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Abstract

In this article we consider the multiple step stress model based on the cumulative

exposure model assumption. Here, it is assumed that for a given stress level, the

lifetime of the experimental units follows exponential distribution and the expected

lifetime decreases as the stress level increases. We mainly focus on the order restricted

inference of the unknown parameters of the lifetime distributions. First we consider

the order restricted maximum likelihood estimators of the model parameters. It is well

known that the order restricted maximum likelihood estimators cannot be obtained in

explicit forms. We propose an algorithm which stops in finite number of steps and it

provides the maximum likelihood estimators. We further consider the Bayes estimates

and the associated credible intervals under the squared error loss function. Due to

the absence of explicit form of the Bayes estimates, we propose to use the importance

sampling technique to compute Bayes estimates. We provide an extensive simulation

study in case of three stress levels mainly to see the performances of the proposed

methods. Finally the analysis of one real data set has been provided for illustrative

purposes.
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1 Introduction

Day by day industrial products become highly reliable and as a result it becomes very difficult

to get sufficient failure time data during a life testing experiment for any statistical analysis

purposes. The accelerated life testing (ALT) procedure is an effective technique used by the

experimenters to overcome such difficulties. In an ALT procedure, products are subjected

to higher stress level than the normal operating condition, which ensures early failures of

the experimental units. Key references on ALT model are Nelson [14] and Bagdanavicius

and Nikulin [1], see also Kateri and Kamps [10], Wang et al. [18] and the references cited

therein for some recent developments. Various factors such as temperature, voltage, pressure,

load etc. are usually used as stress factors, and they can be applied mainly in two different

ways. One is known as the constant stress life testing experiment, where the whole sample is

divided in to some sub-groups and different stresses are applied to each sub-group separately.

Another one is called as the step stress life testing (SSLT) experiment, in which case the

stress level gradually increases. In a SSLT, one starts with n number of units at the initial

stress level s0. The stress increases to the next stress level s1 at a pre-assigned time τ1 and

then at the time point τ2, the stress level increases to s2 and so on. In case of only two stress

levels the experiment is known as the simple step stress experiment.

Since units are exposed to different stress levels, lifetime distributions of the experimen-

tal units vary from one stress level to another. Predominantly used lifetime distributions

are exponential, Weibull, generalized exponential, log normal, gamma etc. to analyze data

obtained from a SSLT experiment. The most common model assumption made to connect

the distributions under different stress levels is the cumulative exposure model (CEM) of

Seydyakin [16]. See also Nelson [14] in this respect.

The analysis of SSLT experimental data based on CEM assumption has been discussed

quite extensively in the literature. Xiong [19] presented the inference of a simple step stress

exponential model by assuming that mean lifetime of the experimental unit is a log-linear

function of stresses. Other references on SSLT model are Balakrishnan et al. [4], Balakrishnan
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and Xie [6, 5], and see the references cited therein. Interested readers are referred to a review

article by Balakrishnan [2] on the exact inferential methods of the model parameter of an

exponential distribution under different censoring schemes. Recently Mitra et al. [13] have

considered the exact inference of a simple step stress model for two parameter exponential

distribution. Bayesian inference on SSLT has been considered by Drop et al. [7], Lee and

Pan [12], Sha and Pan [17] and Ganguly et al. [8].

To ensure rapid failures of the experimental units, experimenter increases stress levels

at the pre-assigned time points in a SSLT experiment. Hence, the expected lifetime of the

experimental units gradually decreases with the increase of the stress level. Therefore, there is

a natural order restriction among the parameters under different stress levels. If the expected

lifetime is θi at the stress level si−1, i = 1, . . . ,m+1, then clearly, θ1 ≥ θ2 ≥ . . . ≥ θm+1. Most

of the inferences in the literature do not consider this assumption. First Balakrishnan et al. [3]

developed order restricted maximum likelihood estimation for the exponential multiple step

stress model under Type-I and Type-II censoring scheme using isotonic regression method.

Recently Samanta et al. [15] have considered order restricted Bayesian inference for the

exponential parameters of a simple step stress model using reparametrization method. A

comprehensive review of different aspects of step-stress models can be found in Kundu and

Ganguly [11].

Balakrishnan et al. [3] obtained the order restricted maximum likelihood estimators

(MLEs) using isotonic regression method and they are quite complicated to use in prac-

tice, see for example eqn. (9) of that paper. In this paper we have considered the same

model as in Balakrishnan et al. [3], but we have made a reparametrization of the model

parameters. First we consider the classical inference of the order restricted parameters. We

have provided an algorithm which after finite number of steps produces the MLEs of the

unknown parameters in explicit forms. Similarly as in Balakrishnan et al. [3], here also it is

observed that the MLEs of the unknown parameters exist even when there is no observation

in some of the stress levels, provided they are not on the boundaries. Based on the observed

Fisher information matrix, we obtain the confidence intervals of the unknown parameters.
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We further consider the order restricted Bayesian inference of the unknown parameters un-

der a fairly flexible priors. Since the Bayes estimates cannot be obtained in explicit forms,

we propose to use importance sampling technique to compute the Bayes estimates and the

associated credible intervals (CRIs). Extensive simulation experiments have been performed

to see the effectiveness of proposed method and its advantages over the unconstrained MLEs.

Finally, the analysis of one real data set has been performed for illustrative purposes.

The rest of the paper is organized as follows. In Section 2, we provide the model as-

sumption, the reparametrization and the corresponding likelihood function. In Section 3,

the MLEs and the associated theoretical results are provided. Construction of the confidence

intervals of the unknown parameters based on the asymptotic distribution of the MLEs and

using bootstrap method, have been provided in Section 4. The order restricted Bayesian

inference of the unknown parameters is provided in Section 5. The simulation results and

the analysis of one real data set have been presented in Section 6, and finally in Section 7

we draw conclusions of the paper.

2 Model Assumption and Likelihood Function

We consider multiple step stress model as in Balakrishnan et al. [3] when the lifetime of

the experimental units follow one-parameter exponential distributions. Assume n identical

experimental units are put into a life testing experiment with the initial stress level s0 and

the stress changes from si−1 to si at the pre-fixed time points τi, i = 1, . . . ,m, respectively.

The experiment continues till the last unit fails. Hence, the data came from this experiment

is of the form t1:n < . . . < tn1:n < τ1 < tn1+1:n < . . . < tn1+n2:n < τ2 < . . . < τm <

t(n1+...+nm+1):n < . . . < tn:n. Here ni is the number of failures at the stress level si−1 for

i = 1, . . . ,m+ 1. Note that some of the ni may be zero also.

It is further assumed that the lifetime distribution of experimental units under stress level

si−1 follows an exponential distribution with mean θi. To relate the lifetime distribution of

one stress level to the preceding stress level we follow the CEM assumptions, hence, the
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cumulative distribution function (CDF) of the lifetime of the experimental unit is given by

F (t) =





F1(t) if 0 < t ≤ τ1

Fk(ck−1 + t− τk−1) if τk−1 < t < τk

Fm+1(cm + t− τm) if τm < t < ∞,

(1)

where

Fk(x) = 1− e
− x

θk

and ck’s can be obtained from the following equations;

Fk(ck−1) = Fk−1(ck−2 + τk−1 − τk−2); k = 2, 3, . . . ,m+ 1.

By solving the above recursion relations one can easily obtain

ck−1 = θk

k−1∑

j=1

τj − τj−1

θj
; k = 2, 3, . . . ,m+ 1,

with c0 = 0 and τ0 = 0. Hence, the probability density function (PDF) associated with the

CDF (1) is given by

f(t) =





1
θ1
e
− t

θ1 if 0 < t ≤ τ1

1
θk
e
−

(ck−1+t−τk−1)

θk if τk−1 < t < τk for k = 2, 3, . . . ,m

1
θm+1

e
−

(cm+t−τm)
θm+1 if τm < t < ∞.

(2)

Since in a step stress experiment as the stress level increases the expected lifetime of the

experimental units decreases, there is a natural ordering on θi’s in this case as follows:

θ1 ≥ . . . ≥ θm+1 > 0. Let us consider the following reparametrization of the parameters:

θi = βi−1θi−1 = θ1

i−1∏

j=1

βj

for i = 2, 3, . . . , m+1, where 0 < β1, . . . , βm ≤ 1. Since there is a one to one correspondence

between {θ1, . . . , θm+1} and {θ1, β1, . . . , βm}, the statistical inference based on the two sets
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of parameters will be equivalent.

The likelihood function of the data based on the parameters {θ1, β1, . . . , βm}, is given by

L(θ1, β1, . . . , βm;Data) ∝ e
−

A(β1,...,βm)
θ1

θn1β
n2
1 βn3

2 . . . β
nm+1
m

. (3)

where

A(β1, . . . , βm) = D1 +
m+1∑

i=2

Di∏i−1
j=1 βj

,

D1 =

n−n2∑

i=1

ti:n + n2τ1,

Dk =

n−nk+1∑

i=n−nk+1

(ti:n − τk−1) + nk+1(τk − τk−1), k = 2, 3, . . . , m,

Dm+1 =
n∑

i=n−nm+1+1

(ti − τm),

and nk =
m+1∑

i=k

ni, k = 1, 2, . . . m+ 1. Note that here A(β1, . . . , βm) depends on the data, but

we do not make it explicit for brevity.

3 Maximum Likelihood Estimation

The MLEs of {θ1, β1, . . . , βm} can be obtained by maximizing the likelihood function (3) with

respect to the unknown parameters over the region S = (0, ∞)× (0, 1]m. The log-likelihood

function without the additive constant is given by

l(θ1, β1, . . . , βm;Data) = −n ln θ1 −
m∑

j=1

n̄j+1 ln βj −
1

θ1

[
m+1∑

i=1

Di∏i−1
j=0 βj

]
. (4)

Therefore, the MLEs of θ1, β1, . . . , βm can be obtain by maximizing (4) over S. Let us first

consider the case that there is at least one failure in each stress level, later we will consider
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the general case. Now, the m+ 1 normal equations can be written as follows:

nθ1 = D1 +
D2

β1

+
D3

β1β2

+ . . .+
Dm+1

β1β2 . . . βm

,

n2β1 =
D2

θ1
+

D3

β2θ1
+ . . .+

Dm+1

β2β3 . . . βmθ1
,

...

nmβm−1 =
Dm

β1β2 . . . βm−2θ1
+

Dm+1

β1β2 . . . βm−2βmθ1
,

nm+1βm =
Dm+1

β1β2 . . . βm−1θ1
. (5)

Let θ̂∗1, β̂
∗
1 , β̂

∗
2 , . . . , β̂

∗
m be the solutions of (5), then

θ̂∗1 =
D1

n1

, β̂∗
1 =

D2

n2θ̂
∗
1

, β̂∗
2 =

D3

n3β̂
∗
1 θ̂

∗
1

, . . . , β̂∗
m =

Dm+1

nm+1β̂
∗
1 β̂

∗
2 . . . β̂

∗
m−1θ̂

∗
1

.

Note that if 0 < β̂∗
i ≤ 1, for i = 1, 2, . . . ,m, then θ̂∗1, β̂

∗
1 , . . . , β̂

∗
m, are the MLEs of θ1, β1, . . . , βm,

respectively. If some of the β̂∗
i > 1 for i = 1, . . . ,m, the MLEs can be obtained using the

following Algorithm 1.

Algorithm 1:

Step 1: For the given data t = (t1:n, . . . , tn:n), estimate θ̂∗1, β̂
∗
1 , . . . , β̂

∗
m and check whether

β̂∗
i ≤ 1 (i = 1, . . . ,m) or not.

Step 2: If β̂∗
i ≤ 1 for all i = 1, 2, . . . , m, then they are the MLEs of βi and θ̂∗1 is the MLE

of θ1.

Step 3: If one or some of the β̂∗
i > 1 then replace all of them by 1 in the log-likelihood

function and re-estimate the remaining parameters by maximizing the profile log-likelihood.

Step 4: Check the estimates of βi’s obtain in Step 3 are less than or equals to one or not.

If all of them are less than or equals to one then they are the MLEs and the corresponding

estimate of θ1 is the MLE of θ1.

Step 5: If one or some of the estimates of βi’s obtain in Step 3 is greater than one then
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repeat Step 3 and Step 4 until we get the estimate of all βi’s less than or equal to 1.

Theorem 1. Algorithm 1 stops in a finite number of steps.

Proof. Since m is finite, the algorithm stops in a finite number of steps.

Theorem 2. Algorithm 1 provides the MLEs of θ1, β1, . . . , βm under the constraints

0 < β1, . . . , βm ≤ 1.

Proof. See in the Appendix A.

Now consider the case when there is no failure in one or more internal stress levels. We

will show that in this case also order restricted MLEs exist unlike the general MLEs.

Theorem 3. If there is no failure at the stress level sk for k = 1, . . . ,m− 1, then the MLE

of βk is 1.

Proof. See in the Appendix B.

Therefore, using Theorem 3, we have

θ̂∗1 =





D1

n1
if n2 6= 0

D1+D2+...+Dl

n1
if n2 = n3 = . . . = nl = 0, nl+1 6= 0, l = 2, 3, . . . ,m,

and for k = 1, 2, . . . ,m− 1.

β̂∗
k =





1 if nk+1 = 0

Dk+1

nk+1β̂
∗
1 ...β̂

∗
k−1θ̂

∗
1

if nk+1 6= 0, nk+2 6= 0

Dk+1+...+Dk+l

nk+1β̂
∗
1 ...β̂

∗
k−1θ̂

∗
1

if nk+1 6= 0, nk+2 = . . . = nk+l = 0, nk+l+1 6= 0, l = 2, . . . ,m− k,

β̂∗
m =

Dm+1

nm+1β̂
∗
1 β̂

∗
2 . . . β̂

∗
m−1θ̂

∗
1

.

Once we obtain θ̂1
∗
, β̂∗

1 , . . . , β̂
∗
m, the MLEs of θ1, β1, . . . , βm can be calculated using Algo-

rithm 1.
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4 Different Confidence Intervals

4.1 Asymptotic Confidence Interval

In this section we provide the asymptotic confidence intervals of θ1, . . . , θm+1 based on the

observed Fisher information matrix. First we calculate the observed Fisher information

matrix of θ1, β1, . . . , βm. Let us denote η1 = θ1 and ηk = βk−1, for k = 2, . . . ,m + 1. Then

the observed Fisher information matrix becomes

F = ((fij)) = ((− δ2l

δηiδηj
)).

Here for i = 1, . . . ,m+ 1, j = i+ 1, . . . ,m+ 1

fii =
ni

η2i
− 2Di

η1η2 . . . η
3
i

− 2Di+1

η1η2 . . . η
3
i ηi+1

− . . .− 2Dm+1

η1η2 . . . η
3
i ηi+1 . . . ηm+1

,

fij = − Dj

η1 . . . ηi−1η
2
i ηi+1 . . . ηj−1η

2
j

− Dj+1

η1 . . . ηi−1η
2
i ηi+1 . . . ηj−1η

2
j ηj+1

− . . .− Dm+1

η1 . . . ηi−1η
2
i ηi+1 . . . ηj−1η

2
j ηj+1 . . . ηm+1

= fji.

Now to compute the observed Fisher information matrix of θ1, . . . , θm+1, let us consider the

following transformation

θ̂ =




θ̂1

θ̂2

. . .

θ̂m

θ̂m+1




=




θ̂1

β̂1θ̂1

. . .

β̂1β̂2 . . . β̂m−1θ̂1

β̂1β̂2 . . . β̂mθ̂1




=




g1

g2

. . .

gm

gm+1




.
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hence, the observed Fisher information matrix of θ1, . . . , θm+1 is G′FG, where,

G′ =




δg1
δθ1

δg1
δβ1

. . . δg1
δβm−1

δg1
δβm

δg2
δθ1

δg2
δβ1

. . . δg2
δβm−1

δg2
δβm

. . .

δgm+1

δθ1

δgm+1

δβ1
. . .

δgm+1

δβm−1

δgm+1

δβm




and

δgk

δβi

=





β̂1 . . . β̂i−1β̂i+1 . . . β̂k−1θ̂1 for k = 2, 3, . . . ,m+ 1 and i = 1, 2, . . . , k − 1

0 for k = 2, 3, . . . ,m and i = k, k + 1, . . . ,m,

δg1

δθ1
= 1,

δg1

δβi

= 0; i = 1, . . . ,m, and
δgk

δθ1
= β1β2 . . . βk−1; k = 2, 3, . . . ,m+ 1.

Therefore, under the assumption of asymptotic normality, 100(1−α)% asymptotic CI of

θi is given by [
θ̂i ± z1−α

2

√
Vii

]
,

where Vii is (i, i)-th element of the matrix (G′FG)−1.

4.2 Bootstrap Confidence Interval

In this subsection, we discuss about the construction of parametric bootstrap confidence

intervals of the unknown parameters. The following algorithm can be used to construct the

parametric bootstrap confidence intervals.

Algorithm 2:

Step 1: For a given n, τ1, . . . , τm and from the sample t = (t1:n, t2:n, . . . , tn:n) obtain θ̂1, . . . , θ̂m+1,

the MLEs of the respective parameters.

Step 2: Simulate a sample of size n, say, t∗ = (t∗1:n, t
∗
2:n, . . . , t

∗
n:n) from (2) with parameters

θ̂1, θ̂2, . . . θ̂m+1.
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Step 3: Using the new sample t∗, estimate MLEs of θ1, θ2, . . . , θm+1, say θ̂
(1)
1 , θ̂

(1)
2 , . . . , θ̂

(1)
m+1.

Step 4: Repeat steps 2 and 3,M times and obtain θ̂
(1)
1 , θ̂

(2)
1 , . . . θ̂

(M)
1 , . . . , θ̂

(1)
m+1, θ̂

(2)
m+1, . . . , θ̂

(M)
(m+1).

Step 5: Arrange θ̂
(1)
i , θ̂

(2)
i , . . . , θ̂

(M)
i , i = 1, 2, . . . ,m + 1 in ascending order and denote the

ordered MLEs as θ̂
[1]
i , θ̂

[2]
i , . . . , θ̂

[M ]
i . A two sided 100(1 − α)% bootstrap confidence interval

of θi, (i = 1, 2, . . . ,m + 1) is given by (θ̂
[α
2
M ]

i , θ̂
[(1−α

2
)M ]

i ), here [x] denotes the largest integer

less than or equals to x.

5 Bayesian Analysis

It is observed so far that the order restricted MLEs cannot be obtained in explicit forms,

hence, the construction of the exact confidence intervals is a difficult task. Therefore, in

this case Bayesian inference seems to be a reasonable choice. In this section we consider

the Bayesian inference of the unknown parameters and provide the Bayes estimates and the

associated CRIs of the model parameters. We use the following notations. An inverted

gamma distribution with the parameters a > 0 and b > 0 will be denoted by IG(a, b) and it

has the PDF

fIG(x; a, b) =
ab

Γ(b)
e−

a
x

(
1

x

)b+1

; x > 0,

and 0, otherwise. A beta distribution with the parameters a > 0 and b > 0 will be denoted

by Beta(a, b), and it has the PDF

1

B(a, b)
xa−1(1− x)b−1; 0 < x < 1,

and 0, otherwise. The priors of θ1 and βi are denoted by π0(θ1) and πi(βi), respectively. It

is assumed that π0(θ1) ∼ IG(a0, b0), and πi(βi) ∼ Beta(ai, bi) for i = 1, 2, . . . ,m, and all the

priors are independently distributed. Therefore, the join prior distribution of θ1, β1, . . . , βm
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is given by

π(θ1, β1, . . . , βm) ∝ e
−

a0
θ1

(
1

θ1

)b0+1

βa1−1
1 (1− β1)

b1−1 . . . βam−1
m (1− βm)

bm−1,

for θ1 > 0 and 0 < βi < 1, for i = 1, 2, . . . ,m. Hence, the posterior distribution of

θ1, β1, β2, . . . , βm can be written as

π̃(θ1, β1, . . . , βm|Data) ∝ βa1−n2−1
1 (1− β1)

b1−1 × . . .× βam−nm+1−1
m (1− βm)

bm−1 ×
(

1

θ1

)n+b0+1

e
− 1

θ1
(a0+A(β1, β2, ..., βm))

∝ π̃1(β1) . . . . . . π̃m(βm)π̃m+1(θ1|β1, . . . , βm)w1(θ1, β1, . . . , βm),

where

π̃i(βi) = 1 for i = 1, 2, . . . ,m,

π̃m+1(θ1|β1, . . . , βm) =
[a0 + A(β1, β2, . . . , βm)]

n+b0

Γ (n+ b0)
(
1

θ1
)n+b0+1e

− 1
θ1

(a0+A(β1, β2, ..., βm))
,

w1(θ1, β1, . . . , βm) = [a0 + A(β1, β2, . . . , βm)]
−(n+b0)

m∏

i=1

β
ai−ni+1−1
i (1− βi)

bi−1.

Hence, under the assumption of the squared error loss function, the Bayes estimate (BE)

of any parametric function g(θ1, β1, . . . , βm) is the posterior expectation of g(θ1, β1, . . . , βm)

which is given by

ĝB(θ1, β1, . . . , βm) = Eθ1,β1,...,βm|Data (g(θ1, β1, . . . , βm))

=

∫ 1

0

. . .

∫ 1

0

∫ ∞

0

g(θ1, β1 . . . , βm)π̃(θ1, β1, . . . , βm|Data)dθ1dβ1 . . . dβm

∫ 1

0

. . .

∫ 1

0

∫ ∞

0

π̃(θ1, β1, . . . , βm|Data)dθ1dβ1 . . . dβm

,

(6)

provided the expectation exists. In general, an explicit form of the equation (6) cannot be

obtained. Hence, we propose to use the importance sampling method to compute the BE

and to construct the associated CRIs. We propose to use the following algorithm to compute
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the BE and the associated CRIs.

Algorithm 3:

Step 1: Generate β11, β21, . . . , βm1 from Uniform(0, 1) distribution.

Step 2: For given β11, β21, . . . , βm1 generate θ11 from IG(n+ b0, a0 + A(β11, . . . , βm1)).

Step 3: Repeat Step 1-Step 2,M times to get β11, β21, . . . , βm1, θ11, . . . , β1M , β2M , . . . , βmM , θ1M .

Step 4: Compute gi = g(θ1i, β1i, β2i, . . . , βmi); i = 1, 2, . . . ,M .

Step 5: Calculate the weights w1i =
w1(θ1i,β1i,β2i,...,βmi)∑M
i=1 w1(θ1i,β1i,β2i,...,βmi)

.

Step 6: Compute the BE of g(θ1, β1, . . . , βm) under the squared error loss function as

ĝ(θ1, β1, . . . , βm) =
∑M

j=1w1jgj.

Step 7: To construct a 100(1 − γ)% (0 < γ < 1) CRI of g(θ1, β1, . . . , βm), first order

g′js for j=1,2,. . . , M, say g(1) < g(2) < . . . < g(M) and arrange w1j accordingly to get

w1(1), w1(2), . . . , w1(M). Note that w1(1), w1(2), . . . , w1(M) may not be ordered.

Step 8: A 100(1− γ)% CRI can be obtain as (gj1 , gj2) where j1 and j2 satisfy

j1, j2 ∈ {1, 2, . . . , M} , j1 < j2,

j2∑

i=j1

w(i) ≤ 1− γ <

j2+1∑

i=j1

w(i). (7)

The 100(1−γ)% highest posterior density (HPD) CRI of g(θ1, β1, . . . , βm) becomes
(
g(j∗1 ), g(j∗2 )

)
,

where 1 ≤ j∗1 < j∗2 ≤ M satisfy

j∗2∑

i=j∗1

w(i) ≤ 1− γ <

j∗2+1∑

i=j∗1

w(i), and g(j∗2 ) − g(j∗1 ) ≤ g(j2) − g(j1),

for all j1 and j2 satisfying (7).

13



6 Simulation and Data Analysis

6.1 Simulation

An extensive simulation study has been performed for multiple (3 steps) step stress model

to see the effectiveness of the proposed methods. In the simulation study we have taken

θ1 = 10, θ2 = 5, and θ3 = 3, different sample sizes (n) and different τ1 and τ2 values.

We have computed the order restricted MLEs of the unknown parameters and the as-

sociated mean squared errors (MSEs). We have obtained the asymptotic and bootstrap

confidence intervals of these parameters based on order restricted MLEs. For comparison

purposes, we have computed the MLEs with out any order restriction, the associated MSEs,

and also the asymptotic and bootstrap confidence intervals based on them. Further, in

each case the Bayes estimates and the associated CRIs are obtained. We have used non-

informative priors and we have taken the hyper parameter values as follows: a0 = 0.0001,

b0 = 0.0001, a1 = 1, b1 = 1, a2 = 1 and b2 = 1. In each case we have computed the Bayes

estimates and the associated highest posterior density (HPD) and symmetric CRIs based on

the importance sampling technique.

We have obtained the average estimates (AEs) and the associated MSEs of all the three

different estimates. The results are reported in Table 1. In case of the confidence and

credible intervals we have obtained the average lengths (ALs) and the associated coverage

percentages (CPs) for 95% level of confidence and the results are reported in Table 2. In

all the above cases results are based on 1000 replications. At each replication, the Bayes

estimates and both the credible intervals are obtained based on 5000 importance samples.

Some of the points are quite clear from the experimental results. The performances of

both the MLEs and the Bayes estimators with respect to the non-informative priors are quite

satisfactory. It is observed that for all the parameters in all the three cases as the sample

size increases the biases and the MSEs decrease. It indicates the consistency behavior of

the estimators. The average biases and the MSEs of the order restricted MLEs are smaller

14



Table 1: Average values and the corresponding mean squared errors of the different

estimators when θ1 = 10, θ2 = 5, θ3 = 3.

Order restricted MLEs

θ1 θ2 θ3

n τ1 τ2 AE MSE AE MSE AE MSE

20 4 7 11.65 40.54 5.50 4.86 2.85 1.03
20 4 9 11.52 34.35 5.32 3.27 2.81 1.43
20 6 8 11.00 21.29 5.76 8.01 2.94 1.09

30 4 7 11.09 17.33 5.43 3.86 2.94 0.71
30 4 9 11.04 16.52 5.24 2.18 2.87 1.01
30 6 8 10.74 9.88 5.51 5.05 2.91 0.70

40 4 7 10.82 11.87 5.31 2.41 2.96 0.54
40 4 9 10.75 12.26 5.24 1.91 2.99 0.84
40 6 8 10.30 6.56 5.57 4.42 2.98 0.60

50 4 7 10.44 7.02 5.26 2.01 2.99 0.46
50 4 9 10.51 9.55 5.17 1.27 2.98 0.64
50 6 8 10.44 5.49 5.39 3.37 2.96 0.46

MLEs without order restriction

θ1 θ2 θ3

n τ1 τ2 AE MSE AE MSE AE MSE

20 4 7 11.45 43.27 5.90 15.58 3.07 1.50
20 4 9 11.74 41.26 5.45 5.46 2.99 2.04
20 6 8 11.05 28.40 6.36 20.72 3.07 1.44

30 4 7 11.23 26.00 5.53 5.52 3.02 0.87
30 4 9 10.94 17.15 5.26 3.08 2.98 1.32
30 6 8 10.67 10.61 6.02 15.98 3.00 0.90

40 4 7 10.76 13.73 5.43 3.61 3.04 0.61
40 4 9 10.77 13.74 5.16 1.66 3.00 0.98
40 6 8 10.37 7.69 5.56 6.21 3.00 0.64

50 4 7 10.51 8.35 5.22 2.15 3.02 0.50
50 4 9 10.55 10.25 5.13 1.42 3.02 0.79
50 6 8 10.48 5.65 5.71 9.23 2.98 0.50

Order restricted Bayes estimators

θ1 θ2 θ3

n τ1 τ2 AE MSE AE MSE AE MSE

20 4 7 12.63 47.67 5.83 3.51 3.18 0.80
20 4 9 12.63 46.35 5.62 2.98 3.05 0.97
20 6 8 11.83 20.77 6.06 4.49 3.17 0.94

30 4 7 11.54 29.24 5.62 2.40 3.13 0.63
30 4 9 11.44 17.45 5.57 2.03 3.14 0.72
30 6 8 11.00 10.58 5.79 2.83 3.16 0.62

40 4 7 10.96 10.75 5.56 1.87 3.14 0.49
40 4 9 10.97 11.69 5.43 1.42 3.13 0.57
40 6 8 10.94 8.52 5.86 2.77 3.16 0.46

50 4 7 10.92 9.22 5.52 1.67 3.10 0.40
50 4 9 10.95 9.81 5.34 1.06 3.11 0.50
50 6 8 10.69 6.22 5.69 2.12 3.15 0.43

than the corresponding Bayes estimates in case of θ1, but they are larger for θ2 and θ3 for

all sample sizes and for all τ1, τ2.

Comparing the two confidence intervals in case of order restricted MLEs, it is observed
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Table 2: Average lengths and coverage percentages of different 95% confidence and

credible intervals of θ1, θ2 and θ3.

Confidence intervals based on order restricted MLEs.

Bootstrap CI Asymptotic CI

θ1 θ2 θ3 θ1 θ2 θ3

n τ1 τ2 AL CP AL CP AL CP AL CP AL CP AL CP

20 4 7 30.4 92.6 9.0 96.7 3.7 92.0 19.4 93.3 9.4 93.9 4.2 88.3
20 4 9 29.9 91.7 7.3 96.3 4.1 88.4 20.3 93.8 7.4 93.9 5.0 82.9
20 6 8 22.7 92.7 10.2 98.7 3.8 89.7 15.5 92.4 12.7 93.0 4.3 89.8

30 4 7 20.4 95.1 7.0 97.0 3.2 91.5 15.0 94.8 7.4 94.6 3.5 90.4
30 4 9 20.3 95.8 5.8 96.4 3.6 89.7 15.4 92.4 6.0 93.7 4.2 87.4
30 6 8 14.9 94.6 8.7 98.2 3.2 92.1 11.9 94.5 10.1 93.3 3.5 90.0

40 4 7 15.4 95.4 6.1 96.6 2.8 93.9 12.5 94.6 6.3 94.6 3.0 90.8
40 4 9 15.7 93.9 5.0 95.3 3.3 92.1 12.4 94.3 5.2 94.9 3.7 89.9
40 6 8 11.3 95.5 7.4 96.7 2.8 92.5 9.9 94.6 8.9 94.6 3.0 92.7

50 4 7 12.8 94.8 5.3 96.1 2.6 93.4 10.6 95.3 5.3 92.8 2.8 92.3
50 4 9 12.8 93.5 4.5 94.7 3.0 92.6 10.5 95.1 4.5 95.7 3.4 91.9
50 6 8 9.7 95.0 6.7 98.1 2.6 93.7 8.8 94.9 7.4 94.5 2.7 92.7

Confidence intervals based on MLEs without any order restriction.

Bootstrap CI Asymptotic CI

θ1 θ2 θ3 θ1 θ2 θ3

n τ1 τ2 AL CP AL CP AL CP AL CP AL CP AL CP

20 4 7 30.2 92.6 15.4 95.1 4.7 90.8 20.7 90.7 10.6 91.5 4.4 88.1
20 4 9 30.6 93.0 11.0 95.3 6.1 91.3 21.4 92.2 7.9 93.2 5.8 87.2
20 6 8 22.9 93.1 16.1 95.1 4.8 93.3 15.5 93.1 16.6 89.3 4.6 88.6

30 4 7 22.9 93.3 10.8 94.5 3.7 93.8 14.9 92.5 8.0 92.4 3.6 90.6
30 4 9 20.8 94.2 7.3 94.6 4.6 89.7 15.7 93.5 6.1 91.7 4.6 89.2
30 6 8 14.6 94.1 16.5 94.0 3.8 93.0 11.9 94.8 12.9 91.6 3.6 89.6

40 4 7 15.6 94.2 8.3 95.1 3.1 94.5 12.1 92.5 6.4 94.0 3.1 93.0
40 4 9 16.1 93.7 5.8 95.1 3.9 92.2 12.3 93.3 5.2 93.7 3.9 89.5
40 6 8 11.3 95.4 14.8 93.4 3.2 92.8 9.9 94.8 9.3 92.2 3.1 91.0

50 4 7 13.0 94.0 6.7 93.7 2.8 93.5 10.5 94.7 5.6 95.0 2.8 92.3
50 4 9 12.9 94.5 4.9 94.9 3.6 95.5 10.5 92.8 4.5 94.0 3.5 91.7
50 6 8 9.7 95.9 12.0 94.3 2.8 93.0 8.8 94.1 8.0 91.6 2.8 91.8

Credible intervals.

Symmetric CRI HPD CRI

θ1 θ2 θ3 θ1 θ2 θ3

n τ1 τ2 AL CP AL CP AL CP AL CP AL CP AL CP

20 4 7 22.2 97.1 7.6 97.4 4.0 97.6 19.0 97.5 7.1 97.6 3.8 96.0
20 4 9 22.4 97.2 6.7 94.7 4.3 96.5 19.0 97.4 6.2 96.1 4.0 94.5
20 6 8 16.8 96.9 8.8 98.5 4.1 96.2 15.1 97.2 8.1 98.7 3.9 94.9

30 4 7 15.7 96.1 6.2 97.2 3.3 96.1 14.1 95.8 5.8 97.2 3.2 95.9
30 4 9 15.3 96.1 5.5 96.6 3.7 96.8 13.8 96.0 5.2 97.7 3.6 96.2
30 6 8 12.2 96.1 7.1 98.3 3.4 96.2 11.3 95.8 6.7 98.4 3.3 95.7

40 4 7 12.4 95.8 5.4 97.1 2.9 96.1 11.5 95.7 5.2 97.1 2.8 94.8
40 4 9 12.4 95.8 4.7 96.0 3.3 97.1 11.5 96.5 4.5 96.4 3.2 96.6
40 6 8 10.5 95.1 6.6 97.7 3.0 97.2 9.9 96.5 6.3 98.5 2.9 97.2

50 4 7 11.0 95.5 5.0 97.1 2.6 96.0 10.3 96.5 4.8 96.8 2.5 95.1
50 4 9 11.1 95.2 4.2 97.2 3.0 96.5 10.4 95.5 4.1 97.3 2.9 95.3
50 6 8 9.1 94.8 5.9 97.9 2.7 95.8 8.6 95.8 5.7 97.8 2.6 95.1
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that both of them perform quite well. For both the confidence intervals the average lengths

decrease as the sample size increases. Between the two confidence intervals, the bootstrap

CIs are preferable than the asymptotic CIs in terms of the coverage percentages although

in certain cases the average lengths are slightly longer. Now comparing the two credible

intervals it is observed that the HPD CRIs perform slightly better than the symmetric CRIs.

In all the cases the coverage percentages are very close to the corresponding nominal values.

Finally comparing the bootstrap CIs and the HPD CRIs it is observed that HPD CRIs

perform slightly better than the bootstrap CIs in terms of lower average lengths.

Now comparing the order restricted MLEs with the unrestricted MLEs, it has been

observed that the performance of order restricted MLEs are better than the unrestricted

MLEs, in terms of MSE, specially for θ2 and θ3. Since in both the cases the estimates of θ1

are same, their performances are also very similar. The average lengths of CIs for θ2 and θ3

are lower when they are computed based on order restricted MLEs.

It may be mentioned that to construct the asymptotic confidence intervals it has been

assumed that the MLEs are asymptotically normally distributed. To check the validity

of that assumption, we have provided the quantile-quantile (QQ) plots of θ̂1, θ̂2 and θ̂3 for

different values of n in Figure 1 to Figure 3. It has been observed that the theoretical quantile

and the observed quantile converge as n increases. The performances of the asymptotic

confidence intervals are quite good even for moderate sample sizes.
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Figure 1: QQ Plots of θ̂1 with parameter values θ1 = 10, θ2 = 5, θ3 = 3, and for τ1 = 6,
τ2 = 8.
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Figure 2: QQ Plots of θ̂2 with parameter values θ1 = 10, θ2 = 5, θ3 = 3, and for τ1 = 6,
τ2 = 8.
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Figure 3: QQ Plots of θ̂3 with parameter values θ1 = 10, θ2 = 5, θ3 = 3, and for τ1 = 6,
τ2 = 8.

6.2 Fish Data Set

Here we analyze a multiple step stress data set taken from Greven et al. [9]. Here a group

of 15 fishes have been taken to observe their swimming performances. Fish were swum at

initial flow rate 15 cm/sec., and then flow rate was increased by 5 cm/sec. at time 110, 130,

150, 170 minutes. Here flow rate has been considered as stress factor. The time at which a

fish could not maintain its position is called fatigue time and is recorded as the failure data.

The flow rate was increased four times, therefore, we have five stress levels. The observed

failure data are: 91.00, 93.00, 94.00, 98.20, 115.81, 116.00, 116.50, 117.25, 126.75, 127.50,

154.33, 159.50, 164.00, 184.14, 188.33. Number of failure at the first, second, third, fourth

and fifth stress level are 4, 6, 0, 3, 2, respectively.

We analyze this data set assuming multiple exponential multiple step stress model with

the order restriction. First we have considered the Bayesian analysis of the data set by

considering non-informative prior assumption. Bayes estimates of θ1, θ2, θ3, θ4, θ5 under

square error loss function are 414.95, 69.082, 52.082, 29.337, 17.89, respectively. We provide
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symmetric and HPD CRIs in Table 3.

Table 3: Symmetric and highest posterior density credible intervals of the different

parameters of the fish data set.

θ1 θ2 θ3 θ4 θ5

CI Level LL UL LL UL LL UL LL UL LL UL

90% 165.44 837.71 31.32 137.50 25.77 103.45 14.52 54.53 7.16 32.85
Symmetric 95% 153.41 982.08 28.76 157.66 22.71 121.19 13.43 60.36 6.16 38.39

99% 124.03 1449.60 25.48 220.03 19.60 161.99 10.18 87.26 4.91 51.18

90% 143.13 702.53 26.24 115.87 21.14 87.90 10.08 44.94 5.25 28.45
HPD 95% 128.56 842.69 25.48 141.01 19.60 106.00 11.53 56.67 4.54 32.97

99% 94.59 1210.60 21.69 188.76 16.38 141.50 7.49 72.54 3.65 45.72

We have also obtained the order restricted MLEs and CIs of model parameters for the

same data set. Note that since there is no failure at the 3-rd stress level, without the

ordered restricted assumptions the MLEs of the unknown parameters do not exist. The order

restricted MLEs of θ1, θ2, θ3, θ4, θ5 are 396.55, 43.302, 43.302, 22.61, 16.235, respectively.

Asymptotic and bootstrap CIs of parameters are given in Table 4.

Table 4: Asymptotic and Bootstrap confidence intervals of the different parameters of the

fish data set.

θ1 θ2 θ3 θ4 θ5

CI Level LL UL LL UL LL UL LL UL LL UL

90% 71.38 721.72 11.04 75.56 6.53 80.07 1.20 44.02 0.00 35.06
Asymptotic 95% 7.93 785.17 4.75 81.86 0.00 87.25 0.00 48.19 0.00 38.74

99% 0.00 906.12 0.00 93.86 0.00 100.92 0.00 56.16 0.00 45.74

90% 207.96 1582.20 23.99 133.95 19.97 70.86 23.99 133.95 19.97 70.86
Bootstrap 95% 182.63 1612.80 21.33 202.03 17.90 82.72 21.33 202.03 17.90 82.72

99% 148.21 1642.70 17.34 239.26 15.07 112.31 17.34 239.26 15.07 112.31

Now the natural question is about the goodness of fit of the proposed model to the

above data set. We calculate the Kolmogorov-Smirnov (KS) distance between the empirical

distribution function (EDF) and the fitted distribution function (FDF) and also obtain the

associate p-value. The KS distance and the associated p value between the EDF and the

FDF based on the Bayes estimates are 0.2622 and 0.2539, respectively. Similarly, the KS

distance and the associated p value between the EDF and the FDF based on the MLEs are

0.2051 and 0.5536, respectively. Therefore, based on the KS distances and the associated p

values, it can be said that the order restricted multiple exponential step stress model fits the

data quite well and in this case MLEs are preferable compared to the Bayes estimates based

on the non-informative priors.
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7 Conclusion

In this paper we have considered the order restricted inference of the multiple exponential

step stress model. This problem was first considered by Balakrishnan et al. [3] and they

obtained the MLEs of the unknown parameters based on isotonic regression method. The

main contribution of this paper is that we have provided the solution in a simpler manner.

We have considered the Bayesian inference and we have suggested to compute the Bayes

estimates and the associated credible intervals of the unknown parameters based on impor-

tance sampling technique. The MLEs of the unknown parameters can be obtained in explicit

forms. We have performed some simulation experiments and it is observed that the Bayes

estimates and MLEs work quite well. One real data set has been analyzed and it is observed

that the proposed model fits the real data set quite well. It may be mentioned that our

method can be extended for other lifetime distributions also. Work is in progress and it will

be reported later.
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A Appendix

Proof of Theorem 2:

We provide the proof for four stress levels because of brevity. The same argument holds

for the general case. For m = 3, the log-likelihood function becomes

l(θ1, β1, β2, β3) = −n ln θ1 − n̄2 ln β1 − n̄3 ln β2 − n̄4 ln β3 −
1

θ1

[
D1 +

D2

β1

+
D3

β1β2

+
D4

β1β2β3

]
.

(8)
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The function (8) has a unique maximum at (θ∗1, β
∗
1 , β

∗
2 , β

∗
3), where

θ∗1 =
D1

n1

, β∗
1 =

D2n1

D1n2

β∗
2 =

D3n2

D2n3

, β∗
3 =

D4n3

D3n4

. (9)

Moreover, the function (8) does not have any other local maximum. Observe that for a given

(β1, β2, β3), the function (8) attains its maximum when

θ̂1(β1, β2, β3) =
1

n

[
D1 +

D2

β1

+
D3

β1β2

+
D4

β1β2β3

]
.

Substituting θ̂(β1, β2, β3) in (8) and ignoring the additive constant the profile log-likelihood

function of β1, β2, β3 can be obtained as

p(β1, β2, β2) = −n ln

[
D1 +

D2

β1

+
D3

β1β2

+
D4

β1β2β3

]
− n̄2 ln β1 − n̄3 ln β2 − n̄4 ln β3. (10)

Hence,

sup
θ1≥0

0≤β1,β2,β3≤1

l(θ1, β1, β2, β3) = sup
0≤β1,β2,β3≤1

p(β1, β2, β3).

From (10) it is observed that the function p(β1, β2, β3) has a unique maximum at (β∗
1 , β

∗
2 , β

∗
3),

where β∗
1 , β

∗
2 and β∗

3 , are same as defined in (9), and the function (10) does not have any

other local maximum.

Now we claim that if β∗
1 > 1, then

sup
0≤β1≤1

β2≥0,β3≥0

p(β1, β2, β3) = sup
β2≥0,β3≥0

p(1, β2, β3). (11)

Suppose (11) is not true, then there exists 0 < β̃1 < 1, β̃2 > 0 and β̃3 > 0, such that

sup
0≤β1≤1

β2≥0,β3≥0

p(β1, β2, β3) = p(β̃1, β̃2, β̃3).

It implies (β̃1, β̃2, β̃3) 6= (β∗
1 , β

∗
2 , β

∗
3) is a local maximum of p(β1, β2, β3) as p(β1, β2, β3) → −∞

as β2 → ∞ and p(β1, β2, β3) → −∞ as β3 → ∞. Clearly it is a contradiction.
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Along the same line it follows that if β∗
2 > 1, then

sup
0≤β2≤1

β1≥0,β3≥0

p(β1, β2, β3) = sup
β1≥0,β3≥0

p(β1, 1, β3). (12)

and if β∗
3 > 1, then

sup
0≤β3≤1

β1≥0,β2≥0

p(β1, β2, β3) = sup
β1≥0,β2≥0

p(β1, β2, 1).

Combining (11) and (12) we can obtain if β∗
1 > 1 and β∗

2 > 1 then

sup
0≤β1,β2≤1

β3≥0

p(β1, β2, β3) = sup
β3≥0

p(1, 1, β3).

Similarly, if β∗
1 > 1 and β∗

3 > 1, then

sup
0≤β1,β3≤1

β2≥0

p(β1, β2, β3) = sup
β2≥0

p(1, β2, 1),

if β∗
2 > 1 and β∗

3 > 1, then

sup
0≤β2,β3≤1

β1≥0

p(β1, β2, β3) = sup
β1≥0

p(β1, 1, 1)

and if β∗
1 > 1, β∗

2 > 1 and β∗
3 > 1, then

sup
0≤β1,β2,β3≤1

p(β1, β2, β3) = p(1, 1, 1).

Further observe that

sup
0≤β1,β2,β3≤1

p(β1, β2, β3) = sup
0≤βi≤1

sup
0≤βj≤1

sup
0≤βk≤1

p(β1, β2, β3), (13)

for all i 6= j 6= k and 1 ≤ i, j, k ≤ 3.

Now we consider different cases.

Case 1: β̂∗
1 > 1, β̂∗

2 > 1, β̂∗
3 > 1. The MLEs of β1, β2 and β3 are 1, 1 and 1, respectively.
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Case 2: β̂∗
1 > 1, β̂∗

2 > 1, β̂∗
3 ≤ 1. The MLEs of β1 and β2 are 1 and 1, respectively, and the

MLEs of β3 can be obtained as the arg max0≤β3≤1p(1, 1, β3). Since p(1, 1, β3) is an unimodal

function, it has a unique maximum. Further, sup
0≤β1,β2,β3≤1

p(β1, β2, β3) = sup
0≤β3≤1

p(1, 1, β3) due

to (13).

Case 3: β̂∗
1 > 1, β̂∗

2 ≤ 1, β̂∗
3 ≤ 1. The MLEs of β1 is 1 and the MLEs of β2 and β3 can

be obtained as the arg max0≤β2,β3≤1p(1, β2, β3). The function p(1, β2, β3) has a unique

maximum and we repeat the same argument as before.

The other cases can be considered along the same line. This proves Theorem 2.

B Appendix

Proof of Theorem 3:

We will provide the proof mainly for five stress level, although the same proof holds for

the general case also. We will not consider the cases where any one or both of n1 and n5 is

zero, since if n1 = 0 or n5 = 0, the MLEs of all the parameters do not exists.

Case 1: Exactly one internal stress level with zero failure.

Here we consider m = 4 and without loss of generality let n3 = 0. The log-likelihood function

is given by

l(θ1, β1, β2, β3, β4) = −n ln θ1 − (n2 + n4 + n5) ln β1 − (n4 + n5) ln β2 − (n4 + n5) ln β3

−n5 ln β4 −
D1

θ1
− D2

β1θ1
− D3

β1β2θ1
− D4

β1β2β3θ1
− D5

β1β2β3β4θ1
. (14)

It can be easily shown as in Theorem 1, that the function (14) has a unique global maximum

and it does not have any local maximum. For a fixed β2, the function (14) is maximized

when

θ̂1 =
D1

n1

, β̂1(β2) =
n1(β2D2 +D3)

n2β2D1

, β̂3(β2) =
n2D4

n4(β2D2 +D3)
, β̂4(β2) =

n4D5

n5D4

.
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Therefore, the profile log-likelihood of β2 without the additive constant is given by

l2(β2) = n2 ln β2 − n2 ln(β2D2 +D3).

Since,

dl2(β2)

dβ2

=
n2D3

β2D2 +D3

≥ 0,

the profile log-likelihood of β2 is an increasing function of β2 (0 < β2 ≤ 1). Hence, the

maximum occurs at β2 = 1. Therefore,

sup
θ1≥0

0≤β1,β2,β3,β4≤1

l(θ1, β1, β2, β3, β4) = sup
θ1≥0

0≤β1,β3,β4≤1

l(θ1, β1, 1, β3, β4)

Case 2: Zero failure at two disjoint stress levels.

Without loss of generality let us assume n2 = 0 and n4 = 0. Therefore, the log-likelihood

function is given by

l(θ1, β1, β2, β3, β4) = −n ln θ1 − (n3 + n5) ln β1 − (n3 + n5) ln β2 − n5 ln β3 − n5 ln β4

−D1

θ1
− D2

β1θ1
− D3

β1β2θ1
− D4

β1β2β3θ1
− D5

β1β2β3β4θ1
. (15)

In this case also the function (15) has a unique global maximum and it does not have any

local maximum. For fixed β1 and β3, the function (15) is maximized when

θ̂1(β1, β3) =
β1D1 +D2

n1β1

, β̂2(β1, β3) =
n1(β3D3 +D4)

n3β3(β1D1 +D2)
, β̂4(β1, β3) =

n3D5

n5(β3D3 +D4)
.

Therefore, the profile log-likelihood of β1 and β3 is given by

l13(β1, β3) = n1 ln β1 + n3 ln β3 − n1 ln(β1D1 +D2)− n3 ln(β3D3 +D4).

Since, l13(β1, β3) can be expressed as the sum of two functions where one depends on β1 only
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and other depends on β2 only and

δl13(β1, β3)

δβ1

=
n1D2

β1(β1D1 +D2)
≥ 0 and

δl13(β1, β3)

δβ3

=
n3D4

β3(β3D3 +D4)
≥ 0,

the profile log-likelihood of β1 and β3, is an increasing function of β1 and β3 (0 ≤ β1, β3 ≤ 1).

Therefore, β̂1 = 1 and β̂3 = 1 maximize the log-likelihood function. Hence,

sup
θ1≥0

0≤β1,β2,β3,β4≤1

l(θ1, β1, β2, β3, β4) = sup
θ1≥0

0≤β2,β4≤1

l(θ1, 1, β2, 1, β4).

Case 3: Zero failure at two consecutive stress levels.

Without loss of generality let us assume that n3 = 0 and n4 = 0. Therefore, the log-likelihood

function without the additive constant is given by

l(θ1, β1, β2, β3, β4) = −n ln θ1 − (n2 + n5) ln β1 − n5 ln β2 − n5 ln β3 − n5 ln β4

−D1

θ1
− D2

β1θ1
− D3

β1β2θ1
− D4

β1β2β3θ1
− D5

β1β2β3β4θ1
.

In this case also it can be shown as before that for

sup
θ1≥0

0≤β1,β2,β3,β4≤1

l(θ1, β1, β2, β3, β4) = sup
θ1≥0

0≤β1,β4≤1

l(θ1, β1, 1, 1, β4).

Hence, the result follows. In general it can be shown that the MLE of βk = 1 if nk+1 = 0 for

k = 1, 2, . . . m− 1.
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