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Abstract

In this article we consider the multiple step stress model based on the cumulative
exposure model assumption. Here, it is assumed that for a given stress level, the
lifetime of the experimental units follows exponential distribution and the expected
lifetime decreases as the stress level increases. We mainly focus on the order restricted
inference of the unknown parameters of the lifetime distributions. First we consider
the order restricted maximum likelihood estimators of the model parameters. It is well
known that the order restricted maximum likelihood estimators cannot be obtained in
explicit forms. We propose an algorithm which stops in finite number of steps and it
provides the maximum likelihood estimators. We further consider the Bayes estimates
and the associated credible intervals under the squared error loss function. Due to
the absence of explicit form of the Bayes estimates, we propose to use the importance
sampling technique to compute Bayes estimates. We provide an extensive simulation
study in case of three stress levels mainly to see the performances of the proposed
methods. Finally the analysis of one real data set has been provided for illustrative

purposes.
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1 INTRODUCTION

Day by day industrial products become highly reliable and as a result it becomes very difficult
to get sufficient failure time data during a life testing experiment for any statistical analysis
purposes. The accelerated life testing (ALT) procedure is an effective technique used by the
experimenters to overcome such difficulties. In an ALT procedure, products are subjected
to higher stress level than the normal operating condition, which ensures early failures of
the experimental units. Key references on ALT model are Nelson [14] and Bagdanavicius
and Nikulin [1], see also Kateri and Kamps [10], Wang et al. [18] and the references cited
therein for some recent developments. Various factors such as temperature, voltage, pressure,
load etc. are usually used as stress factors, and they can be applied mainly in two different
ways. One is known as the constant stress life testing experiment, where the whole sample is
divided in to some sub-groups and different stresses are applied to each sub-group separately.
Another one is called as the step stress life testing (SSLT) experiment, in which case the
stress level gradually increases. In a SSLT, one starts with n number of units at the initial
stress level syg. The stress increases to the next stress level s; at a pre-assigned time 7; and
then at the time point 75, the stress level increases to s, and so on. In case of only two stress

levels the experiment is known as the simple step stress experiment.

Since units are exposed to different stress levels, lifetime distributions of the experimen-
tal units vary from one stress level to another. Predominantly used lifetime distributions
are exponential, Weibull, generalized exponential, log normal, gamma etc. to analyze data
obtained from a SSLT experiment. The most common model assumption made to connect
the distributions under different stress levels is the cumulative exposure model (CEM) of

Seydyakin [16]. See also Nelson [14] in this respect.

The analysis of SSLT experimental data based on CEM assumption has been discussed
quite extensively in the literature. Xiong [19] presented the inference of a simple step stress
exponential model by assuming that mean lifetime of the experimental unit is a log-linear

function of stresses. Other references on SSLT model are Balakrishnan et al. [4], Balakrishnan



and Xie [6, 5], and see the references cited therein. Interested readers are referred to a review
article by Balakrishnan [2] on the exact inferential methods of the model parameter of an
exponential distribution under different censoring schemes. Recently Mitra et al. [13] have
considered the exact inference of a simple step stress model for two parameter exponential
distribution. Bayesian inference on SSLT has been considered by Drop et al. [7], Lee and

Pan [12], Sha and Pan [17] and Ganguly et al. [8].

To ensure rapid failures of the experimental units, experimenter increases stress levels
at the pre-assigned time points in a SSLT experiment. Hence, the expected lifetime of the
experimental units gradually decreases with the increase of the stress level. Therefore, there is
a natural order restriction among the parameters under different stress levels. If the expected
lifetime is 6; at the stress level s; 1,7 =1,...,m+1, then clearly, 6; > 0y > ... > 60,,.1. Most
of the inferences in the literature do not consider this assumption. First Balakrishnan et al. [3]
developed order restricted maximum likelihood estimation for the exponential multiple step
stress model under Type-I and Type-II censoring scheme using isotonic regression method.
Recently Samanta et al. [15] have considered order restricted Bayesian inference for the
exponential parameters of a simple step stress model using reparametrization method. A
comprehensive review of different aspects of step-stress models can be found in Kundu and

Ganguly [11].

Balakrishnan et al. [3] obtained the order restricted maximum likelihood estimators
(MLEs) using isotonic regression method and they are quite complicated to use in prac-
tice, see for example eqn. (9) of that paper. In this paper we have considered the same
model as in Balakrishnan et al. [3], but we have made a reparametrization of the model
parameters. First we consider the classical inference of the order restricted parameters. We
have provided an algorithm which after finite number of steps produces the MLEs of the
unknown parameters in explicit forms. Similarly as in Balakrishnan et al. [3], here also it is
observed that the MLEs of the unknown parameters exist even when there is no observation
in some of the stress levels, provided they are not on the boundaries. Based on the observed

Fisher information matrix, we obtain the confidence intervals of the unknown parameters.



We further consider the order restricted Bayesian inference of the unknown parameters un-
der a fairly flexible priors. Since the Bayes estimates cannot be obtained in explicit forms,
we propose to use importance sampling technique to compute the Bayes estimates and the
associated credible intervals (CRIs). Extensive simulation experiments have been performed
to see the effectiveness of proposed method and its advantages over the unconstrained MLEs.

Finally, the analysis of one real data set has been performed for illustrative purposes.

The rest of the paper is organized as follows. In Section 2, we provide the model as-
sumption, the reparametrization and the corresponding likelihood function. In Section 3,
the MLEs and the associated theoretical results are provided. Construction of the confidence
intervals of the unknown parameters based on the asymptotic distribution of the MLEs and
using bootstrap method, have been provided in Section 4. The order restricted Bayesian
inference of the unknown parameters is provided in Section 5. The simulation results and
the analysis of one real data set have been presented in Section 6, and finally in Section 7

we draw conclusions of the paper.

2 MODEL ASSUMPTION AND LIKELIHOOD FUNCTION

We consider multiple step stress model as in Balakrishnan et al. [3] when the lifetime of
the experimental units follow one-parameter exponential distributions. Assume n identical
experimental units are put into a life testing experiment with the initial stress level sy and
the stress changes from s; | to s; at the pre-fixed time points 7;,7 = 1, ..., m, respectively.

The experiment continues till the last unit fails. Hence, the data came from this experiment

is of the form ¢1., < ... < tpm < 71 < thigim < o0 < lnjingm < T2 < oo < Ty <
Lot odnmt)m < --. < lpy. Here n; is the number of failures at the stress level s;_; for
1=1,...,m+ 1. Note that some of the n; may be zero also.

It is further assumed that the lifetime distribution of experimental units under stress level
s;_1 follows an exponential distribution with mean 6;. To relate the lifetime distribution of

one stress level to the preceding stress level we follow the CEM assumptions, hence, the



cumulative distribution function (CDF) of the lifetime of the experimental unit is given by

Fl(t) Hfo<t<n
F<t) = Fk(Ckfl‘i‘t—kal) if Th—1 <t < T (1)
Foalem+t—my) if1, <t<oo,

where

x

Fr(z) =1—¢€ %

and ¢;’s can be obtained from the following equations;
Fi(cp—1) = Fro—1(Cp—g + Thom1 — To—2); k=2,3,...,m+ 1.

By solving the above recursion relations one can easily obtain

k-1
_ Tj — Tj-1, —
Cho1 _ekze—j, k=2,3,....,m+1,
7j=1
with ¢p = 0 and 79 = 0. Hence, the probability density function (PDF) associated with the

CDF (1) is given by

_t ,
%e o fo<t<mn
_lepatt-mp1)
ft) = ée O ifrm,_ i <t<mfork=23,...,m (2)
1 _ (em+t—7mm) .
e Im+1 if 7, <t < o0.

Since in a step stress experiment as the stress level increases the expected lifetime of the
experimental units decreases, there is a natural ordering on 6;’s in this case as follows:

01> ...> 06,1 >0. Let us consider the following reparametrization of the parameters:
i1
0 = Bia6i =01 [ 5
j=1

fori=2,3,..., m+1, where 0 < 1, ..., 5, < 1. Since there is a one to one correspondence

between {01,...,0n11} and {61, b1, ..., Bn}, the statistical inference based on the two sets



of parameters will be equivalent.

The likelihood function of the data based on the parameters {6y, 51,. .., B}, is given by

L(6y, 1, ..., Bm; Data) x

€
n QN2 QN3 Tom+1 (3)
07512 B5° - .. Bm

where

mlp
A(Bry .-, Bn) = D1 + ; H;;llﬁj’
D, = ninf i + MoT1,
Z;*lﬁkﬂ
Dy = Z (timn — The1) + Mgy (e — 7o), k=2,3,..., m,
i=n—mg+1

n

Dipy1 = Z (ti — Tm),

1=N—"Nm4+1+1

m—+1

and T, = Z ni,k =1,2,...m+ 1. Note that here A(f,...,5,) depends on the data, but

i=k
we do not make it explicit for brevity.

3 MAXIMUM LIKELIHOOD ESTIMATION

The MLEs of {01, 51, ..., Bm} can be obtained by maximizing the likelihood function (3) with
respect to the unknown parameters over the region S = (0, co) x (0, 1]™. The log-likelihood

function without the additive constant is given by

m 1 m+1 Dl
l(@l, 51, . 76m7 Data) = -—nln 91 — Z’T_Lj+1 In ﬁj — 0— [Z i1 . (4)
J=1 b= szo Bj

Therefore, the MLEs of 0y, f1, ..., B can be obtain by maximizing (4) over S. Let us first

consider the case that there is at least one failure in each stress level, later we will consider



the general case. Now, the m + 1 normal equations can be written as follows:

D D Dm+1
nd, = D + —= +
L e T s T B B
B Dy  Ds Dot
b =—-+——+.. .+,
2P =5 5o, ByBs .. Bnbr
— Dm Dm+1
NmPm—1 = + y
e = G Bt Bt ool
— Dm+1
T, m = . 5
Y )

Let 5}‘, Bf, B;, o ,B:; be the solutions of (5), then

1= s s s T e
m nab; n3 010 N 18185 - B 161

Note that if 0 < BZ* <l1,fori=1,2,...,m, thené\i‘,gf, . ,@2, are the MLEs of 01, 31, ..., B,
respectively. If some of the @* > 1fori=1,...,m, the MLEs can be obtained using the

following Algorithm 1.
Algorithm 1:

Step 1: For the given data t = (t1.,...,tn.n), estimate é\i‘, Bf, o ,B\,*n and check whether

Bfﬁl(izl,...,m)ornot.

Step 2: If BZ* <lforallz=1,2,..., m, then they are the MLEs of ; and @\f is the MLE
of 01.

Step 3: If one or some of the B\z* > 1 then replace all of them by 1 in the log-likelihood

function and re-estimate the remaining parameters by maximizing the profile log-likelihood.

Step 4: Check the estimates of (;’s obtain in Step 3 are less than or equals to one or not.
If all of them are less than or equals to one then they are the MLEs and the corresponding

estimate of 6 is the MLE of 6.

Step 5: If one or some of the estimates of ;’s obtain in Step 3 is greater than one then



repeat Step 3 and Step 4 until we get the estimate of all 5;’s less than or equal to 1.

Theorem 1. Algorithm 1 stops in a finite number of steps.

Proof. Since m is finite, the algorithm stops in a finite number of steps. m

Theorem 2. Algorithm 1 provides the MLEs of 61, 51, ..., B under the constraints

0<pBiy...,Bm < 1.

Proof. See in the Appendix A. n

Now consider the case when there is no failure in one or more internal stress levels. We

will show that in this case also order restricted MLEs exist unlike the general MLEs.

Theorem 3. If there is no failure at the stress level sy for k=1,...,m — 1, then the MLE
Of ﬁk s 1.

Proof. See in the Appendix B. O

Therefore, using Theorem 3, we have

~ o if ny # 0
01 —
Di1+Da+...4+Dy

- ifno=ng=...=n =0, ny #0, 1 =2,3,...,m,

and for k=1,2,....m — 1.

1 if Ng+1 = 0

Dk D1 :

B T TI k1 70, Npyo #
Dyy1+...+Dypyg : — — — =
S g 0, Mo = =g =0, gy #0, 1=2,...,m—F,

Nk167 By 107

oy Derl

" BiBs . B b
Once we obtain 9Al*, B\f, ey A;ZL, the MLEs of 0y, p1,..., 3, can be calculated using Algo-
rithm 1.



4 DIFFERENT CONFIDENCE INTERVALS

4.1 AsymMPTOTIC CONFIDENCE INTERVAL

In this section we provide the asymptotic confidence intervals of 6y,...,60,,.1 based on the
observed Fisher information matrix. First we calculate the observed Fisher information
matrix of 61, 5y, ...,Bn. Let us denote n; = 6y and nx, = PBr_1, for k =2,...,m + 1. Then

the observed Fisher information matrix becomes

F = ((fs) = ((—2))
N oniom; "
Here fort=1,....m+1,j=i+1,...,m+1
i 2D; 2D 2D 11
fii - 5 3 3. e T 3. ’
i mnze - T T2 T i mnz .- 1741 - - - Nhm+1
Dj Dj+1
Jij = — 2 2 2 2
e MMy M1 - - N5=175 Tee - =17 i1 - - - =177+
Dm+1
— ... ) ) = sz
e M1 it - - - M=170570541 - - - Thmt 1
Now to compute the observed Fisher information matrix of 6, ...,6,,.1, let us consider the

following transformation

_ i - _ G - _ i, -
0, 516, 92
h = - -
O BiBs ... Brn16y I
_§m+1_ i 31/75\2 : Bmal i | Im+1 |



hence, the observed Fisher information matrix of 0y, ...,0,,.1 is G'FG, where,

B S by |
001 061 T 0Bm—1 0Bm
992 892 092 dg2
G = 601 0p1 T 8Bm—1 0Bm
0gm+1  O0gma1 0gm+1  Ogmi1
| 061 0p1 T 0Bm1 0Bm
and
Sgn Bi. BiciBist. By for k=23,...om+1 and i=1,2,... k-1
0B 0 for k=2,3,....,m and 1=k, k+1,...,m,
591 591 . dgk
=1, =0; 1=1,...,m, d—— 1 k=23,....m+ 1.

Therefore, under the assumption of asymptotic normality, 100(1 — )% asymptotic CI of
0; is given by

|:é\z + 213\/‘/“} )

where Vj; is (i,7)-th element of the matrix (G'FG)™*

4.2 BoOOTSTRAP CONFIDENCE INTERVAL

In this subsection, we discuss about the construction of parametric bootstrap confidence
intervals of the unknown parameters. The following algorithm can be used to construct the

parametric bootstrap confidence intervals.
Algorithm 2:

Step 1: For agivenn, 7, ..., 7, and from the sample t = (t1.,, to.n, - - - , tnon) Obtain /9\1, e ,§m+1,

the MLEs of the respective parameters.

Step 2: Simulate a sample of size n, say, t* = (¢],,,t5.,....,t.,) from (2) with parameters

~

0,05, .. .01
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Step 3: Using the new sample t*, estimate MLEs of 81,05, ...,0,,.1, say 5&1), 5&1), ce

Step 4: Repeat steps 2 and 3, M times and obtain é‘f), 5&2), e @EM), e ,éﬁ)ﬂ, @(nf)“, e 75((77]\31)‘

@(1),@(2),. ,@M), 1 =1,2,...,m+ 1 in ascending order and denote the

Step 5: Arrange .
. ,@EM]. A two sided 100(1 — )% bootstrap confidence interval
@%M] (’9\[(1*%)]\/[]

% [

ordered MLEs as 5[1], 5[2],.

3 K3

of 0;, (i =1,2,...,m+ 1) is given by ( ), here [z] denotes the largest integer

less than or equals to x.

5 DBAYESIAN ANALYSIS

It is observed so far that the order restricted MLEs cannot be obtained in explicit forms,
hence, the construction of the exact confidence intervals is a difficult task. Therefore, in
this case Bayesian inference seems to be a reasonable choice. In this section we consider
the Bayesian inference of the unknown parameters and provide the Bayes estimates and the
associated CRIs of the model parameters. We use the following notations. An inverted
gamma distribution with the parameters a > 0 and b > 0 will be denoted by IG(a,b) and it
has the PDF

b . 1 b+1
fre(z;a,b) = Fa—e_5 (—) ;oo >0,

and 0, otherwise. A beta distribution with the parameters a > 0 and b > 0 will be denoted

by Beta(a,b), and it has the PDF

1 -2)h 0<z<l,

B(a,b)

and 0, otherwise. The priors of #; and 3; are denoted by mo(6;) and m;(5;), respectively. It
is assumed that 7y (01) ~ 1G(ag, by), and m;(5;) ~ Beta(a;, b;) for i = 1,2,...,m, and all the

priors are independently distributed. Therefore, the join prior distribution of 8, 51, ..., G

11



is given by

o (1"
7'('(91’ 617 s aﬁm) xe (9_) ?1_1<1 - 51>b1_1 s /Branm_l(]' - B’m)bm_la

1

for 67 > 0 and 0 < f3; < 1, for ¢« = 1,2,...,m. Hence, the posterior distribution of

01,51, Ba, ..., Bm can be written as

%(91, Bl? R 76m|DCLtCL) XX 6?17%271(1 — ,Bl)bl_l X ... X ﬁ?nm_ﬁerl_l(l — 6m)bm_1 X
1 n—+bg+1 1
( ) o (@0t AL, B, o )

X ,7:(/1(61> ------ %m(6m>%m+l(el|5la s 7/6m)w1(017 ﬁla s )/Bm)u

where

m(Bi)=1fori=1,2...,m,

7 3 3 ) — [ao + A(B1, By -+, Br)]"™™ 1ot — (a0t AB, Baro )
m—+ 9 PN m) — —_\n o+1 0 0 1,02, -5 Pm

’

w101, Br, . B) = lao + A(Br, Bay .o, Bu)) HO T 807 (1 — ).

i=1

Hence, under the assumption of the squared error loss function, the Bayes estimate (BE)

of any parametric function ¢(6y, f1,. .., Bm) is the posterior expectation of g(61, S, ..., Bm)
which is given by
@\B(el,ﬁh e a/Bm) = Eol,ﬁl ..... Bm|Data (9(91, By >5m))
1 1 00
/ / / g(@l,ﬁl...,ﬁm)%(ﬁl,ﬁl,...,ﬁm]Data)dﬁldﬁl...dﬁm
_ Jo 0 Jo
- 1 1 0o
/ / / 7(01, B1,- .., Bm|Data)db,dS; . . . dS,
0 0o Jo

I

(6)

provided the expectation exists. In general, an explicit form of the equation (6) cannot be
obtained. Hence, we propose to use the importance sampling method to compute the BE

and to construct the associated CRIs. We propose to use the following algorithm to compute

12



the BE and the associated CRIs.

Algorithm 3:

Step 1: Generate (11, Bo1, . . ., Bm1 from Uniform(0, 1) distribution.

Step 2: For given (1, Ba1, - .., Bm1 generate 011 from 1G(n + by, ag + A(Bi1, -+ Bm1))-

Step 3: Repeat Step 1-Step 2, M times to get 11, Bo1, - - -, Bt 0115 - - -, Bings Bonts - - - Bt 011 -

Step 4: Compute g; = (01, P, Boiy - - Bmi); i = 1,2, ..., M.

w1(014,814,82,--,Bms)
S M w1(015,810,82i -, Brmi)

Step 5: Calculate the weights wy; =

Step 6: Compute the BE of ¢g(61,0,...,5,) under the squared error loss function as

/g\<017 617 v 7ﬁm) = Z]J\il wljgj'

Step 7: To construct a 100(1 — )% (0 < v < 1) CRI of g(b, 1, .., Bm), first order
gés for j=1,2,..., M, say gq) < gy < ... < g and arrange wi; accordingly to get

wl(l), wl(g), e ,wl(M). Note that wl(l), w1(2), R ,wl(M) may not be ordered.

Step 8: A 100(1 — v)% CRI can be obtain as (gj,, g;,) where j; and j, satisfy

J2 Jo+1
jl,j2€{1,2,...,M}, 71 < Jo, Zw(i)§1—7<2w(i). (7)
=71 =71

The 100(1—v)% highest posterior density (HPD) CRIof g(61, 81, ..., Bm) becomes (g(): 90is))

where 1 < j7 < j; < M satisfy

3 j3+1
Zw(z‘) sl-7< Z wiy, and  gun = 967 < 962) — I6)s
i=j7 =37

for all j; and js satisfying (7).

13



6 SIMULATION AND DATA ANALYSIS

6.1 SIMULATION

An extensive simulation study has been performed for multiple (3 steps) step stress model
to see the effectiveness of the proposed methods. In the simulation study we have taken

01 = 10, 03 = 5, and 03 = 3, different sample sizes (n) and different 7y and 7 values.

We have computed the order restricted MLEs of the unknown parameters and the as-
sociated mean squared errors (MSEs). We have obtained the asymptotic and bootstrap
confidence intervals of these parameters based on order restricted MLEs. For comparison
purposes, we have computed the MLEs with out any order restriction, the associated MSEs,
and also the asymptotic and bootstrap confidence intervals based on them. Further, in
each case the Bayes estimates and the associated CRIs are obtained. We have used non-
informative priors and we have taken the hyper parameter values as follows: ay = 0.0001,
bo = 0.0001, a1 =1, by =1, ap = 1 and b, = 1. In each case we have computed the Bayes
estimates and the associated highest posterior density (HPD) and symmetric CRIs based on

the importance sampling technique.

We have obtained the average estimates (AEs) and the associated MSEs of all the three
different estimates. The results are reported in Table 1. In case of the confidence and
credible intervals we have obtained the average lengths (ALs) and the associated coverage
percentages (CPs) for 95% level of confidence and the results are reported in Table 2. In
all the above cases results are based on 1000 replications. At each replication, the Bayes

estimates and both the credible intervals are obtained based on 5000 importance samples.

Some of the points are quite clear from the experimental results. The performances of
both the MLEs and the Bayes estimators with respect to the non-informative priors are quite
satisfactory. It is observed that for all the parameters in all the three cases as the sample
size increases the biases and the MSEs decrease. It indicates the consistency behavior of

the estimators. The average biases and the MSEs of the order restricted MLEs are smaller

14



Table 1: Average values and the corresponding mean squared errors of the different
estimators when 6; = 10, 65 = 5, 053 = 3.

Order restricted MLEs

01 02 03
n T T2 AE MSE AE MSE AE MSE
20 4 7 11.65 40.54 5.50 4.86 2.85 1.03
20 4 9 1152 34.35 5.32 3.27 281 1.43
20 6 8 11.00 21.29 5.76 8.01 294 1.09
30 4 7 11.09 17.33 5.43 3.86 2.94 0.71
30 4 9 11.04 16.52 5.24 2.18 287 1.01

30 6 8 10.74 9.88  5.51 5.06 2091 0.70

40 4 10.82 11.87 5.31 241 296 0.54
40 4 10.75 12.26 5.24 1.91  2.99 0.84
40 6 8 10.30 6.56  5.57 4.42 298 0.60

NeRE |

50 4 10.44 7.02 5.26 2.01 299 0.46
50 4 9 10.51 9.55 5.17 1.27  2.98 0.64
50 6 8 10.44 549  5.39 3.37  2.96 0.46

N

MLEs without order restriction

01 02 03
n T T2 AE MSE AE MSE AE MSE
20 4 7 11.45 43.27 590 15.58 3.07 1.50
20 4 9 11.74 41.26 5.45 5.46  2.99 2.04
20 6 8 11.05 28.40 6.36 20.72 3.07 1.44
30 4 7 11.23  26.00 5.53 5.562  3.02 0.87

30 4 9 1094 17.15 5.26 3.08 298 1.32
30 6 8 10.67 10.61 6.02 15.98 3.00 0.90

40 4 7 10.76 13.73 5.43 3.61  3.04 0.61
40 4 9 10.77 13.74 5.16 1.66  3.00 0.98
40 6 8 10.37 7.69  5.56 6.21  3.00 0.64

50 4 7 10.51 8.35 5.22 2.15 3.02 0.50
50 4 9 10.55 10.25 5.13 142  3.02 0.79
50 6 8 10.48 5.65 5.71 9.23 298 0.50

Order restricted Bayes estimators

01 02 03
n T T2 AE MSE AE MSE AE MSE
20 4 7 1263 4767 5.83 3.51  3.18 0.80
20 4 9 12.63 46.35 5.62 2.98 3.05 0.97
20 6 8 11.83 20.77 6.06 4.49 317 0.94
30 4 7 11.54 29.24 5.62 2.40 3.13 0.63
30 4 9 11.44 17.45  5.57 2.03 3.14 0.72

30 6 8 11.00 10.58 5.79 2.83 3.16 0.62

40 4 10.96 10.75  5.56 1.87 3.14 0.49
40 4 10.97 11.69 5.43 142  3.13 0.57
40 6 8 10.94 8.52 5.86 2.77  3.16 0.46

NN |

50 4 10.92 9.22  5.52 1.67 3.10 0.40
50 4 9 10.95 9.81 5.34 1.06 3.11 0.50
50 6 8  10.69 6.22  5.69 212 3.15 0.43

-3

than the corresponding Bayes estimates in case of #;, but they are larger for #, and 63 for

all sample sizes and for all 7y, 7.

Comparing the two confidence intervals in case of order restricted MLEs, it is observed

15



Table 2: Average lengths and coverage percentages of different 95% confidence and
credible intervals of 6, 6, and 05.

Confidence intervals based on order restricted MLESs.
Bootstrap CI Asymptotic CI

01 02 63 01 02 03
n T T9 AL CP AL CP AL CP AL CP AL CP AL CP

20 4 7 304 926 9.0 96.7 3.7 920 194 933 9.4 939 42 883
20 4 9 299 917 73 963 4.1 884 203 938 74 939 5.0 829
20 6 8 227 927 102 987 3.8 89.7 155 924 127 93.0 4.3 898
30 4 7 204 951 7.0 970 32 91.5 150 948 74 946 35 904

30 4 9 203 958 58 964 3.6 89.7 154 924 6.0 93.7 42 874
30 6 8 149 94.6 87 982 32 921 119 945 101 933 3.5 90.0

40 4 7 154 954 6.1 96.6 2.8 939 125 94.6 6.3 946 3.0 90.8
40 4 9 15.7 939 5.0 953 33 921 124 943 52 949 3.7 899
40 6 8 11.3 955 74 96.7 28 925 9.9 94.6 89 946 3.0 927

50 4 7 128 94.8 53 961 26 934 106 953 53 928 28 923
50 4 9 12.8  93.5 4.5 947 3.0 926 105 95.1 4.5 95.7 34 919
50 6 8 9.7 950 6.7 98.1 26 93.7 8.8 949 74 945 2.7 927

Confidence intervals based on MLEs without any order restriction.

Bootstrap CI Asymptotic CI
91 92 93 91 92 93
n 7 72 AL CP AL CP AL CP AL CP AL CP AL CP

20 4 7 302 926 154 951 47 908 20.7 90.7 106 915 4.4 881
20 4 9 306 93.0 11.0 953 6.1 91.3 214 922 79 932 58 872
20 6 8 229 931 161 951 48 933 155 93.1 16.6 89.3 4.6 88.6
30 4 7 229 933 108 945 3.7 93.8 149 925 8.0 924 3.6 90.6

30 4 9 208 94.2 73 946 4.6 89.7 157 935 6.1 91.7 4.6 89.2
30 6 8 146 941 165 940 3.8 930 119 948 129 916 3.6 89.6

40 4 7 156 942 83 951 31 945 121 925 64 940 3.1 930
40 4 9 161 93.7 5.8 951 39 922 123 933 52 93.7 39 895
40 6 8 11.3 954 148 934 32 928 9.9 948 9.3 922 31 910

50 4 7 13.0 94.0 6.7 93.7 28 935 10.5 94.7 56 950 28 923
50 4 9 129 945 49 949 36 955 105 928 4.5 940 35 917
50 6 8 9.7 959 120 943 2.8 93.0 8.8 94.1 80 916 2.8 918

Credible intervals.
Symmetric CRI HPD CRI

01 02 03 01 02 03
n 1 T2 AL CP AL CP AL CP AL CP AL CP AL CP

20 4 7T 222 971 76 974 40 976 190 975 7.1 976 3.8 96.0
20 4 9 224 972 6.7 947 43 965 190 974 6.2 96.1 4.0 945
20 6 8 16.8 969 88 985 41 962 151 972 81 987 39 949
30 4 7 15.7 96.1 6.2 972 33 961 141 958 58 972 3.2 959

30 4 9 1563 96.1 55 96.6 3.7 96.8 138 96.0 52 97.7 3.6 96.2
30 6 8§ 122 961 71 983 34 962 11.3 958 6.7 984 3.3 957

40 4 7T 124 958 54 971 29 96.1 115 957 52 971 2.8 948
40 4 9 124 958 47 960 33 971 115 965 45 964 3.2 96.6
40 6 8 105 951 66 97.7 3.0 97.2 99 965 6.3 985 29 972

50 4 7 11.0 955 50 971 26 96.0 103 96.5 48 96.8 2.5 951
50 4 9 111 9.2 42 972 3.0 965 104 955 41 973 29 953
50 6 8 9.1 948 59 979 2.7 958 86 958 57 97.8 26 951
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that both of them perform quite well. For both the confidence intervals the average lengths
decrease as the sample size increases. Between the two confidence intervals, the bootstrap
Cls are preferable than the asymptotic Cls in terms of the coverage percentages although
in certain cases the average lengths are slightly longer. Now comparing the two credible
intervals it is observed that the HPD CRIs perform slightly better than the symmetric CRIs.
In all the cases the coverage percentages are very close to the corresponding nominal values.
Finally comparing the bootstrap Cls and the HPD CRIs it is observed that HPD CRIs

perform slightly better than the bootstrap Cls in terms of lower average lengths.

Now comparing the order restricted MLEs with the unrestricted MLEs, it has been
observed that the performance of order restricted MLEs are better than the unrestricted
MLESs, in terms of MSE, specially for 6 and 3. Since in both the cases the estimates of 6,
are same, their performances are also very similar. The average lengths of CIs for #, and 63

are lower when they are computed based on order restricted MLEs.

It may be mentioned that to construct the asymptotic confidence intervals it has been
assumed that the MLEs are asymptotically normally distributed. To check the validity
of that assumption, we have provided the quantile-quantile (QQ) plots of HAl, 0/\2 and é; for
different values of n in Figure 1 to Figure 3. It has been observed that the theoretical quantile
and the observed quantile converge as n increases. The performances of the asymptotic

confidence intervals are quite good even for moderate sample sizes.

QQ plot of 8, QQ plot of 6, QQ plot of f QQ plot of 6,
4 5 4

Sample Quantiles
.

Sample Quantiles
Sample Quantiles

(¢) n =40 (d) n =50

Figure 1: QQ Plots of 51 with parameter values 6; = 10, 65 = 5, 3 = 3, and for 71 = 6,
Ty = 8.
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QQ plot of b, QQ plot of 8, QQ plot of f, QQ plot of b,

Sample Quantiles
Y
;

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Sample Quantiles
N
Sample Quantiles
\
ple Quantil

Figure 2: QQ Plots of @\2 with parameter values 6; = 10, 65 = 5, 63 = 3, and for 7, = 6,
Ty = 8.

QQ plot of 6 QQ plot of O QQ plot of f QQ plot of f;

Sample Quantil
Sample Quantil
&\
Sample Quantiles
Y
Sample Quantiles

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Figure 3: QQ Plots of @\3 with parameter values 6; = 10, 65 = 5, 63 = 3, and for 7, = 6,
To = 8.

6.2 FisdH DATA SET

Here we analyze a multiple step stress data set taken from Greven et al. [9]. Here a group
of 15 fishes have been taken to observe their swimming performances. Fish were swum at
initial flow rate 15 cm/sec., and then flow rate was increased by 5 cm/sec. at time 110, 130,
150, 170 minutes. Here flow rate has been considered as stress factor. The time at which a
fish could not maintain its position is called fatigue time and is recorded as the failure data.
The flow rate was increased four times, therefore, we have five stress levels. The observed
failure data are: 91.00, 93.00, 94.00, 98.20, 115.81, 116.00, 116.50, 117.25, 126.75, 127.50,
154.33, 159.50, 164.00, 184.14, 188.33. Number of failure at the first, second, third, fourth

and fifth stress level are 4, 6, 0, 3, 2, respectively.

We analyze this data set assuming multiple exponential multiple step stress model with
the order restriction. First we have considered the Bayesian analysis of the data set by
considering non-informative prior assumption. Bayes estimates of 0y, 05, 05, 04, 05 under

square error loss function are 414.95, 69.082, 52.082, 29.337, 17.89, respectively. We provide
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symmetric and HPD CRIs in Table 3.

Table 3: Symmetric and highest posterior density credible intervals of the different
parameters of the fish data set.

01 02 03 04 05
CI Level LL UL LL UL LL UL LL UL LL UL

90% 165.44 837.71 31.32 137.50 25.77 103.45 14.52 54.53 7.16 32.85
Symmetric  95% 153.41 982.08 28.76 157.66 22.71 121.19 1343 60.36 6.16 38.39
99% 124.03  1449.60 25.48 220.03 19.60 161.99 10.18 87.26 4.91 51.18

90% 143.13 702.53 26.24 115.87 21.14 87.90 10.08 44.94 525 2845
HPD 95% 128.56 842.69 2548 141.01 19.60 106.00 11.53 56.67 4.54 32.97
99% 94.59 1210.60 21.69 188.76 16.38 141.50 7.49 7254 3.65 45.72

We have also obtained the order restricted MLEs and CIs of model parameters for the
same data set. Note that since there is no failure at the 3-rd stress level, without the
ordered restricted assumptions the MLEs of the unknown parameters do not exist. The order
restricted MLEs of 61, 65, 03, 04, 05 are 396.55, 43.302, 43.302, 22.61, 16.235, respectively.
Asymptotic and bootstrap Cls of parameters are given in Table 4.

Table 4: Asymptotic and Bootstrap confidence intervals of the different parameters of the
fish data set.

01 02 03 04 05
CI Level LL UL LL UL LL UL LL UL LL UL
90% 71.38 721.72  11.04 75.56 6.53 80.07 1.20 44.02 0.00 35.06
Asymptotic  95% 7.93 785.17 4.75 81.86 0.00 87.25 0.00 48.19 0.00 38.74
99% 0.00 906.12 0.00 93.86 0.00  100.92 0.00 56.16 0.00 45.74

90% 207.96 1582.20 23.99 133.95 19.97 70.86 23.99 133.95 19.97 70.86
Bootstrap 95% 182.63 1612.80 21.33 202.03 17.90 82.72 21.33 202.03 17.90 82.72
99% 148.21 1642.70 17.34 239.26 15.07 11231 17.34 239.26 15.07 112.31

Now the natural question is about the goodness of fit of the proposed model to the
above data set. We calculate the Kolmogorov-Smirnov (KS) distance between the empirical
distribution function (EDF) and the fitted distribution function (FDF) and also obtain the
associate p-value. The KS distance and the associated p value between the EDF and the
FDF based on the Bayes estimates are 0.2622 and 0.2539, respectively. Similarly, the KS
distance and the associated p value between the EDF and the FDF based on the MLEs are
0.2051 and 0.5536, respectively. Therefore, based on the KS distances and the associated p
values, it can be said that the order restricted multiple exponential step stress model fits the
data quite well and in this case MLEs are preferable compared to the Bayes estimates based

on the non-informative priors.
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7 (CONCLUSION

In this paper we have considered the order restricted inference of the multiple exponential
step stress model. This problem was first considered by Balakrishnan et al. [3] and they
obtained the MLEs of the unknown parameters based on isotonic regression method. The
main contribution of this paper is that we have provided the solution in a simpler manner.
We have considered the Bayesian inference and we have suggested to compute the Bayes
estimates and the associated credible intervals of the unknown parameters based on impor-
tance sampling technique. The MLEs of the unknown parameters can be obtained in explicit
forms. We have performed some simulation experiments and it is observed that the Bayes
estimates and MLEs work quite well. One real data set has been analyzed and it is observed
that the proposed model fits the real data set quite well. It may be mentioned that our
method can be extended for other lifetime distributions also. Work is in progress and it will

be reported later.
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A APPENDIX

PROOF OF THEOREM 2:

We provide the proof for four stress levels because of brevity. The same argument holds

for the general case. For m = 3, the log-likelihood function becomes

- B 3 1 D2 D3 D4
18 — —nln6y —naln By — nsln By — Ay ln By — — | Dy + =2 :
(01, B1, P2, B3) nind, —nyInfy —nzlnfy —ny4ln fs 6, | " * B * B152 * B1525

(8)
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The function (8) has a unique maximum at (65, 57, 55, 35), where

o = &’ g = Dany _ D3ny - Dyng

1= 757 2= 7 = .
n Diny D2n3’ 3 Dsny

(9)

Moreover, the function (8) does not have any other local maximum. Observe that for a given

(B1, B2, B3), the function (8) attains its maximum when

R _Lp Dy D5 D
01(B, B2, B3) = n [Dl + B - B152 - 515253] '

~

Substituting 6(51, 52, f3) in (8) and ignoring the additive constant the profile log-likelihood

function of (1, B2, B3 can be obtained as

L & D3 D4
p(B1, B2, B2) = —nln {Dl * b1 - P12 " 515255

:| —ﬁglnﬁl —ﬁglnﬁg—ﬁ4lnﬁ3. (10)

Hence,

sSup (01, B1, B2, B3) = sSup p(B1, B2, Bs).

01>0 0<p1,B2,83<1
0<p1,82,83<1

From (10) it is observed that the function p(f51, 2, f3) has a unique maximum at (57, 53, 55),
where S5, B3 and (3, are same as defined in (9), and the function (10) does not have any

other local maximum.

Now we claim that if 87 > 1, then

sup p(ﬁlaﬁ%ﬁ?)) = sup p(17ﬁ27ﬁ3)' (11)
0<p<1 p22>0,83>0
B22>0,83>0

Suppose (11) is not true, then there exists 0 < El <1, Eg > (0 and 53 > 0, such that

sup  p(Br, Ba, Bs) = p(Bi, Ba, Bs)-

0<p <1
B220,83>0

It implies (51, B2, B3) # (87, B, B3) is a local maximum of p(f1, Ba, Bs) as p(B1, Ba, fs) = —o0

as Py — oo and p(fy, B2, B3) — —oo as f3 — oo. Clearly it is a contradiction.
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Along the same line it follows that if 55 > 1, then

sup  p(Bi, B2, 83) = sup  p(Bi, 1, 5s).

0<By<1 B120,83>0
$12>0,83>0

and if 85 > 1, then

sSup p(61a62753) = sSup p(ﬁhﬁ%l)'

0<pB3<1 B120,82>0
B120,82>0

Combining (11) and (12) we can obtain if 8§ > 1 and 85 > 1 then

sup  p(Br, B2, f3) = sup p(1, 1, Bs).

0<B1,82<1 B3>0
B3>0

Similarly, if 57 > 1 and /35 > 1, then

sup  p(B, B2, B3) = sup p(1, Ba, 1),

0<pB1,83<1 B220
B2>0

if 85 > 1 and 35 > 1, then

sup  p(B, Ba, B3) = sup p(Br, 1, 1)

0<Bg,83<1 B1>0
8120

and if 7 > 1, 85 > 1 and 85 > 1, then

sup p(51752753) :p(17171)
0<p1,B2,63<1

Further observe that

sup p(ﬂlaﬂ%ﬁi’)) = Ssup sup sup p(ﬁl?ﬁ%ﬁiﬁ)?
0<p1,B2,83<1 0<B;<1  0<B;<1  0<Bx<1

foralli# j#kand 1 <i,j5,k < 3.

Now we consider different cases.

(12)

(13)

CASE 1: Bf > 1,35‘ > 1,5; > 1. The MLEs of 1, B2 and f3 are 1, 1 and 1, respectively.
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CASE 2: Bf > 1,5; > 1,3}; < 1. The MLEs of 8; and 5 are 1 and 1, respectively, and the

MLES of 35 can be obtained as the arg maxgg,<;p(1,1,33). Since p(1,1, £3) is an unimodal

function, it has a unique maximum. Further, sup  p(B1, B2, P3) = sup p(1,1,53) due
0<p1,82,83<1 0<B3<1

to (13).

CASE 3: B\f > 1,3; < I,B\; < 1. The MLEs of 3, is 1 and the MLEs of B and (3 can

be obtained as the  arg max,.g, 5,<;P(1, B2, 83). The function p(1, B, B3) has a unique

maximum and we repeat the same argument as before.

The other cases can be considered along the same line. This proves Theorem 2. O]

B APPENDIX

PROOF OF THEOREM 3:

We will provide the proof mainly for five stress level, although the same proof holds for
the general case also. We will not consider the cases where any one or both of n; and nj is

zero, since if ny = 0 or n5 = 0, the MLEs of all the parameters do not exists.

Case 1: Exactly one internal stress level with zero failure.
Here we consider m = 4 and without loss of generality let ng = 0. The log-likelihood function

is given by

101,51, 52,83, 01) = —nlnb; — (no+ns+ns5)Infy — (ng+ns)Infy — (ng + ns) In f3
D, D, Dy D D
01 P01 PifBaby  PiPBaBsth BiBafsfabr

—nsln By — (14)

It can be easily shown as in Theorem 1, that the function (14) has a unique global maximum

and it does not have any local maximum. For a fixed [, the function (14) is maximized

when
0, = Dy Bl(BQ) _ "lP2De & Dy) 33(59 = D 34(52) = s

ny’ B nefoDy ny(B2D2 + D3)’ ~ nsDy’
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Therefore, the profile log-likelihood of 85 without the additive constant is given by

l5(B2) = naIn By — no In(Ba Dy + Ds).

Since,
dlg(ﬁg) _ TLQDg Z 07
s BaDy + D3

the profile log-likelihood of (5 is an increasing function of Sy (0 < By < 1). Hence, the

maximum occurs at J = 1. Therefore,

sup 5(91,51,52,53754) = sup 5(9175171,53,54)

01>0 010
0<51,82,83,64<1 0<51,83,64<1

Case 2: Zero failure at two disjoint stress levels.

Without loss of generality let us assume ny, = 0 and ny = 0. Therefore, the log-likelihood

function is given by

L6, Br, P2, B3, B1) = —nInby — (n3+ns)Infy — (ng +ns) In By — nsIn f5 — ns In fy
Dy D, Dy Dy Ds
6, 51601 Bifebh  [ifafsbh iPaBsBabr

(15)

In this case also the function (15) has a unique global maximum and it does not have any
local maximum. For fixed 8; and f3, the function (15) is maximized when

_ BiDi+ Dy n1(B3Ds + Dy)

91(&1753) - Tﬂl’ ﬁ2(51753) = n3ﬁ3(61D1 + D2>7

n3Ds

B4(ﬁ1>53) = n5(53D3 —|—D4)

Therefore, the profile log-likelihood of 3; and (3 is given by

li3(01, B3) = niIn By + nzIn B — ny In(B1 Dy + Do) — ns In(Bs5D5 + Dy).

Since, l13(f1, P3) can be expressed as the sum of two functions where one depends on f3; only
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and other depends on (3, only and

5113(51,53) _ ni Do >0 and 5513(51,@3) _ n3Dy >0

05 Bi(B1D1 + Dy) — 033 B3(fB3D3 + Dy)

the profile log-likelihood of 8; and s, is an increasing function of 5; and B3 (0 < gy, 83 < 1).

Therefore, 31 =1 and 33 = 1 maximize the log-likelihood function. Hence,

sup 1(01, B, B2, B3, Ba) = sup  1(01,1, B2, 1, By).

012>0 012>0
0<1,82,63,64<1 0<B2,84<1

Case 3: Zero failure at two consecutive stress levels.

Without loss of generality let us assume that ng = 0 and ny, = 0. Therefore, the log-likelihood

function without the additive constant is given by

161, Br, P2, B, 01) = —nInby — (na+ns)Infy —nsInfy —nsln fs — nsIn Gy
D, B D, B Ds B Dy B D5
0, Bi6 Bifeby  PiBefsbh BifBefsf401

In this case also it can be shown as before that for

sup 1(01, B, B2, B3, Ba) = sup (01, b1, 1,1, By).

01>0 01>0
0<1,82,63,64<1 0<p1,84<1

Hence, the result follows. In general it can be shown that the MLE of gy = 1 if ng,y = 0 for
k=1,2,...m— 1.
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