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Abstract

Quite often, we observe reliability data with two failure modes that may influence
each other, resulting in a setting of dependent failure modes. Here, we discuss mod-
elling of censored reliability data with two dependent failure modes by using a bivariate
Weibull model with distinct shape parameters which we construct as an extension of
the well-known Marshall-Olkin bivariate exponential model in reliability. Likelihood
inference for modelling censored reliability data with two dependent failure modes by
using the proposed bivariate Weibull distribution with distinct shape parameters is
discussed. Bayesian analysis for this issue is also discussed. Through a Monte Carlo
simulation study, the proposed methods of inference are observed to provide satisfac-
tory results. A problem of practical interest for reliability engineers is to predict field
failures of units at a future time. Frequentist and Bayesian methods for prediction of
future failures are developed in this setting of censored reliability data with two depen-
dent failure modes. An illustrative example based on a real data on device failure with
two failure modes is presented. The model and methodology presented in this article
provide a complete and comprehensive treatment of modelling censored reliability data
with two dependent failure modes, and address some practical prediction issues.

Key Words and Phrases: Censored reliability data; Dependent failure modes; Marshall-
Olkin bivariate exponential model; Bivariate Weibull model; Shape parameters; Likelihood
analysis; Bayesian analysis; Metropolis Hastings algorithm; Prediction of future failures.

1 Introduction

In reliability studies, quite often, more than one failure mode is observed to be present.

In reliability and survival analysis, this scenario is known as competing risks, the failure
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modes being termed as the risk factors that compete among each other; see Meeker and

Escobar [16], and Crowder [4] for more details. For example, consider the data presented in

Meeker and Escobar [16], pertaining to lifetimes of a device which is part of a larger system.

For a sample of this device, there are two failure modes: Mode S and Mode W. Mode S

failures are caused by accumulated damage from power-line voltage spikes, while Mode W

failures are caused by normal product wear. Naturally for a unit, a Mode S failure would

preclude a Mode W failure and vice versa.

The early literature in reliability and survival analysis on competing risks was developed

under the latent failure time assumption [3]. In this approach, lifetimes corresponding to

different failure modes or risk factors are modelled marginally, independently of each other.

There are several lifetime distributions available in literature that are particularly useful for

reliability data because of their specific characteristics; these distributions may be used as

marginal failure-time models corresponding to different independent failure modes. Apart

from the classical models, some such failure-time models that have been recently discussed

are additive Weibull of Xie and Lai [21], modified Weibull of Almalki and Yuan [2], and

additive modified Weibull of He et al. [10]; see also Abba et al. [1] and the references therein.

However in reality, more often than not, the failure modes influence each other by some

complex mechanisms; for the real data example on device failure mentioned above, Mode

S and Mode W failures may be related by some inherent yet unknown mechanism. Thus,

generally speaking, considering marginal independent failure-time models for different failure

modes would be a rather simplistic approach in such cases. Instead, a more reasonable

approach in such cases would be to consider a joint model for the failure-times corresponding

to different failure modes, leveraging the dependence structure of the joint model to capture

the dependence among the failure modes. Bivariate models are particularly of interest when

there are two failure modes, such as Mode S and Mode W failures in the device failure data

mentioned above. Lawless [13] constructed the general likelihood function for modelling of

this type.
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Recently, some bivariate models have been used in reliability literature to capture de-

pendence between the lifetimes of two components; see, for example, Fan and Hsu [6], and

Oliviera et al. [17]. In Oliviera et al. [17], a Marshall-Olkin type bivariate distribution was

consiered to acheieve some generalised results. The Marshall-Olkin bivariate exponential

(MOBE) model [15] is considered as the reference model in numerous studies in reliability.

The MOBE model originates from a shock model that assumes independent occurrences of

shocks to the components of a two-component series system. One of the most interesting

features of this model is that it has a component of singularity that makes it particularly

suitable for modelling bivariate reliability data with ties.

A practical difficulty in using the MOBE distribution in reliability modelling however is

that the marginals in this case are exponential distributions. As the failure rate (also known

as hazard rate) of an exponential distribution is constant, the MOBE model is not suitable for

data with marginals exhibiting non-constant failure rates. In reality, bathtub-shape failure

rate functions characterize lifetimes of many reliability systems, and a constant failure rate

function as observed in exponential distribution is not ideal for modelling purposes. Marshall

and Olkin [15] gave a theoretical outline of an extension of the bivariate exponential model

to a bivariate Weibull model, although they did not explore this bivariate Weibull model in

detail. A bivariate Weibull model having univariate Weibull models as the marginals, would

be suitable for modelling reliability data with non-constant marginal failure rates.

In this paper, we develop a comprehensive inferential framework for modelling censored

reliability data with two dependent failure modes by using a bivariate Weibull distribution

which we construct by considering an extension of the MOBE model by means of distinct

shape parameters. The bivariate Weibull model considered here, has two distinct shape

parameters added to the well-known MOBE distribtion. The resulting model, a bivariate

Weibull distribution with distinct shape parameters and Weibull marginals, is much more

flexible in handling different types of reliability data showing various types of marginal

patters for failure rates. It may be noted here that an extension of the MOBE distribution
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with common shape parameters and its applications in competing risks have been considered

in literature; see for example, Kundu and Dey [11], Kundu and Gupta [12], Feizvidian and

Hashemi [8], and Samanta and Kundu [20]. The assumption of a common shape parameter

for the component lifetimes of a series system greatly reduces complexity. However, for

practical applications, the assumption of a common shape parameter for distributions of the

component lifetimes of a two-component series system is quite restrictive, and may not have

any physical justification.

The bivariate Weibull model we consider in this paper is constructed without any such

restrictive assumption on the shape parameters of the distributions of component lifetimes of

a two-component series system. Physically, this amounts to assuming Weibull distributions

with distinct shape parameters for the independent shocks that give rise to this model,

generalizing the shock model based on exponential distributions as assumed by Marshall

and Olkin [15]. We call this model the Marshall-Olkin bivariate Weibull distribution with

distinct shape parameters; for convenience and brevity, this model is referred to as the

MOBWDS model in this paper. The proposed model is then used for modelling censored

reliability data with two dependent failure modes.

The main contributions of this paper are as follows. First, the MOBWDS distribution as

a general extension of the MOBE distribution is constructed; to the best of our knowledge,

such an extension has not been considered in reliability literature so far. Then, the proposed

MOBWDS distribution is used to model censored reliability data with two dependent failure

modes. Likelihood and Bayesian inferential methods for modelling censored reliability data

with dependent failure modes are discussed in detail, and the performances of the inferential

methods are assessed through a detailed Monte Carlo simulation study. A case study based

on a real data on device failure is presented as an illustration.

Reliability engineers often need to predict future failures of units for predictive mainte-

nance purposes. Generally speaking, within-sample prediction of future failures is of practical

relevance; in within-sample prediction, based on past data from the failure process, future
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failures of units already in test are predicted [14]. In reliability literature, many researchers

have addressed various prediction issues. For example, Lewis-Beck et al. [14] developed ap-

proaches for predicting future failures based on heterogeneous reliability field data, see also

Escobar and Meeker [5] for a general discussion on statistical aspects of prediction based

on censored data. Recently, failure prediction approaches based on model-based teachnique

and machine learning tools have also been discussed ([19], [7]).

Prediction of future failures is complicated when two dependent failure modes are present.

We develop frequentist as well as Bayesian methods for predicting future failures in this

setting of censored reliability data with two dependent faiilure modes, and provide illustrative

example of the same based on the device failure data. This is another main contribution

of this paper. In summary, this paper provides a comprehensive approach for modelling

censored reliability data with dependent failure modes, and address some relevant prediction

issues.

The paper is organized as follows. Section 2 presents construction of the MOBWDS

model. In Section 3, likelihood inference for modelling reliability data with dependent failure

modes by the proposed MOBWDS model is discussed. Bayesian inference using Markov

Chain Monte Carlo technique for this issue is developed in Section 4. Results of a detailed

simulation study are presented in Section 5. Some relevant and practical prediction issues

are discussed in Section 6. An illustrative example of all the proposed methods of inference

and prediction based on a real data on device failure is provided in Section 7. Finally, the

paper is concluded in Section 8 with some remarks.
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2 The bivariate Weibull model with distinct shape

parameters

The cumulative distribution function (CDF) of the univariate Weibull distribution We(α, λ)

is given by

F (t;α, λ) = 1− e−λtα , t > 0,

where α(> 0) and λ(> 0) are the shape and scale parameters, respectively. The MOB-

WDS distribution with distinct shape parameters is constructed as follows. Consider three

independent random variables U0, U1, U2, with

Ui ∼We(αi, λ) i = 1, 2, 3.

Define,

X = min(U1, U0), and Y = min(U2, U0).

Then, the random vector (X, Y ) follows the MOBWDS distribution with distinct shape

parameters, and we denote it by

(X, Y ) ∼ MOBWDS(α0, α1, α2, λ),

where α0, α1, α2 are the shape parameters, and λ is a scale parameter. The survival function

of the distribution is given by

SMOBWDS(x, y) = P (X ≥ x, Y ≥ y)

= P (U1 ≥ x)P (U2 ≥ y)P (U0 ≥ z),
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where z = max(x, y). Using the distributions of U0, U1, and U2, we have

SMOBWDS(x, y) =


S1(x, y), for 0 < x < y <∞

S2(x, y), for 0 < y < x <∞

S0(x), for 0 < x = y <∞,

(2.1)

where

S1(x, y) = e−λ(xα1+yα2+yα0 ),

S2(x, y) = e−λ(yα2+xα1+xα0 ),

S0(x) = e−λ(xα1+xα2+xα0 ).

For cases other than 0 < x = y <∞, the joint density of X and Y can be derived from

SMOBWDS(x, y), by finding ∂2

∂x∂y
SMOBWDS(x, y). When 0 < x = y <∞, closed form expression

of the joint density is not available. That is, the density of (X, Y ) for the MOBWDS

distribution is given by

fMOBWDS(x, y) =


f1(x, y), for 0 < x < y <∞

f2(x, y), for 0 < y < x <∞

f0(x), for 0 < x = y <∞,

(2.2)

where

f1(x, y) =
∂2

∂x∂y
S1(x, y) = λ2α1x

α1−1(α2y
α2−1 + α0y

α0−1)e−λ(xα1+yα2+yα0 ),

f2(x, y) =
∂2

∂x∂y
S2(x, y) = λ2α2y

α2−1(α1x
α1−1 + α0x

α0−1)e−λ(yα2+xα1+xα0 ),
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and

f0(x) = P (X = Y )

[
− ∂

∂x
S0(x)

]
= P (X = Y )λ(α1x

α1−1+α2x
α2−1+α0x

α0−1)e−λ(xα1+xα2+xα0 ),

are obtained using Eq.(2.1).

Also note that

∫ ∞
0

∫ ∞
x

f1(x, y)dydx+

∫ ∞
0

∫ ∞
y

f2(x, y)dxdy +

∫ ∞
0

f0(x) = 1. (2.3)

Here, ∫ ∞
0

∫ ∞
x

f1(x, y)dydx =

∫ ∞
0

λα1x
α1−1e−λ(xα0+xα1+xα2 )dx, (2.4)

and ∫ ∞
0

∫ ∞
y

f2(x, y)dxdy =

∫ ∞
0

λα2y
α2−1e−λ(yα0+yα1+yα2 )dy. (2.5)

From Eqs.(2.3), (2.4), and (2.5), it can be readily seen that f0(x) does not have a closed

form expression. Here, P (X = Y ) can be obtained to be

P (X = Y ) = 1− λ
∫ ∞

0

(α1x
α1−1 + α2x

α2−1)e−λ(xα0+xα1+xα2 )dx. (2.6)

In Figure 1, the PDF of the MOBWDS distribution with distinct shape parameters is

presented for different values of the parameters.

3 Likelihood inference for reliability data with two

dependent failure modes

Consider a reliability study (field or laboratory) with n units. Suppose there are two failure

modes, called Mode 1 and Mode 2, for failures of study units. The failure modes may be

dependent on each other. The lifetimes of each unit in the study can then be considered as
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Figure 1: PDF of the MOBWDS(α0, α1, α2, λ) distribution for different values of parameters.
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a bivariate random vector. Our approach for modelling the data would involve the use of

a bivariate model for the joint lifetimes corresponding to the two failure modes. That is, if

X and Y denote the lifetimes corresponding to Mode 1 and 2, respectively, then we would

consider a bivariate model for X and Y . Suppose the joint survival function (SF) of X and

Y is denoted by SX,Y (·, ·), and the corresponding joint probability density function (PDF)

is denoted by fX,Y (·, ·).

For each observed failure, there are three possibilities: (a) it is a Mode 1 failure, (b) it is

a Mode 2 failure, and (c) the failure is a tie between Mode 1 and Mode 2 (i.e., failures from

both modes at the same time). Define the following indicator variables:

δ1 =


1, if it is a Mode 1 failure

0, otherwise,

δ2 =


1, if it is a Mode 2 failure

0, otherwise,

and

δ0 =


1, if it is a tie between Mode 1 and 2

0, otherwise.

Note that when δ0 = δ1 = δ2 = 1 for a unit implies that the unit has not failed during

the study. Such units are called the right censored units in reliability and survival analyses.

Thus, the observed data in this case is of the format

Data = (ti, δi0, δi1, δi2), i = 1, ..., n,
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where ti is the lifetime of the i−th unit; ti could be an observed failure, or a right censored

lifetime.

A failed unit with lifetime t and δ1 = 1 (Mode 1 failure) will contribute − ∂
∂x
S1(x, y)

∣∣
x=t,y=t

to the likelihood. Similarly, the contribution to the likelihood by a failed unit with lifetime

t and δ2 = 1 (Mode 2 failure) will be − ∂
∂y
S2(x, y)

∣∣∣
x=t,y=t

. For each failure that is a result of

a tie between the two modes (i.e., δ0 = 1), the contribution to the likelihood will be f0(t).

For each of right censored units, the contribution to the likelihood will be S0 (t). Combining

these cases, the observed likelihood is given by

L(θ) ∝
n∏
i=1

[f0 (ti)]
δi0 ×

[
− ∂

∂x
S1(x, y)

∣∣∣∣
x=ti,y=ti

]δi1

×

[
− ∂

∂y
S2(x, y)

∣∣∣∣
x=ti,y=ti

]δi2
× [S0 (ti)]

1−δi0−δi1−δi2 , (3.1)

where θ is the vector of relevant model parameters.

Suppose that

(X, Y ) ∼ MOBWDS(α0, α1, α2, λ).

The SF and PDF of the MOBWDS distribution with distinct shape parameters are given in

Eqs(2.1) and (2.2), respectively.

Substituting the PDF and SF of the MOBWDS distribution in Eq.(3.1), we have the

likelihood under the MOBWDS model for censored reliability data with two dependent

failure modes as

L(θ) ∝ αm1
1 αm2

2 λm0+m1+m2(P ∗)m0e−λ
∑n
i=1(t

α0
i +t

α1
i +t

α2
i )∏

i∈I0

(α0t
α0−1
i + α1t

α1−1
i + α2t

α2−1
i )

∏
i∈I1

tα1−1
i

∏
i∈I2

tα2−1
i , (3.2)

where θ = (α0, α1, α2, λ), and P ∗ = P (X = Y ) as given in Eq.(2.6).
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Define index sets Ij, j = 0, 1, 2 as follows:

Ij =
{
i : δij = 1, i = 1, ..., n

}
, j = 0, 1, 2.

Also, denote |I1| = m1 (i.e., number of failures from Mode 1), |I2| = m2 (i.e., number of

failures from Mode 2), and |I0| = m0 (i.e., number of failures from both modes). Then, a

simplified form of the log-likelihood function in this case is given by

logL(θ) = m0 logP ∗ +m1 logα1 +m2 logα2 + (m0 +m1 +m2) log λ

−λ
n∑
i=1

(tα0
i + tα1

i + tα2
i ) +

∑
i∈I0

log(α0t
α0−1
i + α1t

α1−1
i + α2t

α2−1
i )

+(α1 − 1)
∑
i∈I1

log(ti) + (α2 − 1)
∑
i∈I2

log(ti). (3.3)

The maximum likelihood estimates (MLEs) of the model parameters can be obtained by

maximizing Eq.(3.3), by the help of a numerical technique. Standard statistical software offer

routine optimizers; for example, the R software has a routine optimizer optim() that performs

general purpose optimization by using Nelder–Mead method. Such routine optimizers can be

used for numerically optimizing the log-likelihood function in Eq.(3.3) to obtain the MLEs

of model parameters.

Along with the MLEs, it is also possible to provide 95% confidence intervals for the

parameters which can be obtained by using the observed Fisher information matrix. The

observed Fisher information matrix is constructed by using the negative of the second deriva-

tives of log-likelihood function in Eq.(3.3) with respect to the parameters. Let J(θ) denote

the observed Fisher information matrix for θ. We have J(θ) given by

J(θ) = −∇2(logL(θ)),

where the ∇2 operator signifies second derivatives. Using asymptotic normality of the MLEs,
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we have
√
n(θ̂ − θ)→N 4(0,J−1(θ)|θ̂=θ),

N4(µ,Σ) being a normal distribution of four dimensions with mean vector µ and covariance

matrix Σ. Asymptotic 95% confidence intervals (CIs) for the model parameters can be

constructed easily by using this information; for example, for α0, the CI is given by

α0 ± 1.96
√

(J−1(θ)|θ̂=θ)1,1,

where (J−1(θ)|θ̂=θ)i,j is the (i, j)−th element of J−1(θ)|θ̂=θ.

4 Bayesian Analysis

4.1 Prior Assumptions

As the likelihood inference does not result in closed form estimates of the model parameters,

it is not possible to carry out exact inference based on the MLEs; one has to reply on

asymptotic inference as described in the previous Section. Therefore, Bayesian inference

with properly chosen prior distributions seems to be a natural alternative.

The assumed prior distribution on (α0, α1, α2) should be reflective of the dependence

that we aim to capture in the two-failure mode model. For this reason, following Pena and

Gupta [18], a multivariate Gamma-Dirichlet prior with hyperparameters a > 0, b > 0, a0 > 0,

a1 > 0, and a2 > 0, denoted by GD(a, b, a0, a1, a2), is assumed on the shape parameters (α0,

α1, α2). That is, the prior density π0(θ) is given by:

π0(θ) = π0 (α0, α1, α2 | a, b, a0, a1, a2) =
Γ(ā)

Γ(a)
(bα)a−ā

2∏
i=0

bai

Γ (ai)
αai−1
i e−bαi ;α0, α1, α2 > 0,

where ā = a0 + a1 + a2 and α = α0 + α1 + α2. Note that the dependence among α0, α1

and α2 can be controlled through the hyper parameters of the Gamma-Dirichlet distribution
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GD(a, b, a0, a1, a2). When a = ā, the above model implies that the shape parameters α0, α1

and α2 have independent gamma priors.

The prior distribution on parameter λ is assumed to be gamma, with hyperparameters

c1 > 0 and c2 > 0, denoted by GA(c1, c2). The priors on λ and α0, α1 and α2 are assumed

independent. Therefore, the joint prior on (α0, α1, α2, λ) is given by:

π1 (α0, α1, α2, λ | a, b, a0, a1, a2, c1, c2) =
cc21

Γ (c2)
e−c1λλc2−1 × Γ(ā)

Γ(a)
(bα)a−ā

2∏
i=0

bai

Γ (ai)
αai−1
i e−bαi .

(4.1)

The joint prior given in Eq.(4.1) is a very flexible one as it can capture and control the

dependence among the parameters α0, α1 and α2. It may be noted here that in literature,

the Gamma-Dirichlet prior has been assumed on scale parameters [20]. In this research, we

have assumed the Gamma-Dirichlet prior on the shape parameters and this approach has

not been explored by any researcher to the best of our knowledge.

4.2 Posterior analysis: Metropolis Hastings algorithm

Using the likelihood function in Eq.(3.2) and the prior assumption in Eq.(4.1), the posterior

distribution of (α0, α1, α2, λ) is obtained as

π̃ (θ | Data) = π̃ (α0, α1, α2, λ | Data) ∝ L(θ)π1(α0, α1, α2, λ). (4.2)

The Bayes estimate of a parametric function g(θ) with respect to squared error loss is thus

given by

ĝBayes(θ) =

∫
θ

g(θ)π̃ (θ | Data) dθ

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

g(θ)π̃ (α0, α1, α2, λ | Data) dα0dα1dα2dλ. (4.3)
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Clearly, the Bayes estimate is not available in closed form, and we need to implement an

approach based on Markov Chain Monte Carlo (MCMC) techniques.

Here, we use the Metropolis-Hastings algorithm to obtain Bayes estimates and credible

intervals for the parameters α0, α1, α2, and λ. Since all the parameters have a non-negative

support, a multivariate folded normal distribution is used as the proposal distribution in the

Metropolis-Hastings algorithm. In particular, the density function of a multivariate folded

normal distribution with parameters µ = (µ1, µ2, µ3, µ4) ∈ R4 and positive definite matrix

Σ given by

Σ =



σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4


,

evaluated at x = (x1, x2, x3, x4) ∈ R4 is given by

Q(x;µ,Σ) =
1

σi
√

2π
e
− (xi−µi)

2

2σ2
i +

1

σi
√

2π
e
− (xi+µi)

2

2σ2
i .

The Metropolis-Hastings algorithm at the l-th stage is as follows:

Algorithm 1:

1. Step 1: The currently available value of the parameter vector is θ(l) = (α
(l)
0 , α

(l)
1 , α

(l)
2 , λ

(l)).

2. Step 2: Given θ(l), choose a proposed value θp from the folded normal distribution

with µ = θ(l) and Σ = 1
2
I4 where I4 is the 4× 4 identity matrix.

3. Step 3: Compute the acceptance probability R:

R = min

1,
π̃(θp)Q

(
θ(l);θp,Σ

)
π̃
(
θ(l)
)
Q
(
θp;θ

(l),Σ
)


As for the folded normal distribution, Q(θ;µ,Σ) = Q(µ;θ,Σ), we can re-write accep-
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tance probability as

R = min

1,
π̃(θp)

π̃
(
θ(l)
)


4. Step 4: Take θ(l+1) = θp with probability R, and θ(l+1) = θ(l) with probability 1−R

5. Step 5: Repeat steps 2-4 for the desired chain length, say N ; N = nburn+n where nburn

is the burn-in sample, and n is the effective sample, and store θ values after discarding

the burn-in as samples from the posterior distribution:

θ(1) = (α
(1)
0 , α

(1)
1 , α

(1)
2 , λ(1)), θ(2) = (α

(2)
0 , α

(2)
1 , α

(2)
2 , λ(2)), ...,θ(n) = (α

(n)
0 , α

(n)
1 , α

(n)
2 , λ(n))

Finally, the Bayes estimates of the parameters with respect to squared error loss are given

by

α̂0(B) =
1

n

n∑
k=1

α
(k)
0 , α̂1(B) =

1

n

n∑
k=1

α
(k)
1 , α̂2(B) =

1

n

n∑
k=1

α
(k)
2 , λ̂(B) =

1

n

n∑
k=1

λ(k).

The posterior variances can be computed as

Vpost(α0) =
1

n

n∑
k=1

(α
(k)
0 − α̂0(B))

2, Vpost(α1) =
1

n

n∑
k=1

(α
(k)
1 − α̂1(B))

2

Vpost(α2) =
1

n

n∑
k=1

(α
(k)
2 − α̂2(B))

2, Vpost(λ) =
1

n

n∑
k=1

(λ(k) − λ̂(B))
2.

For obtaining Bayesian credible intervals for the parameter α0, first the posterior sample

is ordered as follows:

α
(1)
0 < α

(2)
0 < ... < α

(n)
0 .

A 100(1−γ)% Bayesian credible interval for α0 is then (α
[ γ
2
n]

0 , α
[(1− γ

2
)n]

0 ), where [x] is the sym-

bol for greatest integer not exceeding x. Bayesian credible intervals for the other parameters

can be obtained similarly.
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5 Monte Carlo simulation study

The motivation for the Monte Carlo simulation study is to examine performances of the

MLEs and Bayes estimates of parameters of the MOBWDS model when applied to censored

reliability data with two dependent failure modes. For the simulations, three different sample

sizes are used: n = 100, 200, and 400. Two different sets of values for the model parameters

α0, α1, α2, and λ are used. We evaluate the performance of the estimates through relative

mean squared error (MSE) and relative bias, as defined below. If the true value of α0 is α∗0,

then relative bias and relative MSE for the MLE α̂0 of α0 are calculated as follows:

Relative MSE(α0) =
MSE(α̂0)

(α∗0)2
and Relative Bias(α0) =

Bias(α̂0)

α∗0
.

The asymptotic CIs are assessed by their coverage probability and average length. The

results of the simulation study are given in Tables 1 - 3. Relative bias and relative MSE of

the Bayes estimates, as well as the coverage probability and average length of the credible

intervals are also given in these tables.

For the numerical optimization required to compute MLEs, the Nelder-Mead method,

which is a direct search approach, is implemented through the optim() function in R software.

For Bayes estimates, hyperparameters are taken to be a = b = c1 = c2 = 0.005 and

a0 = a1 = a2 = 1.2.

From Table 1, it may be observed that when there is no censoring in the data, the point

and interval estimates of α0, α1, α2, and λ are reasonably well. Relative bias and relative MSE

reduce with increasing sample size, as one would expect. For interval estimates, although

their average length reduces with increasing sample size as expected, the coverage probability

still remains close to the nominal level of 95%.

For censored data, as can be seen from Tables 2 and 3, relative bias and relative MSE

are once again reasonable, showing expected trends of reduction with increasing sample

size. However, the intervals for α0 have poor coverage probability, although for the other
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Table 1: Relative bias and MSE of the MLEs and Bayes estimates, and coverage probability (CP) and average length (AL)
for the asymptotic confidence and credible intervals for the model parameters, estimated based on competing risks reliability
data with no censoring when true model is MOBWDS(α0 = 1.63, α1 = 1.11, α2 = 1.92, λ = 2.35).

Point Estimate
(Frequentist)

95% CI
(Frequentist)

Point Estimate
(Bayesian)

95% CI
(Bayesian)

Sample Par. Relative Relative AL CP Relative Relative AL CP
Size MSE Bias MSE Bias

100

α0 0.022 0.064 0.908 0.952 0.034 0.109 0.971 0.951
α1 0.014 0.054 0.438 0.917 0.017 0.065 0.447 0.920
α2 0.014 0.039 0.851 0.941 0.020 0.060 0.879 0.920
λ 0.030 0.048 1.488 0.950 0.041 0.069 1.542 0.937

200

α0 0.012 0.059 0.642 0.939 0.017 0.076 0.660 0.912
α1 0.007 0.044 0.308 0.920 0.009 0.047 0.311 0.898
α2 0.007 0.030 0.597 0.940 0.009 0.032 0.603 0.926
λ 0.013 0.029 1.030 0.956 0.016 0.036 1.048 0.950

400

α0 0.006 0.048 0.418 0.925 0.008 0.048 0.454 0.897
α1 0.004 0.037 0.216 0.870 0.005 0.033 0.218 0.888
α2 0.003 0.020 0.418 0.940 0.004 0.019 0.422 0.939
λ 0.006 0.013 0.712 0.941 0.007 0.011 0.718 0.952

parameters the coverage probability is close to the nominal confidence level. The problem

of poor coverage of the intervals for α0 increases with increase in censoring percentage. The

main reason for this seems to be the biased estimates of α0; even with increasing sample

size, the bias of the estimate for α0 does not reduce much, and as a result, the narrowing

intervals cannot retain the coverage probability. One possible solution for this could be the

use of a standard bias reduction technique, such as the jackknife approach, to reduce bias

in the estimates. Similarly, a bias-corrected bootstrap approach for calculating the intervals

may also be used.

6 Prediction of Future Failures

Here we develop approaches for prediction of future failures based on censored reliability

data with two dependent failure modes. First, prediction of future failures regardless of the

failure mode is discussed. Then, prediction of future failures corresponding to a specific

failure mode is considered.

Suppose there are n units in a reliability field or laboratory study. The lifetimes of the
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Table 2: Relative bias and MSE of the MLEs and Bayes estimates, and coverage probability (CP) and average length (AL)
for the asymptotic confidence and credible intervals for the model parameters, estimated from competing risks reliability data
with approximately 20% censoring when true model is MOBWDS(α0 = 1.63, α1 = 1.11, α2 = 1.92, λ = 2.35).

Point Estimate
(Frequentist)

95% CI
(Frequentist)

Point Estimate
(Bayesian)

95% CI
(Bayesian)

Sample Par. Relative Relative AL CP Relative Relative AL CP
Size MSE Bias MSE Bias

100

α0 0.060 0.185 1.050 0.869 0.090 0.237 1.161 0.841
α1 0.016 0.028 0.489 0.897 0.019 0.040 0.512 0.922
α2 0.020 0.030 0.923 0.908 0.022 0.040 0.958 0.933
λ 0.054 0.063 1.931 0.928 0.074 0.085 2.049 0.948

200

α0 0.038 0.164 0.727 0.771 0.048 0.181 0.758 0.716
α1 0.007 0.023 0.347 0.923 0.009 0.024 0.356 0.921
α2 0.008 0.021 0.650 0.929 0.010 0.020 0.663 0.932
λ 0.023 0.044 1.345 0.941 0.026 0.041 1.368 0.716

400

α0 0.030 0.157 0.513 0.532 0.034 0.160 0.521 0.509
α1 0.003 0.016 0.245 0.927 0.005 0.020 0.250 0.901
α2 0.004 0.013 0.456 0.930 0.005 0.016 0.466 0.929
λ 0.012 0.031 0.937 0.928 0.014 0.035 0.961 0.946

units under study are right censored at R. Let there be n∗ units that are right censored.

Consider a future time interval that starts immediately after the end of the study; let (R,R+

δ) where δ > 0 denote such an interval. Our goal is to predict the number of failures out of

the n∗ right censored units in this future interval (R,R + δ).

6.1 Prediction of future failures regardless of failure mode

The lifetimes corresponding to the two dependent failure modes are denoted by X and Y .

The probability that a unit will fail in the future interval (R,R+ δ) from any one of the two

failure modes is given by

ρ = P (Min{X, Y } < R + δ | Min{X, Y } > R)

=
ST (R)− ST (R + δ)

ST (R)

= 1− ST (R + δ)

ST (R)
, (6.1)
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Table 3: Relative bias and MSE of the MLEs and Bayes estimates, and coverage probability (CP) and average length (AL)
for the asymptotic confidence and credible intervals for the model parameters, estimated from competing risks reliability data
with approximately 40% censoring when true model is MOBWDS(α0 = 1.63, α1 = 1.11, α2 = 1.92, λ = 2.35).

Point Estimate
(Frequentist)

95% CI
(Frequentist)

Point Estimate
(Bayesian)

95% CI
(Bayesian)

Sample Par. Relative Relative AL CP Relative Relative AL CP
Size MSE Bias MSE Bias

100

α0 0.083 0.246 1.126 0.817 0.123 0.297 1.279 0.770
α1 0.019 0.027 0.556 0.916 0.021 0.029 0.587 0.953
α2 0.025 0.038 1.006 0.908 0.026 0.036 1.047 0.923
λ 0.102 0.104 2.492 0.940 0.099 0.109 2.655 0.968

200

α0 0.062 0.225 0.773 0.581 0.076 0.246 0.818 0.544
α1 0.008 0.009 0.386 0.917 0.010 0.011 0.399 0.939
α2 0.009 0.019 0.693 0.915 0.012 0.022 0.720 0.918
λ 0.036 0.054 1.657 0.935 0.048 0.067 1.736 0.954

400

α0 0.052 0.215 0.541 0.239 0.057 0.218 0.599 0.266
α1 0.004 0.002 0.271 0.920 0.005 0.013 0.280 0.930
α2 0.004 0.009 0.487 0.929 0.006 0.001 0.504 0.928
λ 0.017 0.038 1.148 0.933 0.022 0.040 1.189 0.933

where T is the minimum of X and Y , and ST (x) = P (T > x) is the survival function of T .

For the MOBWDS distribution, we have

ST (t) = P (Min{X, Y } > t) = e−λ(tα0+tα1+tα2 ),

and hence ρ = ρ(α0, α1, α2, λ) depends on the MOBWDS model parameters.

Suppose M be the random number of failures out of the n∗ right censored units in the

future interval (R,R + δ). Note that M has a binomial distribution,

M ∼ Binomial(n∗, ρ),

with n∗ as the number of trials, and ρ as the probability of ‘success’ (which is failure of a

right censored unit in the future interval (R,R + δ)).

We first estimate the probability of a failure in the interval (R,R+ δ) by plugging-in the

MLEs of the model parameters: ρ̂ = ρ(α̂0, α̂1, α̂2, λ̂). Then, as a frequentist prediction of

number of future failures, we obtain the expected number of failures in the future interval
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(R,R + δ) as

E(M) = n∗ρ̂.

The lower and upper prediction bounds for the number of failures, for a prediction interval

with 100(1 − γ)% confidence, can be obtained to be Mlower and Mupper, where Mlower is

the γ1-th quantile and Mupper is the γ2-th quantile of Binomial(n∗, ρ̂) distribution, with

γ1 + γ2 = γ.

Bayesian prediction is based on generations from the joint posterior distribution [14].

The predictive distribution of the random variable M is given by

πpredictive(m) =

∫
θ

FM(m; ρ)π̃ (θ | Data) dθ, (6.2)

where FM(m; ρ) =
∑m

j=0

(
n∗

j

)
ρj(1 − ρ)n

∗−j is the CDF of the random variable M , and

π̃ (θ | Data) = π̃ (α0, α1, α2, λ | Data) is the joint posterior distribution.

For calculation purposes, the predictive distribution πpredictive(m) needs to be approx-

imated based on generations from the joint posterior distribution. Suppose, θ∗1,θ
∗
2, ...,θ

∗
R

are R generations from the joint posterior distribution π̃ (θ | Data). Then the predictive

distribution πpredictive(m) is approximated as

πpredictive(m) =
1

R

R∑
k=1

FM(m; ρ∗k)π̃ (θ∗k | Data) ,

where ρ∗k = ρ(θ∗k). A Bayesian prediction for the number of failures in the future interval

(R,R + δ) can then be given by the mean or median of the approximated predictive distri-

bution. A Bayesian 100(1−γ)% prediction interval for the number of failures in the interval

(R,R + δ) is given by the γ1- and γ2-percentiles of the predictive distribution πpredictive(m),

with γ1 + γ2 = γ. Lewis-Beck et al. [14] gave more approximation ideas of the predictive

distribution based on simulations.
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6.2 Prediction of future failures for a specific failure mode

For predicting number of failures from a specific mode in the future interval (R,R+ δ), the

probability of failure needs to be modified. The probability of a failure from Mode 1, for

example, will be

ρ1 = P (X < Y,X ≤ R + δ | Min(X, Y ) > R)

=
P (X < Y,X ≤ R + δ,X > R, Y > R)

P (Min(X, Y ) > R)

=
1

ST (R)

∫ R+δ

R

∫ ∞
x

fX,Y (x, y)dydx. (6.3)

Then, the random number of failures from Mode 1 in the future interval (R,R+ δ), denoted

by M1, say, has a binomial distribution

M1 ∼ Binomial(n∗, ρ1).

The frequentist and Bayesian prediction of number of failures from Mode 1 in the future

interval (R,R + δ) can then be obtained similarly as above, using ρ̂1 = ρ1(α̂0, α̂1, α̂2, λ̂) in

the distribution of M1. The prediction of failures from Mode 2 can be obtained similarly, by

adjusting the probability of a failure from Mode 2 in the future interval (R,R + δ).

7 Analysis of device failure data

The device failure data presented in Meeker and Escobar [16] are analysed here as an il-

lustration. The data have information on running times (in terms of thousands of cycles)

and mode of failure for 30 units of a device that is part of a larger system. For each failed

unit, the mode of failure was determined. There are two possible modes: Mode S which is a

failure due to “accumulation of randomly occurring damage from power-line voltage spikes

during electric storms”, and Mode W which is a failure due to normal product wear. Out
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of the 30 units under study, 8 were right censored as they were still in operating condition

at 300 thousand cycles. Among the failed units, 7 failures were caused by Mode W, and 15

failures were caused by Mode S.

Suppose X and Y be the lifetimes corresponding to Mode S and Mode W, respectively.

Clearly, the observed lifetime of a failed unit will be T = min(X, Y ). As X and Y can

infleunce each other, it would not be appropriate to model X and Y marginally, without

considering a dependence mechanism. We model the bivariate random vector (X, Y ) by the

MOBWDS model, and estimate the model parameters based on the observed data on device

failures from Mode S and Mode W. Table 4 presents the model fitting results to the device

failure data.

Table 4: MLEs and 95% confidence intervals, and Bayes estimates and 95% credible intervals for the parameters of the
MOBWDS model applied to device failure data with two failure modes.

Likelihood Inference Bayesian Inference
Parameter Estimate 95% Confidence Interval Estimate 95% Credible Interval

α0 0.234 (0, 1.072) 0.528 (0.079, 1.242)
α1 2.070 (1.104, 3.036) 2.171 (1.480, 2.970)
α2 0.761 (0.394, 1.127) 0.818 (0.519, 1.145)
λ 0.180 (0.090, 0.270) 0.169 (0.104, 0.251)

For the Bayesian analysis of the device failure data, the hyper parameters are chosen

to be a = b = c1 = c2 = 0.005 and a0 = a1 = a2 = 1.2, thus using a diffuse prior. For

implementing the Metropolis Hastings algorithm, we start with an arbitrary initial guess

θ = (1.40, 0.95, 1.85, 0.60); chain of length N = 15500 is used, of which first 500 generations

are discarded as burn-in. From the trace plot and autocorrelation plot given in Figures 2 and

3, respectively, no apparent issue with the convergence to the target distribution is observed.

Gelman and Rubin’s [9] MCMC convergence diagnostic measure that takes into consider-

ation the between-chain and within-chain variances to assess convergence is also calculated.

Based on the device failure data, we observe that the Gelman and Rubin’s diagnostic statis-

tic corresponding the four parameters are as follows: R̂α0 = 1.00332; R̂α1 = 1.001001;
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Figure 2: MCMC diagnostic: trace plot for N = 15000.

Figure 3: MCMC Diagnostic: autocorrelation plots
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Figure 4: Comparison of the fitted Weibull survival function (the smooth curve) for bayesian
and frequentist setup with the Kaplan-Meier curve (the step curve) for the Device Failure
Data

R̂α2 = 1.001507; R̂λ = 1.001622. A numerical value of R̂i close to one implies no issues with

convergence.

In Figure 4, the nonparametric estimate of the survival function, known as the Kaplan-

Meier estimate, is plotted along with the plots of the estimated survival curve assuming the

MOBWDS model for the device failure data. For plotting the Kaplan-Meier estimate, we

have considered only the failure time, ignoring the failure mode. Similarly, for plotting the

parametric survival curves, the survival function of the minimum of the two failure times is

used. It may be observed in Figure 4 that the nonparametric and parametric estimates of

the survival curve are quite close.

The estimate of the mean time to failure (MTTF) is given by

M̂TTF =

∫ ∞
0

Ŝ(t, t)dt. (7.1)

For the device failure data, an estimated MTTF value under the MOBWDS model turns

out to be M̂TTF frequentist = 210.27 thousand of cycles, by plugging-in the MLEs in Eq.(7.1)
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and then carrying out the subsequent calculations. For the Bayesian estimation of MTTF,

the following steps are followed:

1. Generate n samples θ∗1,θ
∗
2, ...,θ

∗
n from the joint posterior distribution

2. For the i-th sample, calculate M̂TTF i using θ∗i in Eq.(7.1), i = 1, ..., n

3. The Bayes estimate of MTTF is finally calculated as

M̂TTFBayes =
1

n

n∑
i=1

M̂TTF i.

Based on 15000 samples from the joint posterior distribution, the Bayes estimate of MTTF

is obtained for the device failure data; it turns out to be M̂TTFBayes = 219.68.

7.1 Prediction of future failures: Device failure data

In the device failure data, there are 8 right censored units, all of which are right censored at

300 thousand cycles. In Table 5, the predicted number of failures regardless of the failure

mode in future intervals of different lengths are given, along with corresponding prediction

bounds for the predicted number of failures. Predicted number of failures with corresponding

prediction bounds specific to a failure mode are given in Tables 6 and 7 for Mode S and Mode

W failure, respectively.

It may be observed that the predictions by frequentist and Bayesian methods are in close

agreement. Also, as can be seen in the data, there are more Mode S failures compared to the

Mode W failures. In mode specific prediction of failures, this trend is reflected: predicted

number of failures and their corresponding prediction bounds for Mode S are significantly

larger than their counterparts for Mode W.
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Table 5: Prediction of future failures regardless of failure mode for the device failure data, choosing δ = 30, 75, 120, 200.

Frequentist Prediction Bayesian Prediction
Future Interval Predicted 95% Prediction Bound Predicted 95% Prediction Bound

Number of Failures Number of Failures

(300, 330) 1.40 (0, 3) 1.59 (0, 4)
(300, 375) 3.20 (1, 5) 3.51 (0, 6)
(300, 420) 4.63 (2, 7) 4.91 (1, 8)
(300, 500) 6.37 (4, 8) 6.42 (3, 8)

Table 6: Prediction of future failures from Mode S for the device failure data, choosing δ = 30, 75, 120, 200.

Frequentist Prediction Bayesian Prediction
Future Interval Predicted 95% Prediction Bound Predicted 95% Prediction Bound

Number of Failures Number of Failures

(300, 330) 1.18 (0, 3) 1.26 (0, 3)
(300, 375) 2.72 (1, 5) 2.82 (0, 6)
(300, 420) 3.99 (2, 6) 3.97 (0, 7)
(300, 500) 5.55 (3, 8) 5.25 (1, 8)

8 Concluding remarks

In this article, modelling of censored reliability data with two dependent failure modes

is discussed by using a proposed bivariate Weibull distribution, called the Marshall-Olkin

bivariate Weibull model with distinct shape parameters. Likelihood and Bayesian inference

for this issue are studied in detail. Through a Monte Carlo simulation study, it is observed

that the proposed model and methods perform reasonably well. A relevant and practical

prediction issue that involves prediction of future failures in a future interval, regardless of

the failure modes as well as specific to failure modes, is discussed. Analysis of a real data

on device failure with two failure modes is provided for illustrative purposes.

Naturally, it would be of interest to extend this research to a multivariable setting where

more than two failure modes can compete for failures. An extension of the bivariate model

considered here to the multivariable scenario may be considered in such a case. Marshall and

Olkin [15] presented an outline for such an extension in case of a multivariate exponential

distribution. Along with the usual limitations of the exponential distributions as marginal

models for lifetimes, it has also been observed that in case of the multivariate exponential
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Table 7: Prediction of future failures from Mode W for the device failure data, choosing δ = 30, 75, 120, 200.

Frequentist Prediction Bayesian Prediction
Future Interval Predicted 95% Prediction Bound Predicted 95% Prediction Bound

Number of Failures Number of Failures

(300, 330) 0.03 (0, 0) 0.05 (0, 1)
(300, 375) 0.08 (0, 1) 0.14 (0, 1)
(300, 420) 0.13 (0, 1) 0.20 (0, 1)
(300, 500) 0.20 (0, 1) 0.28 (0, 1)

distribution, the analytical treatment gets quite complicated due to the existence of singular

distributions in lower dimensions. An extension to the multivariable case for Weibull distri-

bution with distinct shape parameters would be useful in reliability in modelling reliability

data with multiple failure modes. But such an extension to a multivariate distribution is not

straightforward. This would be an interesting problem for future research.
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