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Abstract

In this article, a general family of bivariate distributions is used to model compet-

ing risks data with dependent causes. The general structure of competing risks data

considered here includes ties. A comprehensive inferential framework for the proposed

model for competing risks is presented, including maximum likelihood estimation and

construction of confidence intervals. Model selection within the bivariate family of dis-

tributions for a given dependent competing risks data is discussed. A detailed Monte

Carlo simulation study shows that the inferential methods provide quite reasonable

results. Analysis of a real data from the Diabetic Retinopathy Study is carried out as

an illustrative example.

Keywords: Lehmann family, Dependent competing risks, Singular distribution, Maximum

likelihood estimator, Confidence interval, Bootstrap confidence interval, Model selection.
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1 Introduction

In lifetime data analysis, competing risks scenarios arise when there are multiple event types

for subjects under study, and occurrence of any one of the causes prevents the occurrence

of the other relevant causes [12]. The causes, quite often, are dependent. For example, in

cancer studies, dependent causes are commonly observed when the death of a subject may

be the event of interest; death may occur due to the advancement of the particular type

of cancer being studied, or some other cause(s) that are directly related to cancer such as

the treatment of cancer or the complications that may arise thereafter. Apart from medical

studies, competing risks models are widely studied in various domains including engineering

and finance.

The earlier period literature on competing risks models mostly assumed independence

among the causes, such as the latent failure time modelling approach or the cause-specific

hazard modelling approach. The book by Crowder [5] gives a detailed account of classical

models on this topic. However, naturally, a more general approach for modelling competing

risks data is the one that does not assume indepdence among causes. The models based on

cumulative incidence functions is of particular interest in this regard; see Kalbfleisch and

Prentice [11]. Moeschberger and Klein [21] give an excellent review of the different methods

used for modelling dependent competing risks data. A very popular approach is the Fine-

Gray [9] model that considers a proportional hazards model for hazard derived from the

cumulative incidence function.

An appealing approach for analyzing dependent competing risks data is to consider a

suitable bivariate or multivariate probability distribution for joint modelling of the lifetimes

corresponding to the causes. Copula-based models are commonly used for such purposes, in

which lifetime distributions corresponding to the dependent causes are connected by an as-

sumed copula from one of the copula families ([7], [15]). Recently, Michimae and Emura [20]

have used the copula-based approach for competing risks data with left truncation and

right censoring. Another recent work is by Shih and Emura [23] where the Farlie-Gumbel-

Morgenstern (FGM) copula is used along with Burr III marginal distributions for dependent

competing risks; see also the references therein. Lawless [14] developed the likelihood func-
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tion for directly using a bivariate probability distribution as a model for competing risks data.

Several researchers have used this approach very recently. Feizjavadian and Hashemi [8] have

used the Marshall-Olkin bivariate Weibull (MOBW) distribution ([16]) to model dependent

competing risks data under a progressive hybrid censoring scheme. Samanta and Kundu [22]

have discussed Bayesian inference for the same model by using flexible Gamma-Dirichlet

prior assumptions. Alqallaf and Kundu [1] have used a bivariate inverse generalized expo-

nential distribution for the same problem. In a different direction, Bai et al. [3] have used

different forms of bivariate exponential distributions to model dependent competing risks

data in the context of step-stress experiments.

In parametric modelling, it is of utmost importance to select an appropriate model for

a given data, as it leads to validity of the subsequent inference. A simple approach to

the problem of model selection is to use a general parsimonious family of distributions for

modelling purposes, and then to choose the model which is most appropriate within the

family for a given data. This approach has been used by many researchers. For example,

in the context of cure rate modelling, the Conway-Maxwell Poisson, and the generalized

gamma distributions have been used to model the random number of competing causes and

lifetimes, respectively; see [4] and the references therein.

In this article, we propose to model dependent competing risks data by using a general

family of bivariate distributions. The bivariate family is constructed by using a well-known

univariate family of distributions, known as the Lehmann family or the frailty parameter

family ([18]), following the approach of Marshall and Olkin [16] assuming a shock model.

The univariate Lehmann family contains the Weibull, Gompertz, and Lomax distributions as

members of the family, all of which are quite well-known in the context of lifetime data. We

call the bivariate family of distributions that we construct by using the univariate Lehmann

family as the bivariate Lehmann family of distributions. The primary advantage of using this

general family of bivariate distributions is its flexibility derived from its member distribu-

tions. Also, a prominent advantage of the proposed model compared to other recent models

for competing risks data (for example, the copula-based models) is that it can structurally

accommodate presence of ties in the data, where the failure times corresponding to the two

causes are identical. For a given competing risks data, it is possible to choose the model
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within the family that is most appropriate for the data, instead of fitting just one of the

models which may not be the best one for the given data. In fact, the well-known MOBW

distribution which was used by Feizjavadian and Hashemi [8] in this regard is a member of

this bivariate family.

We develop likelihood inference for the bivariate family of distributions based on depen-

dent competing risks data, and observe that computation of maximum likelihood estimates

(MLEs) for the parameters is very convenient in this case. For a given data, it is naturally

of interest to select the most appropriate model within the family. We carry out a study of

model selection and observe that a simple likelihood-based approach is effective in choosing

the suitable model for a given data within the family. This work, therefore, generalizes the

works of researchers who have used the MOBW distribution to model dependent competing

risks data. These are the main contributions of this paper.

The paper is organized as follows. The details of the construction of the bivariate family of

distributions are given in Section 2. Likelihood inference for modelling dependent competing

risks data by using the bivariate family is discussed in Section 3. This section also presents

the construction of confidence intervals for model parameters by using approaches based on

the Fisher information matrix and parametric bootstrap. A likelihood-based approach for

model selection is presented in this section as well. In Section 4, the results and discussions of

a detailed Monte Carlo simulation study are presented. The Monte Carlo study examines the

performance of the MLEs, confidence intervals, and the model selection approach. Analysis

of a real dataset is presented in Section 5. Finally, some concluding remarks are made in

Section 6.

2 A General Family of Bivariate Distributions

2.1 The Lehmann family of distributions

The survival function of the Lehmann family or the frailty parameter family ([18]) is given

by

S(t;α, λ) = (S0(t;λ))
α , t > 0, (1)
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where S0(·;λ) is the baseline survival function depending on the parameter λ (> 0). Here, the

power parameter α (> 0) is sometimes called the frailty parameter ([18]). We assume that

the baseline survival function S0(·; λ) is absolutely continuous. The hazard rate function of

the Lehmann family is given by

h(t;α, λ) = αh0(t;λ),

where h0(t;λ) = − d
dt
logS0(t : λ) is the hazard rate corresponding to the baseline distribu-

tion.

Special members of the Lehmann family are the Weibull, Gompertz, and Lomax distri-

butions which are obtained for different choices of the baseline survival function S0(t;λ) in

Eq.(1). In particular, Weibull distribution is obtained when

S0(t;λ) = e−tλ , t > 0.

Gompertz distribution is obtained by choosing

S0(t;λ) = e−(exp(λt)−1), t > 0,

and for Lomax distribution one chooses

S0(t;λ) =
1

1 + λt
, t > 0.

With well-known lifetime distributions such as the Weibull, Gompertz, and Lomax models

as its members, the Lehmann family of distributions is naturally of interest in lifetime data

analysis.
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2.2 Construction of the bivariate family of distributions

Let U0, U1, and U2 denote three independent random variables with probability distributions

specified by the survival functions

P (Ui > ui) = S(ui;λ, αi) = (S0(ui;λ))
αi , ui > 0, i = 0, 1, 2. (2)

Define X = min {U0, U1} and Y = min {U0, U2}. Then, the joint survival function of X and

Y is given by

SX,Y (x, y) = P (min {U0, U1} ≥ x, min {U0, U2} ≥ y)

=


S(1)(x, y), 0 < x < y < ∞

S(2)(x, y), 0 < y < x < ∞

S(3)(x), 0 < x = y < ∞

(3)

where

S(1)(x, y) = (S0 (y;λ))
α0+α2(S0 (x;λ))

α1 ,

S(2)(x, y) = (S0 (x;λ))
α0+α1(S0 (y;λ))

α2 ,

S(3)(x) = (S0 (x;λ))
α0+α1+α2 .

Note that for the Lehmann family of distributions, λ is the parameter involved in the

baseline distribution, whereas α is the power parameter. By using a common λ for the un-

derlying random variables U0, U1 and U2, we essentially assume that the baseline parameter

for the lifetimes X and Y corresponding to the two competing causes are the same. The

power parameter, which is assumed to be different for different variables, i.e., α0, α1 and α2

for U0, U1 and U2, respectively, brings the difference in their distributions. For similar mod-

els discussed in statistical literature, this assumption is not new. For example, Kundu and

Gupta [13] made a similar assumption while constructing a class of bivariate generalized ex-

ponential distributions. Very recently, Mart́ınez-Flórez et al. [19] used the same assumption

for proposing a general class of bivariate proportional hazard distributions.
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From the joint survival function of X and Y , their joint probability density function

(JPDF) can be worked out. For 0 < x < y < ∞, the JPDF of X and Y is given by

f (1)(x, y) =
∂2

∂x∂y
S(1)(x, y) = α1 (α0 + α2) (S0 (y;λ))

α0+α2−1(S0 (x;λ))
α1−1f (x;λ) f (y;λ) ,

where f(·; λ) is the probability density function corresponding to the survival function

S0(·; λ). For 0 < y < x < ∞, the JPDF of X and Y is

f (2)(x, y) =
∂2

∂x∂y
S(2)(x, y) = α2 (α0 + α1) (S0 (y;λ))

α2−1(S0 (x;λ))
α0+α1−1f (x;λ) f (y;λ) .

Therefore, we can calculate

P (X < Y ) =

∫ ∞

0

∫ y

0

α1 (α0 + α2)S
α0+α2−1 (y;λ)Sα1−1 (x;λ) f (x;λ) f (y;λ) dxdy

=
α1

α0 + α1 + α2

.

Similarly, we obtain

P (Y < X) =
α2

α0 + α1 + α2

.

From here, it is straightforward to see that

P (X = Y ) = 1− P (X < Y )− P (Y < X) =
α0

α0 + α1 + α2

. (4)

This implies that the joint distribution of X and Y has a singular component on the straight

line x = y. The PDF of the singular part can be obtained as follows:

f (3) (x) = P (X = Y )

[
− ∂

∂x
S(3)(x)

]
= α0(S0 (x;λ))

α0+α1+α2−1f (x;λ) .
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Summarizing the above, the JPDF of X and Y is given by

fX,Y (x, y) =



f (1)(x, y) if 0 < x < y < ∞

f (2)(x, y) if 0 < y < x < ∞

f (3)(x) if 0 < x = y < ∞

0 otherwise.

(5)

For convenience of reference, we say that (X, Y ) has a distribution in bivariate Lehmann

family if the joint survival function of X and Y is given by Eq.(3) or, equivalently, the JPDF

is given by Eq.(5), and we denote it as

(X, Y ) ∼ BV F (α0, α1, α2, λ),

for brevity. Clearly, by choosing different baseline survival functions in the distributions of

Uis in Eq.(2), we arrive at different bivariate models - bivariate Weibull, bivariate Gom-

pertz, and bivariate Lomax. Plots of the bivariate densities are presented in Figure 1. It

may be mentioned here that a similar family of bivariate distributions was considered by

Shoaee [24] for theoretical derivations. But Shoaee [24] did not consider applying the family

of distributions to model dependent competing risks data.

Here, it is instructive to discuss measures of association such as the Pearson’s correlation

coefficient and the Kendall’s τ between the marginal lifetimes. For this bivariate model,

Pearson’s correlation coefficient between the marginal lifetimes cannot be explicitly derived

due to analytical intractability. Moreover, for the Lomax distribution, the expectation does

not exist when the shape parameter is less than or equal to 1. Therefore, for Lomax baselines

in this bivariate model, the Pearson’s correlation coefficient does not exist for some values of

the parameters. However, the Kendall’s τ between the marginal lifetimes can be explicitly

derived for this bivariate model, as follows.

The Kendall’s τ between two random variables X and Y is defined by

τX,Y = 2P ((X1 −X2) (Y1 − Y2) > 0)− 1 = 4P (X1 > X2, Y1 > Y2)− 1
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Figure 1: Surface plots of different members of the BV F (α0, α1, α2, λ) distribution where
the density is in the y-axis: bivariate Weibull, bivariate Gompertz, and bivariate Lomax (top
to bottom).
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Therefore, for this bivariate family of distribution, we have

P (X1 > X2, Y1 > Y2) =

∫ ∫
R2

P (X1 > x, Y1 > y) fX2, Y2(x, y)dxdy

= α1(α0 + α2)

∫ ∫
0<x<y<∞

S
2(α0+α2)−1
0 (y)S2α1−1

0 (x)f0(x)f0(y)dxdy

+ α2(α0 + α1)

∫ ∫
0<y<x<∞

S
2(α0+α1)−1
0 (x)S2α2−1

0 (y)f0(x)f0(y)dxdy

+ α0

∫ ∞

0

S
2(α0+α1+α2)−1
0 (x)f0(x)dx

=
α1

2

∫ ∞

0

S
2(α0+α1+α2)−1
0 (x)f0(x)dx+

α2

2

∫ ∞

0

S
2(α0+α1+α2)−1
0 f0(y)dy

+
α0

2(α1 + α2 + α3)

=
2α0 + α1 + α2

4(α0 + α1 + α2)
.

Thus, the Kendall’s τ between X and Y is

τX,Y =
2α0 + α1 + α2

α0 + α1 + α2

− 1 =
α0

α0 + α1 + α2

.

Obviously, the Kendall’s τ does not depend upon the baseline distribution S0(·).

3 Modelling dependent competing risks data

3.1 Dependent competing risks data

Consider two competing causes in a lifetime study involving n subjects. The two causes

can influence each other. Suppose X and Y are random variables denoting the lifetimes of

a subject under the two causes, and the observed lifetime is T = min(X, Y ). It is quite

possible in reality that a subject fails from both the causes simultaneously. For example, in

complex medical studies, two causes may get activated simultaneously and be responsible

for the event of interest (e.g. death). Therefore, we consider a general set up where we allow

ties in the competing risks data.
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The form of observed data is

Data = {(ti, δi), i = 1, 2, . . . , n} ,

where ti is the lifetime of the i−th unit, and δi is the indicator variable that gives information

about the failure mode of the subjects, as follows:

δi =



0, Xi = Yi

1, Xi < Yi

2, Xi > Yi

3, Xi > C, Yi > C,

(6)

where C is the right censoring time for a censored lifetime when δi = 3. For convenience

of exposition, define index sets Ak that contains subjects with indicator variable δ = k, ,

k = 0, 1, 2, 3, i.e.,

Ak = {i : δi = k, i = 1, 2, . . . , n} .

Let mk = |Ak|, k = 0, ..., 3 (i.e., the number of observations of the sets). Of course,∑3
k=0mk = n.

3.2 Maximum likelihood estimation

The likelihood function is constructed considering contributions of subjects according to

their failure status. Note that

(a) When δ = 1, the contribution is − ∂
∂x
SX,Y (x, y)

∣∣∣∣
x=t,y=t

,

(b) When δ = 2, the contribution is ∂
∂y
SX,Y (x, y)

∣∣∣∣
x=t,y=t

,

(c) When δ = 0 (i.e., a tie between the causes), the contribution is f (3)(t), and finally

(d) When δ = 3, the contribution is S(3) (t, t). Combining these cases, the likelihood function
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without the multiplicative constant is given by

L(θ) ∝
∏
i∈A1

[
− ∂

∂x
S(1)(x, y)

∣∣∣∣
x=ti,y=ti

] ∏
i∈A2

[
− ∂

∂y
S(2)(x, y)

∣∣∣∣
x=ti,y=ti

]
×

∏
i∈A0

[
f (3) (ti)

] ∏
i∈A3

[
S(3) (ti)

]
, (7)

where θ = (α0, α1, α2, λ). Then, the corresponding log-likelihood function without the addi-

tive constant is

logL(θ) =
2∑

k=0

mk logαk + (α0 + α1 + α2) +
n∑

i=1

logS (ti;λ) +
∑

i∈A0∪A1∪A2

log
f (ti;λ)

S (ti;λ)
. (8)

Equating the partial derivative of the log-likelihood function with respect to αk to zero,

we obtain

αk =
−mk∑n

i=1 logS (ti;λ)
, k = 0, 1, 2. (9)

Substituting αk in Eq.(8), the profile log-likelihood in λ is obtained as

p(λ) = −(m0 +m1 +m2) log

(
−

n∑
i=1

logS (ti;λ)

)
+

∑
i∈A0∪A1∪A2

log
f (ti;λ)

S (ti;λ)
. (10)

The above derivations greatly simplifies the optimization of the log-likelihood function

in this case, reducing it to a problem of a one-dimensional optimization. The profile log-

likelihood in Eq.(10) can be maximized to get the MLE λ̂ of λ, which can then be plugged

into Eq.(9) to obtain MLEs α̂0, α̂1, α̂2 of α0, α1, α2, respectively. For optimizing Eq.(10),

any routine one-dimensional optimizer from a standard statistical software may be used.

3.3 Asymptotic confidence intervals

The asymptotic variance of the MLEs can be estimated by using the observed Fisher infor-

mation matrix, which is the negative of the hessian of the log-likelihood function. That is,

the observed Fisher information matrix I(θ) is

I(θ) = −∇2(logL(θ)).
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Due to asymptotic normality of MLEs, the distribution of
√
n(θ̂−θ) may be approximated by

a N4(0, I
−1(θ̂)) distribution for large values of sample sizes. Therefore, estimated asymptotic

variances of α̂0, α̂1, α̂2 and λ̂ are given by the diagonal elements of I−1(θ̂). Using these

information, asymptotic 95% confidence intervals (CIs) for the parameters can be easily

constructed; for example,

α̂0 ± 1.96

√
̂V ar(α̂0),

is an asymptotic 95% CI for α0.

Sometimes, confidence intervals constructed using the observed Fisher information ma-

trix may not perform well in the sense that the coverage probability of such intervals may

be lower than the nominal confidence level. This could be due to the fact that the observed

Fisher information matrix depends on the observed data, and hence is subjected to variabil-

ity of the observed data to a large extent. An alternative method of constructing confidence

intervals is the bootstrap approach [10]. Although both parametric and nonparametric ver-

sions of the bootstrap approach can be used, here we focus on the parametric bootstrap

approach for constructing asymptotic confidence intervals. The parametric bootstrap sam-

ples are generated using the mechanism involving the three underlying independent variables

U0, U1, U2 (as described in Section 2.2) utilizing maximum likelihood estimates of the param-

eters. To implement parametric bootstrap, we use the following algorithm:

Algorithm:

1. For a given data of size n, obtain MLE θ̂ of parameter θ = (θ1, θ2, θ3, θ4) = (α0, α1, α3, λ)

2. Using θ̂, generate a data of the same size n from the assumed model

3. Based on the generated data, obtain MLE θ̂
∗

4. Repeat steps 2-3 B times, to get B bootstrap estimates θ̂
∗
1, θ̂

∗
2, . . . , θ̂

∗
B

5. To construct bootstrap confidence interval for θi, arrange θ̂
∗
i1, . . . , θ̂

∗
iB (the ith compo-

nents of θ̂
∗
1, θ̂

∗
2, . . . , θ̂

∗
B, respectively) in the ascending order to get θ̂∗i(1) < θ̂∗i(2) < ... <

θ̂∗i(B), i = 1, 2, 3, 4

6. A 100(1−α)% parametric bootstrap confidence interval of θi is given by
(
θ̂∗i([B α

2
]), θ̂

∗
i([B(1−α

2
)])

)
.
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3.4 Model Selection

Marshall et al. [17] used a simple yet powerful approach to investigate whether data can

correctly identify their parent distribution in the context of univariate distributions. Follow-

ing them, we use a model selection procedure which can be conveniently used for dependent

competing risks data.

Suppose M1,...,Ml are l candidate models for a competing risks data with dependent

causes. The candidate models may or may not be nested. Let the vector of parameters

associated with these models be θ1, ..., θl, respectively, and that they all are of the same

dimension; denote the MLEs of the parameter vectors by θ̂1, ..., θ̂l, respectively. Then, for

the given data, the most suitable model among the candidate models is M∗ if

L̂(M∗) = Max{L̂M1(θ̂1), L̂M2(θ̂2), ..., L̂Ml
(θ̂l)}, (11)

where L̂Mj
(θ̂j) is the maximized likelihood function evaluated at the MLE for the j-th

candidate model, j = 1, ..., l, and L̂(M∗) is the maximum of all those maximized likelihoods.

When the parameter θ1, ..., θl are not of the same dimension, instead of using the values

of maximized likelihoods for model selection, one may use Akaike’s information criterion ([2])

in Eq.(11). The Akaike’s information criterion adjusts for the different number of parameters

in a model by adding a penalty term to the maximized likelihood.

Within the BV F (α0, α1, α2, λ) family, there are three candidate models: the bivariate

Weibull, bivariate Gompertz, and bivariate Lomax distributions. For a given dependent

competing risks data, we fit all the candidate models of the BV F (α0, α1, α2, λ) family and

select the one with the largest maximized likelihood value as the most suitable model for the

data. Note that this procedure is expected to offer a final model that indeed is most suitable

for a given dependent competing risks data, as the BV F (α0, α1, α2, λ) family is very rich,

containing the bivariate Weibull, Gompertz, and Lomax as special cases.
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4 Simulation Study

The goal of the simulation study, performed by using the R software, here is twofold. First,

it is to assess the performance of the MLEs and the confidence intervals for the proposed

model. Secondly, it is to examine the performance of the model selection approach. We

have observed through simulations that all the methods of inference proposed here perform

satisfactorily. The detailed results of the numerical experiments are presented in this section.

4.1 Performance of MLEs and confidence intervals

Three sample sizes are used: n = 100, 200, and 400. Along with complete data, right censored

data with roughly 20% and 40% censoring are also used. Tables 1 - 3 present the results

of the numerical experiments for the bivariate Weibull, bivariate Gompertz, and bivariate

Lomax models respectively.

Performance of the MLEs are assessed by using relative mean squared error (MSE) and

relative bias, as defined below for one of the parameters, say α0:

Relative MSE(α0) =
MSE(α̂0)

(α∗
0)

2
,

Relative Bias(α0) =
Bias(α̂0)

α∗
0

.

where the true value of α0 is α∗
0. For the confidence intervals, the coverage probabilities are

estimated by the Monte Carlo probabilities of including the true parameter value.

We observe that the MLEs, for all the models, have quite reasonable bias and MSE. As

expected, the bias and MSE reduce with increasing sample size. Also, censoring has adverse

effects on bias and MSE of MLEs for all the models: the higher the censoring, the more the

MLEs suffer. Relatively, inference for bivariate Gompertz distribution based on dependent

competing risks data seems to be the most affected due to censoring. Inference for bivariate

Lomax is also affected to some extent. However, for censored data, the models are less

affected for larger sample sizes compared to smaller sample sizes. Censoring seems to have

the least effect on inference for the bivariate Weibull distribution among the three models.

The confidence intervals also render satisfactory performance with respect to average
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length and coverage probability. The coverage probabilities for both types of confidence

intervals are quite close to the nominal confidence level of 95%. And it is also noteworthy

that even with an increase in sample size, the confidence intervals can retain their cover-

age probability although their average lengths reduce. The confidence intervals from the

parametric bootstrap approach, in a relative sense, has a slightly lower coverage probability

than that for the observed Fisher information matrix. For construction of each bootstrap

confidence interval, 250 bootstrap samples have been used. In summary, we can conclude

that the proposed method to obtain MLEs and confidence intervals for the model parameters

of the BV F (α0, α1, α2, λ) family of distributions based on dependent competing risks data

performs quite well.

4.2 A study of model selection

The simulation study on model selection for dependent competing risks data is carried out

within the bivariate family BV F (α0, α1, α2, λ). Here, we consider three models for com-

parison, viz., the bivariate Weibull, bivariate Gompertz, and bivariate Lomax distributions.

The general approach is the following: we generate dependent competing risks data from a

parent distribution belonging to the family BV F (α0, α1, α2, λ), and then fit all the candidate

models to the generated data. The set of candidate models includes the parent distribution

along with other model(s) from the family. We use both two- and three-model settings in

the model selection study. These steps of data generation and model fitting are repeated

a large number of times, to calculate the Monte Carlo probability for each model of being

selected as the model of choice for a given dependent competing risks data.

There are two motivating factors for the study on model selection: first, the direct goal

is to see whether the likelihood-based approach of Marshall et al. [17], originally used for

univariate models, is successful in identifying the parent distribution in case of dependent

competing risks data as well. In case it is successful, this approach can then be used as an

effective tool for model selection in case of parametric modelling of dependent competing

risks data. Secondly, as a tangential topic, this study will also indicate the relative rich-

ness of the bivariate distributions of the members of the family BV F (α0, α1, α2, λ), in the

sense of accommodating dependent competing risks data. Figures 2 and 3 give the results
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of the simulation study on model selection with the two-model and three-model settings,

respectively.

In a two-model setting, it is clear that the parent distribution will always be selected

as the model of choice when the sample size is large. For small to moderate sample sizes,

however, there are some interesting observations. Clearly, when the parent is the bivariate

Weibull, bivariate Gompertz is a weak choice with its probability of being selected dropping

below 20% when the sample size exceeds 100. However, for bivariate Gompertz as the parent,

bivariate Weibull has a significant chance of being selected; even for sample size 150, the

probability is above 20%. The bivariate Lomax is always a very weak choice when data are

generated from either the bivariate Weibull or Gompertz. Similarly, when bivariate Lomax is

the parent, selection probabilities for both the bivariate Weibull and Gompertz drop rapidly

with increasing sample size.

From the above observations on the two-model comparisons within the familyBV F (α0, α1, α2, λ),

we can conclude that the likelihood-based model selection approach can identify the parent

model correctly, with increasing confidence as the sample size increases. Moreover, we can

also conclude that for modelling dependent competing risks data, the bivariate Weibull and

the bivariate Gompertz distributions seem to be far apart in nature compared to the bivari-

ate Lomax distribution, although all of them belong to the same family. Finally, we can

also perhaps conclude that between bivariate Weibull and Gompertz, the former seems to

be stronger in the sense that it fits well to dependent competing risks data generated from

the latter, especially for small to moderate sample sizes.

In the three-model setting, the bivariate Lomax has almost no chance of being selected

when the parent is either bivariate Weibull or bivariate Gompertz. In contrast, bivariate

Weibull and Gompertz give a fair competition to each other: each of them having a signifi-

cant probability of being selected when the other is the parent. It is also clear that bivariate

Weibull is a richer model than the bivariate Gompertz, in the sense that the former’s prob-

ability of being selected (∼20%) as double the latter’s probability of being selected (∼10%),

even when the sample is large (300). Moreover, when the parent is the bivariate Lomax, bi-

variate Weibull remains a strong choice throughout, with its selection probability about 25%

even for large sample size. Nonetheless, it is also clear that the likelihood-based approach
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eventually picks the parent distribution of the dependent competing risks data correctly as

sample size increases.

In summary, it is quite clear that for dependent competing risks data, the likelihood-based

approach is successful in identifying the parent distribution correctly, in both two-model and

three-model settings. Also, we can conclude that the bivariate Weibull is the richest model

in this family BV F (α0, α1, α2, λ) to model this data structure, as we have observed that

apart from being the best choice for data generated from itself, it is a good choice for data

generated from the other two parents as well. In view of the above discussions, it is clear

that likelihood-based model selection approach is quite successful for dependent competing

risks data, and can be used for selecting the appropriate model for a given data.

5 Analysis of Diabetic Retinopathy data

The Diabetic Retinopathy Study conducted by the National Eye Institute, United Sates of

America was a clinical trial to evaluate laser-based treatment for patients with proliferative

diabetic retinopathy. In this study, a total of 1758 patients were enrolled during the period

1972 to 1975. At enrollment, the minimum best corrected visual acuity in each eye was

20/100 for each of the study subjects. For each subject, one of the eyes was given a laser-

based treatment, and the other eye was left untreated. Csörgö and Welsh [6] reported the

uncensored part of the data for white male patients who received argon laser treatment which

was one of three types of laser-based treatment given to the enrolled patients. For the data

reported in Csörgö and Welsh [6], failure of an eye, measured in days, was defined as the

first time the best corrected visual acuity was below 5/200. For more details regarding the

data, refer to Csörgö and Welsh [6].

The diabetic retinopathy data can be looked at as a competing risks data, as analysed

by Feijzavidian and Hashemi [8] in the following way. Let Xi and Yi denote the time to

failure for the treated and the untreated eye, respectively for the i-th patient. Define Ti =

Min(Xi, Yi) as the time to blindness. Also, it is easy to define an indicator variable νi such
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that

νi =


0, two eyes fail at the same time

1, the treated eye fails first

2, the untreated eye fails first.

Moreover, the dependent competing risks model based on the family BV F (α0, α1, α2, λ)

proposed here is an ideal candidate for this data, as there are ties in the data. Out of total

71 observations, there were 28 cases where the treated eye failed first, 33 cases where the

untreated eye failed first, and 10 cases where failure occurred in both eyes at the same time.

The members of the family BV F (α0, α1, α2, λ) were fitted to this data following the

proposed approach; the results of model fitting for the three models are given in Table 4.

Note that the bivariate Weibull model is the most appropriate model for this data, as it

has the largest maximized likelihood (−319.82) among the candidate models. The MLEs of

parameters do not exist for the bivariate Lomax model based on this data. Indeed, from

the plots of the profile log-likelihood p(λ) in the parameter λ given in Figure 4, we observe

that the profile log-likelihood in case of bivariate Lomax distribution based on the Diabetic

Retinopathy data is a monotonic decreasing function.

It is of course of interest to see how closely the bivariate Weibull model fits to the data,

compared to the nonparametric Kaplan-Meier survival curve. The plot, ignoring the cause of

failure, is given in Figure 5. The Kaplan-Meier curve estimates the survival function of time

to blindness, regardless of the treatment status of eyes. For the parametric curve, we consider

the distribution of minimum of X and Y , i.e., time to blindness regardless of the treatment

status of eyes. Here, essentially we are looking at the distribution of Z = min(U0, U1, U2).

The distribution function of Z can be easily derived as follows:

P (Z ≤ z) = 1−
2∏

i=0

P (Ui > z) = 1− e−(α0+α1+α2)zλ .

It is clear that the two survival curves (parametric and nonparametric) are quite close.
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6 Conclusion

In this article, a general approach for modelling dependent competing risks data with a gen-

eral bivariate family of distributions is presented, including the details such the construction

of the bivariate family of distributions, its use in modelling dependent competing risks data,

likelihood inference, and a model selection approach. Through a detailed Monte Carlo simu-

lation study, it is observed that all the proposed methods of inference in this paper perform

quite well. Analysis of a real data is presented as an illustration.

In summary, this work provides a comprehensive inferential framework for modelling

dependent competing risks data with ties using a general family of bivariate distributions.

The model and inferential framework, due to their general and comprehensive nature, are

expected to accommodate dependent competing risks data arising from different spheres of

science.

A natural generalization of our work would be to extend the model to accommodate

multiple causes of failure. For this, a multivariate Lehmann family needs to be constructed.

However, this will not be a trivial extension. Marshall and Olkin [16] outlined construction of

a multivariate exponential distribution, and observed that the ensuing analytical treatment

was quite complicated due to existence of singular distributions in lower dimensions. More

research is necessary to extend the bivariate Lehmann family that is considered here to a

multivariate family, and then to use the family to model competing risks data with multiple

causes.
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Table 1: Performance of the MLEs and the CIs of the parameters of bivariate Weibull
(α0 = 1.34, α1 = 1.17, α2 = 0.86, λ = 0.91) distribution based on dependent competing risks
data.

Complete Data

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 0.031 0.028 0.930 0.954 0.788 0.894
α1 0.039 0.041 0.867 0.951 0.744 0.876
α2 0.049 0.044 0.730 0.949 0.622 0.892
λ 0.007 0.018 0.284 0.934 0.241 0.874

200

α0 0.014 0.012 0.641 0.955 0.545 0.880
α1 0.016 0.013 0.594 0.958 0.500 0.906
α2 0.023 0.012 0.501 0.940 0.421 0.884
λ 0.003 0.006 0.198 0.940 0.165 0.896

400

α0 0.007 0.004 0.449 0.953 0.374 0.894
α1 0.008 0.003 0.416 0.945 0.347 0.902
α2 0.011 0.010 0.352 0.944 0.294 0.884
λ 0.001 0.004 0.139 0.950 0.116 0.902

Data with 20% censoring

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 0.046 0.031 1.065 0.944 0.912 0.900
α1 0.047 0.021 0.973 0.954 0.844 0.898
α2 0.060 0.027 0.811 0.947 0.700 0.898
λ 0.009 0.014 0.329 0.945 0.278 0.878

200

α0 0.021 0.015 0.742 0.951 0.625 0.896
α1 0.023 0.009 0.679 0.929 0.569 0.874
α2 0.030 0.018 0.567 0.941 0.474 0.910
λ 0.004 0.007 0.231 0.948 0.193 0.876

400

α0 0.009 0.006 0.519 0.956 0.432 0.882
α1 0.010 0.007 0.478 0.954 0.397 0.892
α2 0.013 0.000 0.395 0.945 0.326 0.918
λ 0.002 0.003 0.163 0.942 0.135 0.902

Data with 40% censoring

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 0.063 0.039 1.342 0.948 1.158 0.898
α1 0.077 0.038 1.221 0.942 1.049 0.888
α2 0.080 0.019 0.982 0.943 0.849 0.872
λ 0.011 0.012 0.391 0.956 0.328 0.894

200

α0 0.033 0.024 0.932 0.951 0.786 0.894
α1 0.035 0.017 0.846 0.945 0.714 0.878
α2 0.042 0.021 0.692 0.946 0.582 0.898
λ 0.005 0.006 0.275 0.952 0.230 0.900

400

α0 0.015 0.008 0.649 0.952 0.545 0.900
α1 0.017 0.007 0.591 0.942 0.479 0.902
α2 0.021 0.003 0.481 0.945 0.405 0.890
λ 0.002 0.003 0.194 0.956 0.161 0.898

23



Table 2: Performance of the MLEs and the CIs of the parameters of bivariate Gompertz
(α0 = 1.13, α1 = 0.96, α2 = 0.79, λ = 1.05) distribution based on dependent competing risks
data.

Complete data

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 0.227 -0.029 2.800 0.845 2.110 0.854
α1 0.212 -0.042 2.352 0.833 1.827 0.854
α2 0.230 -0.040 1.959 0.838 1.478 0.862
λ 0.211 0.182 1.926 0.955 1.563 0.824

200

α0 0.170 0.023 2.089 0.895 1.686 0.902
α1 0.192 0.037 1.814 0.886 1.448 0.906
α2 0.187 0.030 1.492 0.880 1.218 0.868
λ 0.100 0.074 1.333 0.963 1.093 0.884

400

α0 0.091 0.023 1.416 0.914 1.185 0.884
α1 0.092 0.017 1.204 0.914 1.013 0.890
α2 0.093 0.022 1.003 0.909 0.836 0.892
λ 0.047 0.033 0.932 0.952 0.776 0.886

Data with 20% censoring

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 2.047 0.323 11.67 0.817 3.618 0.884
α1 2.338 0.354 10.32 0.809 3.180 0.882
α2 2.095 0.327 8.154 0.813 2.589 0.900
λ 0.439 0.199 3.119 0.972 2.098 0.876

200

α0 1.376 0.273 6.945 0.872 3.406 0.918
α1 1.533 0.288 6.074 0.873 2.965 0.930
α2 1.456 0.266 4.891 0.866 2.383 0.918
λ 0.233 0.090 2.206 0.969 1.578 0.928

400

α0 0.901 0.248 4.140 0.899 3.120 0.904
α1 0.874 0.239 3.488 0.902 2.619 0.908
α2 0.930 0.251 2.921 0.897 2.192 0.886
λ 0.133 0.007 1.562 0.960 1.173 0.902

Data with 40% censoring

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 2.123 0.178 20.30 0.731 2.791 0.814
α1 2.139 0.172 17.09 0.730 2.640 0.810
α2 2.254 0.189 14.32 0.732 2.152 0.798
λ 1.430 0.654 5.673 0.964 3.657 0.802

200

α0 1.924 0.266 14.00 0.821 3.646 0.870
α1 2.077 0.260 12.04 0.808 3.168 0.874
α2 2.045 0.255 9.845 0.806 2.566 0.868
λ 0.648 0.315 4.014 0.969 2.596 0.870

400

α0 1.486 0.253 8.810 0.843 3.600 0.918
α1 1.403 0.247 7.367 0.833 3.049 0.918
α2 1.391 0.241 6.031 0.839 2.547 0.918
λ 0.353 0.169 2.844 0.968 1.973 0.922
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Table 3: Performance of the MLEs and the CIs of the parameters of bivariate Lomax (α0 =
0.85, α1 = 0.57, α2 = 0.74, λ = 0.69) distribution based on dependent competing risks data.

Complete data

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 0.793 0.222 2.034 0.945 2.238 0.884
α1 0.742 0.210 1.383 0.952 1.544 0.872
α2 0.743 0.214 1.754 0.945 1.965 0.886
λ 0.218 0.174 1.234 0.912 1.010 0.894

200

α0 0.129 0.096 0.990 0.968 0.983 0.860
α1 0.132 0.102 0.694 0.957 0.680 0.892
α2 0.120 0.094 0.869 0.964 0.871 0.884
λ 0.093 -0.014 0.843 0.926 0.705 0.862

400

α0 0.039 0.045 0.622 0.956 0.580 0.904
α1 0.048 0.047 0.438 0.955 0.405 0.872
α2 0.042 0.044 0.549 0.963 0.515 0.888
λ 0.052 -0.005 0.594 0.930 0.488 0.870

Data with 20% censoring

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 9.741 0.417 5.996 0.894 2.319 0.940
α1 10.84 0.434 4.107 0.889 1.601 0.944
α2 15.86 0.459 5.287 0.903 1.991 0.930
λ 0.579 0.208 2.170 0.976 1.829 0.928

200

α0 0.900 0.186 2.361 0.915 1.752 0.924
α1 0.790 0.186 1.603 0.914 1.191 0.920
α2 0.862 0.179 2.047 0.914 1.500 0.916
λ 0.276 0.073 1.442 0.962 1.198 0.920

400

α0 0.128 0.063 1.166 0.915 1.121 0.896
α1 0.139 0.072 0.804 0.939 0.761 0.878
α2 0.132 0.068 1.026 0.930 0.979 0.904
λ 0.127 0.041 0.996 0.965 0.832 0.902

Data with 40% censoring

Point Estimate
95% CI

(Asymptotic)
95% CI

(Bootstrapping)

Sample Para Relative Relative Average Coverage Average Coverage
Size MSE Bias Length Percentage Length Percentage

100

α0 9.929 0.387 9.482 0.820 2.513 0.910
α1 13.02 0.400 6.287 0.837 1.751 0.912
α2 11.17 0.410 8.461 0.829 2.263 0.902
λ 1.852 0.548 3.445 0.986 2.996 0.912

200

α0 2.470 0.238 5.212 0.881 2.292 0.938
α1 2.673 0.241 3.580 0.877 1.545 0.928
α2 2.483 0.233 4.538 0.873 2.005 0.934
λ 0.599 0.258 2.203 0.983 1.788 0.932

400

α0 0.309 0.092 2.979 0.901 1.851 0.930
α1 0.317 0.091 1.403 0.902 1.247 0.928
α2 0.339 0.089 1.825 0.893 1.625 0.926
λ 0.261 0.119 1.482 0.982 1.172 0.932
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Figure 2: Empirical probability of model selection in the 2-model setting; for each plot, the
“AA-BB” caption above the plot indicates AA as the parent distribution, and BB as the
model fitted to the data other than the parent.

Table 4: Estimates of parameters for the different members of the family BV F (α0, α1, α2, λ)
based on the Diabetic Retinopathy Data

Member Maximized Likelihood
Parameter Estimates

(α̂0, α̂1, α̂2, λ̂)

Bivariate Weibull -319.82 0.066, 0.185, 0.218, 1.558
Bivariate Gompertz -323.10 0.140, 0.393, 0.463, 0.412
Bivariate Lomax NA NA
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Figure 3: Empirical probability of model selection in the 3-model setting; the parent distri-
butions for generating the data are indicated in captions above each plot.
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Figure 4: Plot of the profile log-likelihood p(λ) for the candidate models based on the
Diabetic Retinopathy Data

28



Figure 5: Comparison of the fitted bivariate Weibull survival function (the smooth curve)
with the Kaplan-Meier curve (the step curve) for the Diabetic Retinopathy Data
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