:
35–49, 1998.

[2] Aggarwala, R. and Balakrishnan, N. Maximum likelihood estimation of the
Laplace parameters based on progressively Type-II censored samples. In Bal-
akrishnan, N., editor, Advances on methodological and applied aspect of prob-

ability and statistics, pages 159–167. Taylor & Francis, Philadelphia, 2002.

[3] Alhadeed, A. A. and Yang, S. Optimal simple step-stress plan for cumulative
exposure model using log-normal distribution. IEEE Transactions on Relia-

bility, 54:64–68, 2005.

[4] Bagdanavicius, V. B. and Nikulin, M. Accelerated life models: modeling and

statistical analysis. Chapman and Hall CRC Press, Boca Raton, Florida, 2002.

[5] Bagdonavicius, V., Cheminade, D., and Nikulin, M. Statistical planning and
inference in accelerated life testing under the CHSS model. Journal of Statis-

tical Planning and Inference, 126:535–551, 2004.

[6] Bai, D. S. and Kim, M. S. Optimum step-stress accelerated life test for Weibull
distribution and Type-I censoring. Naval Research Logistics, 40:193–210, 2006.

[7] Bai, D. S., Kim, M. S., and Lee, S. H. Optimum simple step-stress accelerated
life test with censoring. IEEE Transactions on Reliability, 38:528–532, 1989.

[8] Bain, L. and Englehardt, M. Statistical Analysis of Reliability and Life-Testing

Models: Theory and Methods. Marcel Dekker, New York, 1991.

[9] Balakrishnan, N. Progressive censoring methodology : an appraisal (with
discussion). Test, 16:211–296, 2007.

[10] Balakrishnan, N. A synthesis of exact inferential results for exponential step-
stress models and associated optimal accelerated life-tests. Metrika, 69:351–
396, 2009.

[11] Balakrishnan, N. and Aggarwala, R. Progressive censoring: theory, methods,

and applications. Birkhäuser, Boston, 2000.
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[32] Balakrishnan, N. and Sandhu, R. A. A simple simulation algorithm for gen-
erating progressive Type-II censored samples. The American Statistician, 49:
229–230, 1995.

[33] Balakrishnan, N. and Sandhu, R. A. Best linear unbiased and maximum
likelihood estimation for exponential distribution under general progressive
Type-II censored samples. Sankhyā, Series B, 58:1–9, 1996.
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