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Abstract

Kundu and Gupta [22] provided the analysis of Type-I hybrid censored competing
risks data, when the lifetime distribution of the competing causes of failures follow
exponential distribution. In this paper we consider the analysis of Type-II hybrid
censored competing risks data. It is assumed that latent lifetime distributions of the
competing causes of failures follow independent exponential distributions with differ-
ent scale parameters. It is observed that the maximum likelihood estimators of the
unknown parameters do not always exist. We propose the modified estimators of the
scale parameters, which coincide with the corresponding maximum likelihood estima-
tors when they exist, and asymptotically they are equivalent. We obtain the exact
distribution of the proposed estimators. Using the exact distributions of the proposed
estimators, associated confidence intervals are obtained. The asymptotic and bootstrap
confidence intervals of the unknown parameters are also provided. Further, Bayesian
inference of some unknown parametric functions under a very flexible Beta-Gamma
prior is considered. Bayes estimators and associated credible intervals of the unknown
parameters are obtained using Monte Carlo method. Extensive Monte Carlo simula-
tions are performed to see the effectiveness of the proposed estimators and one real data
set has been analyzed for the illustrative purposes. It is observed that the proposed
model and the method work quite well for this data set.
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1 Introduction

In medical or reliability analysis, it is often observed that an item can fail due to different

causes. For example, in a medical study it is observed that a person can die due to different

diseases or in a reliability experiment it is observed that an automobile may fail due to

different factors. In such a situation, an investigator is often interested in the assessment

of a specific cause, in presence of other causes. In the statistical literature it is well known

as the competing risks problem. In a competing risk problem, the data consists of a failure

time and an indicator denoting the causes of failure. Among different methods, the two most

popular approaches to analyze competing risks data are the following: (i) latent failure time

model as suggested by Cox [9] or (ii) cause specific hazard functions model as suggested

by Prentice et al. [25]. Several studies have been carried out over the last three decades

under the above model assumptions based on both parametric and non-parametric set up.

For the parametric set up, it is assumed that lifetimes follow some specific distributions,

whereas under the non-parametric set up no specific distributional assumptions are needed.

Interested readers are referred to the monograph of Crowder [10] for a comprehensive review

on the analysis of different competing risks models.

Type-I and Type-II are the two most common censoring schemes which are used in prac-

tice. A mixture of Type-I and Type-II censoring schemes is known as hybrid censoring

scheme (HCS). Epstein [13] first introduced this HCS, and it is also known as Type-I HCS.

Since the introduction of the Type-I HCS of Epstein [13], extensive work has been done on

Type-I hybrid censoring schemes, see for example Fairbanks et al. [14], Chen and Bhat-

tacharyya [6], Gupta and Kundu [15], Dube et al. [11], Kundu [20], and the references cited
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therein. Childs et al. [7] introduced a new hybrid censoring scheme and it can be described

as follows. Suppose, n items are put on a test at the time point 0. Let the ordered lifetimes

of these experimental units be denoted by X1:n < X2:n < . . . < Xn:n, respectively. Suppose

R < n is a pre-fixed integer and T is a pre-fixed time point. The test is terminated at a

random time T ∗ = min{XR:n, T}. This hybrid censoring scheme is named as the Type-II

HCS. The main advantage of the Type-II HCS is that it guarantees at least R failures before

the end of the experiment, and if R failures occur before time T , the experiment continues

till time T , which might lead to more than R failures before the experiment stops. A detailed

discussion on Type-I and Type-II hybrid censoring schemes can be obtained in Balakrishnan

and Kundu [2].

Kundu and Gupta [22] provided the analysis of Type-I hybrid censored competing risks

data. Based on the latent failure time model assumption of Cox [9], and the latent failure

distributions to be exponential, the maximum likelihood estimators (MLEs) of the unknown

parameters are obtained when they exist. It is observed that the MLEs of scale parameters

may not always exist. The exact conditional distributions of the MLEs are also provided.

The authors further considered the Bayesian inference of the unknown parameters based on

the independent gamma priors, and obtained the Bayes estimates and the associated credible

intervals. For some of the recent references in this topic, interested readers are referred to

Iliopolus [17] and Balakrishnan et al. [1].

The aim of this paper is to provide the analysis of Type-II hybrid censored competing

risks data. In this paper also we have made the latent failure time model assumption of

Cox [9]. In latent failure time modeling, it is assumed that competing causes of failures are

independent random variables. In this paper it is assumed that we have only two competing

causes of failures, and the lifetimes of the competing causes of failure follow exponential

distribution with different scale parameters. Therefore, if Z denotes the lifetime on an item,
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then

Z = min{T1, T2},

where T1 and T2 are the latent failure times of two different causes of the item. It may be

mentioned that although the assumption of independence of the two failure time distributions

T1 and T2 seems to be very restrictive, it has been shown by Tsiatis [26] that without the

presence of covariates the independence between T1 and T2 cannot be tested using the data

only, see also Kalbfleisch and Prentice [18] in this respect. Moreover, it is observed by

Kundu [19] that in case of exponential or Weibull lifetime distributions, both the approaches

namely the latent failure time model of Cox [9] or the cause specific hazard functions model

of Prentice et al. [25], provide the same likelihood function, although their interpretations

are different.

It is observed that in this case also the MLEs may not always exist. We propose new

estimators of the scale parameters which always exist. They coincide with the MLEs when

the later exist, and asymptotically they are equivalent. We obtain the exact distributions of

the proposed estimators, and it can be written as a generalized mixture of shifted gamma

distributions. Based on the monotonicity assumption as in Chen and Bhattacharyya [6], the

confidence intervals based on the exact distributions are also provided. It may be mentioned

that the main purpose to propose the new estimators is to provide unconditional inference

and also to provide confidence set of the scale parameters even though MLEs do not exist.

For comparison purposes, we have provided the asymptotic and bootstrap confidence

intervals also. We further consider the Bayesian inference of the unknown parameters. For

Bayesian analysis, we need to assume certain priors on the unknown parameters. In this

case we have considered a very flexible Beta-Gamma prior as suggested by Pena and Gupta

[24] for the scale parameters. The Bayes estimates can be obtained in explicit forms, and

we have also provided joint credible set of the unknown parameters. Extensive simulations
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are performed to see the effectiveness of the different methods, and one data set has been

analyzed for illustrative purposes.

The main differences of the present paper with Kundu and Gupta [22] are the following.

In Kundu and Gupta [22], the authors considered the analysis of Type-I hybrid censored

competing risks data, whereas in this paper we consider the analysis of Type-II hybrid cen-

sored competing risks data. The exact distributions of the estimators are quite different.

Moreover all the results available till date are based on the conditional distribution, whereas

in this paper the results are obtained without any conditioning argument. Using the ex-

act distributions of the proposed estimators we have provided confidence intervals of the

unknown parameters. It is observed that even when the MLEs do not exist, it is possible

to provide confidence set of the parameters. Finally, in this paper we have considered the

Bayesian inference of the unknown parameters based on a very general Beta-Gamma priors,

where as most of the existing results are based on independent gamma priors on the scale

parameters which is a special case of the Beta-Gamma priors. Based on this general prior,

we have provided the Bayes estimates and also the associated credible intervals. We have

also provided Gibbs sampling procedure to compute the Bayes estimate of any function of

unknown parameters and the associated credible interval.

Rest of the paper is organized as follows. In Section 2, we describe the model, provide

the prior assumptions, and present the definition and notations used throughout this paper.

The proposed estimators and their exact distributions are derived in Section 3. In Section

4, we have presented different confidence intervals. Bayesian analysis has been considered

in Section 5. Monte Carlo simulation results and the analysis of a real data set have been

presented in Section 6, and finally we conclude the paper in Section 7.
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2 Notations, Model Descriptions & Prior

Without loss of generality, we assume that there are only two causes of failure. We use the

following notations throughout this paper.

2.1 Notations

PDF: probability density function

CDF: cumulative distribution function

MLE: maximum likelihood estimator

HPD: highest posterior density

MGF: moment generating function

Tji : latent failure time of the i-th individual under cause j, for j = 1, 2

Zi : min{T1i, T2i}

Zi:n : i-th order statistic of Zi, i = 1, . . . , n, and we define Zn+1:n = ∞

T ∗ : max{ZR:n, T}

J : the total number of failures before T ∗

Di : the number of failures observed due to cause i; i = 1, 2

δi : indicator variable denoting the cause of failure of the i-th ordered individual

D : {(z1n, δ1), . . . , (zJn, δJ)}, the observation before the experiment stops

Ij : {zi:n; δi = j}; j = 1, 2

GA(α, λ) : gamma random variable with PDF;
λα

Γ(α)
xα−1e−λx; x > 0

exp(λ) : exponential random variable with PDF; λe−λx; x > 0, λ > 0,

6



Bin(N, p) : Binomial random variable with probability mass function
(
N

i

)
pi(1− p)N−i, for i = 1, 2, . . . , N

Beta(a, b) : Beta random variable with PDF;

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1; 0 < x < 1

fG(x;µ, α, λ) : PDF of a shifted gamma random variable;

λα

Γ(α)
(x− µ)α−1e−λ(x−µ); x > µ

FG(x;µ, α, λ) :

∫ ∞

x

fG(z;µ, α, λ)dz

BG(b0, a0, a1, a2) : Random variable having a Beta-Gamma distribution with

the PDF given by (2).

2.2 Model Description

Consider the following lifetime experiment in which n items are put on a test. Each unit is

exposed to two risks. Here Zi denotes the lifetime of the i-th unit and

Zi = min{T1i, T2i}.

Based on Cox’s latent failure time model assumptions, it is assumed that T1i and T2i are

independently distributed for each i. Moreover, it is assumed that T1i ∼ (follows) exp(λ1)

and T2i ∼ exp(λ2), for i = 1, . . . , n. The test is terminated at the time point T ∗. It is

immediate that the PDF of Zi has the following form

f(z;λ1, λ2) = (λ1 + λ2) e
−z(λ1+λ2); z > 0, (1)

and 0, otherwise. We use the following notation

λ = λ1 + λ2.

Moreover, we have the following observation at the end of the experiment.

Case-I : {(Z1:n, δ1), . . . , (ZR:n, δR)} ; if T < ZR:n
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Case-II : {(Z1:n, δ1), . . . , (ZJ :n, δJ)} ; if ZR:n < T and ZJ :n < T < ZJ+1:n for J = R, . . . , n.

2.3 Prior Assumption

Borrowing the idea from Pena and Gupta [24], we assume the following joint conjugate prior

on λ1 and λ2. For a0 > 0, a1 > 0, a2 > 0, b0 > 0, the joint prior of (λ1, λ2) has the following

PDF for 0 < λ1, λ2 < ∞.

π(λ1, λ2|b0, a0, a1, a2) =
Γ(a1 + a2)

Γ(a0)
(b0(λ1+λ2))

a0−a1−a2×
ba10

Γ(a1)
λa1−1
1 e−b0λ1×

ba20
Γ(a2)

λa2−1
2 e−b0λ2 .

(2)

The joint PDF (2) is known as the PDF of a Beta-gamma distribution.

The joint PDF (2) can take variety of shapes. The correlation between λ1 and λ2 can be

both positive and negative, depending on the values of a0, a1 and a2. If a0 = a1 + a2, the

prior distributions of λ1 and λ2 become independent. The following results will be useful for

further development.

Result 1: If (λ1, λ2) ∼ BG(b0, a0, a1, a2), then for i = 1, 2,

E(λi) =
a0ai

b0(a1 + a2)
and V (λi) =

a0ai
b20(a1 + a2)

×

{
(ai + 1)(a0 + 1)

a1 + a2 + 1
−

a0ai
a1 + a2

}
. (3)

Proof:

E(λ1) =

∫ ∞

0

∫ ∞

0

Γ(a1 + a2)

Γ(a0)
(b0(λ1 + λ2))

a0−a1−a2 ×
ba10

Γ(a1)
λa1
1 e−b0λ1 ×

ba20
Γ(a2)

λa2−1
2 e−b0λ2dλ1dλ2

=
Γ(a0 + 1)

Γ(a1 + 1 + a2)

Γ(a1 + a2)

Γ(a0)

Γ(a1 + 1)

Γ(a1)

1

b0∫ ∞

0

∫ ∞

0

Γ(a1 + 1 + a2)

Γ(a0 + 1)
(b0(λ1 + λ2))

a0+1−a1−1−a2 ×
ba1+1
0

Γ(a1 + 1)
λa1
1 e−b0λ1 ×

ba20
Γ(a2)

λa2−1
2

e−b0λ2dλ1dλ2

=
a0a1

b0(a1 + a2)
.

The integration in the second step of the above turns out to be 1 because of equation
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(2). Similarly we get E(λ2) =
a0a2

b0(a1 + a2)
. Next we derive V (λ1). Note that V (λ1) =

E(λ2
1)− (E(λ1))

2. We derive E(λ2
1) below.

E(λ2
1) =

∫ ∞

0

∫ ∞

0

Γ(a1 + a2)

Γ(a0)
(b0(λ1 + λ2))

a0−a1−a2 ×
ba10

Γ(a1)
λa1+1
1 e−b0λ1 ×

ba20
Γ(a2)

λa2−1
2 e−b0λ2dλ1dλ2

=
Γ(a1 + 2)

Γ(a1)

Γ(a1 + a2)

Γ(a0)

Γ(a0 + 2)

Γ(a1 + a2 + 2)

1

b20

=

∫ ∞

0

∫ ∞

0

Γ(a1 + 2 + a2)

Γ(a0 + 2)
(b0(λ1 + λ2))

a0+2−a1−2−a2 ×
ba1+2
0

Γ(a1 + 2)
λa1
1 e−b0λ1 ×

ba20
Γ(a2)

λa2−1
2

e−b0λ2dλ1dλ2

=
a0a1(a0 + 1)(a1 + 1)

b20(a1 + a2)(a1 + a2 + 1)
.

Thus

V (λ1) =
a0a1

b20(a1 + a2)
×

{
(a1 + 1)(a0 + 1)

a1 + a2 + 1
−

a0a1
a1 + a2

}
,

V (λ2) =
a0a2

b20(a1 + a2)
×

{
(a1 + 1)(a0 + 1)

a1 + a2 + 1
−

a0a2
a1 + a2

}
.

Next we provide steps to generate samples from BG(b0, a0, a1, a2) distribution. We need the

following Lemma. The proof is quite straight forward, hence the details are avoided.

Lemma 1: If (λ1, λ2) ∼ BG(b0, a0, a1, a2) then

U = λ1 + λ2 ∼ GA(a0, b0) and V =
λ1

λ1 + λ2

∼ Beta(a1, a2).

Moreover, U and V are independent.

Using the same algorithm as suggested in Kundu and Pradhan [23] following steps are

required to generate samples from a Beta-Gamma distribution.

• Step-1 Generate U from GA(a0, b0).

• Step-2 Generate V from Beta(a1, a2).

• Step-3 Obtain λ1 = UV and λ2 = U(1− V ).
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3 Estimators of λ1 and λ2 and their Distributions

3.1 Estimators of λ1 and λ2

Likelihood contribution of the data point (z, δ = j), for j = 1, 2, is given by

L(λ1, λ2|(z, δ = j)) = λje
−λ1ze−λ2z = λje

−(λ1+λ2)z.

Thus, the likelihood function of the observation is given by

L(λ1, λ2|Data) =

{
n!

D1!D2!(n−R)!
λD1
1 λD2

2 e−W (λ1+λ2) if T < ZR:n

n!
D1!D2!(n−J)!

λD1
1 λD2

2 e−W (λ1+λ2) if ZJ :n < T < ZJ+1:n,

here R ≤ J ≤ n. Hence, for

W =

{ ∑R
i=1 Zi + ZR(n−R) for Case-I∑J
i=1 Zi + T (n− J) for Case-II,

the log likelihood function without the additive constant is

l(λ1, λ2|Data) = D1 lnλ1 +D2 lnλ2 −W
(
λ1 + λ2

)
. (4)

Clearly, the MLEs of λ1 and λ2 are given by

λ̂1MLE =
D1

W
if D1 > 0 and λ̂2MLE =

D2

W
if D2 > 0.

Note that when D1 = 0, the MLE of λ1 does not exist, and similarly, when D2 = 0, the

MLE of λ2 does not exist. We define the estimators of λ1 and λ2 which will be useful for

constructing their confidence intervals even when the MLEs do not exist. The proposed

estimators are as follows:

λ̂1 =

{
λ̂1MLE if D1 > 0

0 if D1 = 0
and λ̂2 =

{
λ̂2MLE if D2 > 0

0 if D2 = 0.

Therefore, although the MLEs of λ1 and λ2 may not always exist, λ̂1 and λ̂2 always exist,

see for example the definition of an estimator in Definition 7.1.1 of Casella and Berger [4].

Now we obtain the exact distributions of λ̂1 and λ̂2, and based on the exact distributions of

λ̂1 and λ̂2, exact confidence intervals can be constructed. We will also show that even when

D1 = 0 or D2 = 0, it is possible to obtain the exact confidence set of (λ1, λ2).
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3.2 Distributions of λ̂1 and λ̂2

In this section we provide the exact distributions of λ̂1 and λ̂2. For x ≥ 0, the distribution

function of λ̂1 is given

P (λ̂1 ≤ x) = P (λ̂1 ≤ x|D1 = 0)P (D1 = 0) + P (0 < λ̂1 ≤ x|D1 > 0)P (D1 > 0)

= P (D1 = 0) + P (0 < λ̂1 ≤ x|D1 > 0)P (D1 > 0)

=
n∑

i=0

ci +
R∑

i=1

R−1∑

s=0

ci,s(x) +
n∑

j=R

j∑

i=1

j∑

s=0

dj,i,s(x), (5)

where

(a)

ci =





(
n

i

)
(1− e−Tλ)ie−(n−i)Tλ

( λ2

λ1 + λ2

)R
, i = 0, 1, . . . R− 1

(
n

i

)
(1− e−Tλ)ie−(n−i)Tλ

( λ2

λ1 + λ2

)i
, i = R,R + 1, . . . n,

(b) for i = 1, . . . , R and s = 0, . . . , R− 1,

ci,s(x) = n

(
n− 1

R− 1

)(
R− 1

s

)(
R

i

)( λ1

λ1 + λ2

)i( λ2

λ1 + λ2

)R−i (−1)s

(n−R + s+ 1)
e−Tλ(n−R+1+s)

FG

(
1

x
;
T

i

(
n−R + s+ 1

)
, R, iλ

)
,

(c.) for s = 0, . . . , j, i = 1, . . . , j and j = R, . . . , n,

dj,i,s(x) =

(
n

j

)(
j

i

)(
j

s

)( λ1

λ1 + λ2

)i( λ2

λ1 + λ2

)j−i

(−1)se−Tλ(n−j+s)FG

(
1

x
;
T

i

(
n− j + s

)
, j, iλ

)
.

(6)

Proof: See in the Appendix.

It is clear that the distribution of λ̂1 is mixture of a degenerate and an absolute continuous

distributions. The PDF of the absolute continuous part of the distribution of λ̂1 can be

written as

fλ̂1|D1>0(x) =
1

P (D1 > 0)

[
R∑

i=1

R−1∑

s=0

d

dx
ci,s(x) +

n∑

j=R

j∑

i=1

j∑

s=0

d

dx
dj,i,s(x)

]
,

11



where,

(i) for i = 1, . . . , R and s = 0, . . . , R− 1,

d

dx
ci,s(x) = n

(
n− 1

R− 1

)(
R− 1

s

)(
R

i

)( λ1

λ1 + λ2

)i( λ2

λ1 + λ2

)R−i (−1)s

(n−R + s+ 1)

e−Tλ(n−R+1+s) 1

x2
fG

(
1

x
;
T

i

(
n−R + s+ 1

)
, R, iλ

)
,

(ii) for s = 0, . . . , j, i = 1, . . . , j and j = R, . . . , n,

d

dx
dj,i,s(x) =

(
n

j

)(
j

i

)(
j

s

)( λ1

λ1 + λ2

)i( λ2

λ1 + λ2

)j−i

(−1)se−Tλ(n−j+s)

1

x2
fG

(
1

x
;
T

i

(
n− j + s

)
, j, iλ

)
. (7)

Similarly, the distribution function of λ̂2 and the PDF of the absolute continuous part of the

distribution of λ̂2 can obtained from equations (6) and (7), respectively, by interchanging λ1

and λ2.

Comment: Note that if we denote θ1 = 1/λ1 and θ2 = 1/λ2, then the MLEs of θ1 and θ2

exist, if D1 > 0 and D2 > 0, respectively. The MLE of θ1, say θ̂1, given D1 > 0 is 1/λ̂1 given

D1 > 0. Similarly, the MLE of θ2 given D2 > 0 is θ̂2 = 1/λ̂2 given D2 > 0. Therefore, the

distributions of θ̂1 given D1 > 0 and θ̂2 given D2 > 0 can be easily obtained from (5).

4 Confidence interval

In this section we present different methods of constructing 100(1-α)% confidence interval

of λ1. Similar methods can be applied to construct confidence interval of λ2 also, and they

are not presented here.

4.1 Confidence Intervals Based on Exact Distributions

First we consider the case when D1 > 0 and D2 > 0. The case when D1 = 0 or D2 = 0, will

be discussed later. The method of construction of the confidence interval of λ1 based on the
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exact conditional distribution of λ̂1 is based on a similar assumption as those of Chen and

Bhattacharyya [6] or Kundu and Basu [21]. First let us assume that λ2 is known. Suppose

Pλ1(λ̂1 ≥ b) is a strictly increasing function of λ1 for all b > 0, and let b(·) be a function such

that Pλ1(λ̂1 ≥ b(λ1)) =
α

2
. Therefore, for λ1 < λ′

1

α

2
= Pλ′

1

[
λ̂1 ≥ b(λ′

1)
]
= Pλ1

[
λ̂1 ≥ b(λ1)

]
< Pλ′

1

[
λ̂1 ≥ b(λ1)

]
, (8)

which implies b(·) is an strictly increasing function as b(λ1) < b(λ′
1). Hence b

−1(λ) exists and

it is also an increasing function. Now from (8), we have

1−
α

2
= Pλ1

[
λ̂1 ≤ b(λ1)

]
= Pλ1

[
b−1(λ̂1) ≤ λ1

]
. (9)

Clearly, (9) indicates that b−1(λ̂1) is the symmetric lower bound of the 100(1−α)% confidence

intervals of λ1. Therefore, if λ̂1,obs denotes the observed value of λ̂1, then we need to find

λ1L = b−1(λ̂1,obs), such that

α

2
= Pλ1L

(λ̂1 ≥ λ̂1,obs). (10)

Note that, (10) is equivalent in finding

1−
α

2
= Pλ1L

(λ̂1 ≤ λ̂1,obs). (11)

Similarly, we can obtain λ1U , the symmetric upper bound of the 100(1 − α)% confidence

intervals of λ1 by solving the following equation

α

2
= Pλ1U

(λ̂1 ≤ λ̂1,obs). (12)

Since, it is not possible to obtain a closed form expression of b(λ), we need to use some

iterative method to solve (11) and (12) to compute λ1L and λ1U , respectively. In practice

since λ2 is also unknown we replace it by its MLE.

The construction of the confidence interval of λ1 is based on the assumption that Pλ1(λ̂1 ≥

b) is a strictly increasing function of λ1 for all b > 0. Unfortunately, due to complicated
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nature of Pλ1(λ̂1 ≥ b), we could not establish this property. It may be mentioned that many

authors including Chen and Bhattacharyya [6], Gupta and Kundu [15], Childs et al. [7] used

this property to find confidence interval of the scale parameter for exponential distribution.

Although theoretically it is difficult to check the assumption, a numerical study supports

the monotonicity assumption. We present the graphs Pλi
(λ̂i ≤ x) for i = 1, 2 in Figure 1

and Figure 2, and they support our claim. Moreover, heuristically it may be argued that

since λ1 is a scale parameter, the distribution function of λ̂1 is stochastically increasing as a

function of λ1. That justifies the assumption. Based on the assumption that Pλ1(λ̂1 ≥ b) is

a strictly increasing function of λ1 for all b > 0 we have the following result.

Lemma 5: For D1 > 0 and D2 > 0, the solutions of (11) and (12) always exist.

Proof: See in the Appendix.

Now let us consider the case when either D1 = 0 or D2 = 0. Note that when D1 = 0,

D2 ≥ R, and vice versa. Now when D1 = 0, a 100(1− α)% confidence set of (λ1, λ2) can be

obtained as follows:

A = {(λ1, λ2) : Pλ1,λ2(D1 = 0) > 1− α}.

Similarly, when D2 = 0, a 100(1−α)% confidence set of (λ1, λ2) can be obtained as follows:

B = {(λ1, λ2) : Pλ1,λ2(D2 = 0) > 1− α}.

4.2 Asymptotic and Bootstrap Confidence Intervals

Since the construction of the confidence intervals of λ1 and λ2 based on the exact distributions

of the estimators are quite computationally involved, we propose to use two alternative

confidence intervals which can be obtained more conveniently. Based on the asymptotic

normality of the MLEs, 100(1 − α)% asymptotic confidence interval of λ1 and λ2 can be
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obtained as
(
λ̂1 − zα

2

D
1/2
1

W
, λ̂1 + zα

2

D
1/2
1

W

)
and

(
λ̂2 − zα

2

D
1/2
2

W
, λ̂2 + zα

2

D
1/2
2

W

)
, (13)

respectively. Note that asymptotic interval of λ1 does not exist when D1 = 0. Similar case

holds for λ2 also.

We propose to use bootstrap method for constructing confidence intervals of the unknown

parameters. Steps of construction of bootstrap confidence intervals are as follows.

• Step 1: Define,

λ̂1M =

{
λ̂1MLE if D1 > 0

λ11 if D1 = 0 and λ11 ∈ A
λ̂2M =

{
λ̂2MLE if D2 > 0

λ22 if D2 = 0 and λ22 ∈ B.

Here λ11 and λ22 are obtained from the following two non-linear equations:

Pλ11,λ̂2
(D1 = 0) = 0.5 and Pλ̂1,λ22

(D2 = 0) = 0.5.

• Step 2:

Case-I: T < zR:n

(a) Generate a sample of size R from the distribution

f(x) =
λ̂Me−λ̂Mx

1− e−λ̂MZR:n

0 < x < zR:n,

where λ̂M = λ̂1M + λ̂2M . If the largest value of the sample is greater than T ,

perform Step (b), otherwise, repeat Step (a).

(b) Assign Cause-I or Cause-II to each failure with probability
λ̂1M

λ̂1M + λ̂2M

and

λ̂2M

λ̂1M + λ̂2M

, respectively.

Case-II: T > zR:n

15



(a) Generate a sample of size J = R,R + 1, . . . , n from the distribution

f(x) =
λ̂Me−λ̂Mx

1− e−λ̂MT
0 < x < T.

(b) Assign Cause-I or Cause-II to each failure with probability
λ̂1M

λ̂1M + λ̂2M

and

λ̂2M

λ̂1M + λ̂2M

, respectively.

• Step 3: Compute λ̂∗
1M and λ̂∗

2M from the bootstrap sample. Repeat the process N

times.

• Step 4: Let ĈDF (x) be the empirical distribution function of λ̂1M . Let us define

λ̂1M,boot(x) = ĈDF
−1
(x). Then approximate 100(1 − α)% confidence interval of λ1 is

given by
(
λ̂1M,boot(

α
2
), λ̂1M,boot(1 −

α
2
)
)
. Similarly, we can obtain the bootstrap confi-

dence interval of λ2 also.

5 Bayesian analysis

It is assumed that (λ1, λ2) has a joint Beta-Gamma prior as given in (2). Now based on

the above joint prior, we provide the Bayes estimates and the associated credible set of the

unknown parameters. The joint posterior distribution of λ1 and λ2 can be easily observed

as

π(λ1, λ2|data) ∝ e−(W+b0)(λ1+λ2)λ1
a1+D1−1λ2

a2+D2−1(λ1 + λ2)
a0−a1−a2 , λ1 > 0, λ2 > 0. (14)

Hence,

π(λ1, λ2|data) ∼ BG(b0 +W, a0 + J, a1 +D1, a2 +D2). (15)

Therefore, under the squared error loss function the Bayes estimates of λ1 and λ2 are

λ̂1B = E(λ1|data) =
(a0 + J)(a1 +D1)

(b0 +W )(a1 + a2 + J)
,

λ̂2B = E(λ2|data) =
(a0 + J)(a2 +D2)

(b0 +W )(a1 + a2 + J)
,
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respectively. Similarly, we can obtain the corresponding posterior variances as follows;

V (λ1|data) = A1B1, V (λ2|data) = A2B2.

Here, for k = 1, 2,

Ak =
(a0 + J)(ak +Dk)

(b0 +W )2(a1 + a2 + J)
and

Bk =
(a0 + J + 1)(ak +Dk + 1)

a1 + a2 + J + 1
−

(a0 + J)(ak +Dk)

a1 + a2 + J
.

First we will provide a joint 100(1 − α)% credible set of (λ1, λ2). Let us recall that Cα is

said to be a 100(1− α)% credible set of (λ1, λ2) if,

P ((λ1, λ2) ∈ Cα) = 1− α, where (λ1, λ2) ∼ π(λ1, λ2|data).

Using Lemma 1, Cα can be constructed as follows. First, let us choose α1 and α2, such that

(1− α) = (1− α1)(1− α2). Now, choose Cα, as follows:

Cα =

{
(λ1, λ2) : λ1 > 0, λ2 > 0, A ≤ λ1 + λ2 ≤ B,C ≤

λ1

λ1 + λ2

≤ D

}
. (16)

Here A,B,C,D are such that

P (A ≤ U ≤ B) = 1− α1 and P (C ≤ V ≤ D) = 1− α2.

Note that, Cα is a trapezoid enclosed by the following four straight lines:

(i) λ1 + λ2 = A, (ii) λ1 + λ2 = B, (iii) λ1(1−D) = λ2D, (iv) λ1(1− C) = λ2C. (17)

The area of the trapezoid (17) is (B2 − A2)(D − C)/2.

Kundu and Pradhan [23] provided a very efficient algorithm to generate samples from a

Beta-Gamma distribution. Now we will provide two algorithms for (i) computing the Bayes

estimates of any function of λ1 and λ2, say g(λ1, λ2), and also to construct HPD credible

interval of g(λ1, λ2), (ii) constructing the credible set of (λ1, λ2) as described above.

Algorithm 1: Construct Bayes estimate of g(λ1, λ2), and the associated 100(1−α)% HPD

credible interval.
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• Step-1: Generate λ1 and λ2 from π(λ1, λ2|data) using the method suggested by Kundu

and Pradhan [23].

• Step-2: Repeat Step-1 M times to generate (λ11, λ21), . . . , (λ1M , λ2M).

• Step-3: The Bayes estimate of g(λ1, λ2) and the corresponding posterior variance can

be obtained as

ĝ(λ1, λ2) =
1

M

M∑

i=1

g(λ1i, λ2i) and V̂ (g(λ1, λ2)) =
1

M

M∑

i=1

(g(λ1i, λ2i)− ĝ(λ1, λ2))
2.

• Step-4: To construct credible interval of g(λ1, λ2), first order gi as g(1) < . . . < g(M),

where gi = g(λ1i, λ2i). Then a 100(1− α)% credible interval of g(λ1, λ2) becomes

(g(j), g(j+M(1−α)))

for j = 1, . . . , [Mα].

• Step-5: 100(1 − α)% HPD credible interval becomes (g(j∗), g(j∗+M(1−α))) where j∗ is

such that

g(j∗+M(1−α)) − g(j∗) ≤ g(j+M(1−α)) − g(j), ∀j = 1, . . . , [Mα].

Algorithm 2: Construction of the credible set Cα as given in (16).

• Step-1: Generate λ1 and λ2 from π(λ1, λ2|data) using the method suggested by Kundu

and Pradhan [23].

• Step-2: Repeat Step-1 M times to generate (λ11, λ21), . . . , (λ1M , λ2M).

• Step-3: Compute for i = 1, . . . ,M ,

ui = λ1i + λ2i and vi =
λ1i

λ1i + λ2i

.

18



• Step-4: Order u1, . . . , uM , as u(1) < . . . < u(M), similarly, order v1, . . . , vM , as v(1) <

. . . < v(M).

• Step-5: Now compute A = u(j∗) and B = u(j∗+M(1−α1)), where

u2
(j∗+M(1−α)) − u2

(j∗) ≤ u2
(j+M(1−α)) − u2

(j), ∀j = 1, . . . , [Mα].

• Step-6: Similarly, C = v(j∗) and D = v(j∗+M(1−α1)), where

v(j∗+M(1−α)) − v(j∗) ≤ v(j+M(1−α)) − v(j), ∀j = 1, . . . , [Mα].

6 Simulation Results

In this section we present some simulation results to see how different methods behave

for small sample sizes and also for different parameter values. We compare the perfor-

mances of the proposed estimators and the Bayes estimators both under informative and

non-informative priors. We also compare the performances of the different confidence and

credible intervals of the unknown parameters in terms of their coverage percentages and

credible lengths. We further observe the performances of Algorithm 1 and Alogithm 2 by

simulation experiments.

In the simulation part we have taken various values of n = 10, 15, 20, 30 and R =

0.8n, 0.6n with T = 1.2, λ1 = 1 and λ2 = 1.3. In each case we draw random sample

from the given censoring scheme and compute λ̂1 and λ̂2. We replicate the process 5000

times and compute the biases and MSEs. We also compute 95% (a) confidence intervals

based on the exact distributions of λ̂1 and λ̂2, (b) asymptotic confidence intervals and (c)

Bootstrap confidence intervals for both the parameters. The average lengths and the cover-

age percentages are computed. All the results are reported in Table 1. In Figures 3 and 4,

we present the histograms and the associated PDFs of λ̂1 and λ̂2, given D1 > 0 and D2 > 0,

respectively when n = 10, R= 8, λ1 = 1, λ2 = 1.3 and T = 1.2. They match very well.
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We further compute the Bayes estimates and the associated credible intervals of the

unknown parameters. For Bayesian analysis we have taken both informative and non infor-

mative priors. In case of informative prior, hyper parameters are taking as a0 = 1.0, b0 =

2.3, a1 = 1.0, a2 = 1.3. These values are chosen such that the prior expectation of the pa-

rameters are exactly same as the corresponding true value of the parameter. Hence, the

prior is informative about the unknown parameters. For the non informative prior, we take

a0 = 0.001, b0 = 0.001, a1 = 0.001, a2 = 0.001, so that the Bayes estimators and the proposed

estimators match. In this case the comparison between the two estimators makes sense. For

comparison purposes we compute the average biases and MSEs of the Bayes estimates under

both the priors. We also compute 95% credible intervals, HPD credible intervals, and obtain

the corresponding coverage percentages and average credible lengths over 5000 replications.

All the results are reported in Table 2 and Table 3.

Some of the points are quite clear from these simulation experiments. In all these cases

as sample sizes increases performances of all the estimators improve in terms of lower biases

and lower MSEs. The average lengths of the confidence intervals and credible intervals

also decrease as sample size increases. From Table 1 it is clear that the performances of

the confidence intervals based on the exact distributions of λ̂1 and λ̂2 and the bootstrap

confidence intervals are quite satisfactory. In both these cases the coverage percentages are

very close to the nominal level. The average lengths of the confidence intervals based on

bootstrap method are smaller than the corresponding confidence intervals based on the exact

distributions of λ̂1 and λ̂2. The confidence intervals based on the asymptotic distribution of

the MLEs are not able to maintain the associated nominal level.

From Table 2 and Table 3, it is clear that the Bayes estimates are working well. As

expected the Bayes estimates based on the informative priors are better than the corre-

sponding Bayes estimates based on the non-informative priors both in terms of biases and
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MSEs. In both these cases the coverage percentages of the credible intervals are very close

to the nominal level, although in case of HPD credible intervals the coverage percentages

are slightly smaller than the nominal level particularly when the sample size is very small.

Again, as expected the average lengths of the credible intervals based on the informative

priors are smaller than the corresponding average lengths based on the non-informative pri-

ors. Comparing Table 1 and Table 3, it clear that the Bayes estimates with non-informative

prior are working better than the proposed estimators. Therefore, for all practical purposes,

we recommend to use the Bayes estimates with non-informative priors.

Table 1: Under frequentist set up for λ1 = 1.0, λ2 = 1.3, T = 1.2

Sample size Parameters Bias MSE Approximate CI Bootstrap CI Asymptotic CI

n=10 λ1 0.092 0.341 2.188 (95.86) 2.441 (93.30) 2.080 (91.86)
R=0.6n λ2 0.142 0.499 2.485 (95.16) 2.848 (92.90) 2.404 (92.17)
n=10 λ1 0.093 0.342 2.189 (95.88) 2.440 (93.60) 2.083 (91.91)
R=0.8n λ2 0.151 0.474 2.495 (95.72) 2.858 (94.08) 2.413 (93.84)

n=15 λ1 0.062 0.211 1.709 (95.24) 1.837 (93.56) 1.654 (93.37)
R=0.6n λ2 0.070 0.270 1.927 (95.24) 2.106 (94.00) 1.887 (93.38)
n=15 λ1 0.058 0.205 1.708 (95.42) 1.833 (93.98) 1.652 (92.79)
R=0.8n λ2 0.086 0.267 1.941 (95.48) 2.118 (94.18) 1.901 (94.24)

n=20 λ1 0.051 0.149 1.459 (95.22) 1.539 (93.86) 1.424 (93.14)
R=0.6n λ2 0.061 0.195 1.652 (94.72) 1.766 (93.54) 1.626 (94.00)
n=20 λ1 0.051 0.148 1.458 (95.14) 1.537 (93.90) 1.424 (93.58)
R=0.8n λ2 0.061 0.189 1.651 (95.54) 1.761 (94.38) 1.626 (94.54)

n=30 λ1 0.029 0.093 1.164 (94.94) 1.206 (94.08) 1.145 (93.80)
R=0.6n λ2 0.044 0.121 1.326 (95.16) 1.386 (94.52) 1.313 (94.64)
n=30 λ1 0.029 0.092 1.163 (95.00) 1.204 (94.28) 1.144 (93.70)
R=0.8n λ2 0.038 0.121 1.322 (94.66) 1.379 (93.92) 1.308 (93.68)

Now to see how Algorithm 1 and Algorithm 2 behave we have performed some small

simulation experiments and the results are reported in Tables 4 to 6. In all the cases we have

taken λ1 = 1.0, λ2 = 3.0 and T = 1.2. For Algorithm 1, we have taken g(λ1, λ2) =
λ1

λ1 + λ2

,
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Table 2: Under informative Bayesian set up for λ1 = 1.0, λ2 = 1.3, T = 1.2

Sample size Parameters Bias MSE Credible interval HPD Credible interval

n=10 λ1 0.054 0.188 1.778 (96.40) 1.689 (94.60)
R=0.6n λ2 0.024 0.248 2.059 (96.54) 1.980 (95.12)
n=10 λ1 0.054 0.189 1.778 (96.42) 1.689 (94.12)
R=0.8n λ2 0.032 0.233 2.065 (97.00) 1.987 (95.48)

n=15 λ1 0.044 0.144 1.495 (95.76) 1.441 (94.58)
R=0.6n λ2 0.046 0.176 1.709 (96.08) 1.661 (95.16)
n=15 λ1 0.041 0.140 1.494 (95.98) 1.440 (94.46)
R=0.8n λ2 0.018 0.172 1.721 (96.54) 1.673 (95.60)

n=20 λ1 0.040 0.113 1.320 (95.44) 1.283 (94.38)
R=0.6n λ2 0.014 0.142 1.511 (95.36) 1.477 (94.78)
n=20 λ1 0.041 0.112 1.321 (95.70) 1.283 (94.56)
R=0.8n λ2 0.014 0.138 1.511 (96.30) 1.477 (95.42)

n=30 λ1 0.024 0.078 1.090 (95.22) 1.068 (94.46)
R=0.6n λ2 0.015 0.098 1.250 (95.50) 1.230 (95.08)
n=30 λ1 0.025 0.077 1.090 (95.38) 1.067 (94.30)
R=0.8n λ2 0.010 0.099 1.247 (95.22) 1.226 (94.54)

and considered the same informative and non-informative as discussed before. We have

computed the Bayes estimates of g(λ1, λ2) and the associated credible intervals. The average

biases, the MSEs, the average lengths of the credible intervals and the associated coverage

percentages are reported in Table 4 and Table 5. It is clear from the table values that the

performances of Algorithm 1 are quite satisfactory. It is observed that for informative priors

HPD credible intervals perform better than the symmetric credible intervals, where as for

non-informative priors it is the other way. Now to see the performance of Algorithm 2, we

have computed the area of the credible set Cα and the associated coverage percentages. The

results are reported in Table 6. It is observed as expected that the performances of the

Algorithm 2 based on informative priors are better than the non-informative priors.
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Table 3: Under non informative Bayesian set up for λ1 = 1.0, λ2 = 1.3, T = 1.2

Sample size Parameters Bias MSE Credible interval HPD Credible interval

n=10 λ1 0.091 0.342 2.025 (93.62) 1.899 (90.94)
R=0.6n λ2 0.141 0.499 2.363 (93.62) 2.251 (92.02)
n=10 λ1 0.091 0.344 2.024 (93.16) 1.899 (90.86)
R=0.8n λ2 0.151 0.474 2.372 (94.14) 2.261 (93.14)

n=15 λ1 0.058 0.205 1.627 (93.74) 1.558 (92.14)
R=0.6n λ2 0.070 0.270 1.865 (94.16) 1.804 (93.02)
n=15 λ1 0.062 0.211 1.627 (93.90) 1.559 (92.46)
R=0.8n λ2 0.086 0.266 1.878 (94.90) 1.818 (93.80)

n=20 λ1 0.051 0.149 1.408 (93.70) 1.363 (92.42)
R=0.6n λ2 0.061 0.195 1.612 (93.74) 1.572 (93.66)
n=20 λ1 0.052 0.148 1.408 (94.12) 1.363 (93.06)
R=0.8n λ2 0.061 0.189 1.612 (94.84) 1.572 (94.10)

n=30 λ1 0.029 0.093 1.136 (94.22) 1.112 (93.40)
R=0.6n λ2 0.044 0.121 1.305 (94.60) 1.282 (94.00)
n=30 λ1 0.029 0.093 1.136 (94.36) 1.111 (93.56)
R=0.8n λ2 0.038 0.121 1.301 (94.16) 1.278 (93.38)

7 Data analysis

In this section we provide the analysis of a data set for illustrative purposes. The data are

obtained from an experiment conducted by Dr. H.E. Walburg, Jr., of the Oak Ridge Na-

tional Laboratory, see Hoel [16]. This is an autopsy data for a group of RFM germ free male

mice received a radiation dose of 300r at age 5-6 weeks. The original data are classified to

be coming out from 3 causes viz. (1) Thymic Lymphoma, (2) Reticulum Cell Sarcoma, (3)

Other causes. We have combined the two causes Thymic Lymphoma and Reticulum Cell Sar-

coma as Cause-1 and other causes to be Cause-2. We have made a transformation of the data

Z = (X/100)2.5, and considered a sample with n = 20, R = 16 and T = 5.6. The transformed

data are as follows: 0.10353(2), 0.11682(2), 0.18889(2), 0.30630(2), 3.15113(1), 3.35099(2),

4.22495(2), 4.83342(1), 4.96100(1), 5.42323(1), 5.55983(1), 5.98183(2), 6.05396(1), 7.03899(1),
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Table 4: Under Informative prior for g(λ1, λ2)with λ1 = 1.0, λ2 = 1.3, T = 1.2

Sample size Bias MSE Credible Interval HPD Credible Interval

n=10 R=0.6n 0.002 0.017 0.514 (96.14) 0.507 (93.54)
n=10 R=0.8n 0.002 0.017 0.513 (95.82) 0.506 (92.86)

n=15 R=0.6n 0.001 0.013 0.447 (95.12) 0.443 (93.14)
n=15 R=0.8n 0.001 0.013 0.446 (95.36) 0.442 (93.30)
n=20 R=0.6n 0.001 0.010 0.400 (95.42) 0.398 (93.88)
n=20 R=0.8n 0.001 0.010 0.400 (95.56) 0.398 (93.86)
n=30 R=0.6n 0.001 0.007 0.339 (95.14) 0.337 (93.86)
n=30 R=0.8n 0.001 0.007 0.339 (95.50) 0.337 (94.48)

Table 5: Under Non Informative prior for g(λ1, λ2)with λ1 = 1.0, λ2 = 1.3, T = 1.2

Sample size Bias MSE Credible Interval HPD Credible Interval

n=10 R=0.6n 0.001 0.026 0.550 (93.54) 0.538 (88.34)
n=10 R=0.8n 0.001 0.025 0.551 (93.62) 0.539 (88.96)

n=15 R=0.6n 0.001 0.018 0.472 (93.96) 0.467 (90.14)
n=15 R=0.8n 0.001 0.017 0.472 (93.98) 0.467 (90.06)
n=20 R=0.6n 0.001 0.013 0.420 (94.62) 0.416 (92.46)
n=20 R=0.8n 0.001 0.013 0.419 (93.68) 0.416 (91.80)
n=30 R=0.6n 0.001 0.009 0.350 (94.06) 0.348 (92.78)
n=30 R=0.8n 0.001 0.009 0.350 (94.02) 0.348 (92.68)

7.19843(2), 7.68960(2). Here the first figure indicates the transformed lifetime of the mice

and the associated cause of death is reported in the bracket.

In this case we have, D1 = 7, D2 = 9,W =
∑R

i=1 Zi:n + (n − R)ZR:n = 96.94137. The

estimates of λ1 and λ2 are λ̂1 = 0.07221 and λ̂2 = 0.09284, respectively. Note that they

are the Bayes estimates of the corresponding parameters under non informative priors also.

Different confidence and credible intervals at 95% level of significance are reported in Table

7. In Figure 5 we provide the 95% credible set of λ1 and λ2.

Now the natural question is whether exponential distribution provides a good fit or not to
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Table 6: Area and coverage percentage of Credible set for λ1 = 1.0, λ2 = 1.3, T = 1.2

Sample size Area (Informative prior) Area (Non Informative prior)

n=10 R=0.6n 3.877 (92.70) 5.285 (89.40)
n=10 R=0.8n 3.890 (93.30) 5.119 (90.26)

n=15 R=0.6n 2.755 (92.84) 3.207 (89.14)
n=15 R=0.8n 2.724 (92.64) 3.253 (88.46)
n=20 R=0.6n 2.073 (92.70) 2.383 (88.56)
n=20 R=0.8n 2.085 (92.82) 2.384 (90.10)
n=30 R=0.6n 1.421 (91.50) 1.563 (89.14)
n=30 R=0.8n 1.434 (92.48) 1.556 (89.48)

Table 7: Confidence and credible intervals of the unknown parameters of real data
Approximate CI Bootstrap CI Asymptotic CI Bayes CI

λ1

(
0.03027, 0.14048

) (
0.02957, 0.14945

) (
0.01870, 0.12569

) (
0.02888, 0.13433

)

λ2

(
0.04344, 0.16699

) (
0.04588, 0.17943

) (
0.03218, 0.15349

) (
0.04273, 0.16342

)

the above data set. For that purpose, we have fitted the exponential distribution to the above

lifetime data without the causes of death. We obtain Kolmogorov-Smirnov (K-S) distance

between the empirical distribution function and the estimated distribution function. The

K-S distance is 0.28107 with the associated p value 0.1306. Hence, exponential distribution

can be used in this case.

8 Conclusion

In this paper we have considered classical and Bayesian inference of Type-II hybrid cen-

sored competing risks data. The MLEs of the unknown parameters do not always exist. We

propose alternative estimators of the scale parameters which always exist. They coincide

with the MLEs, when the later exist and they are asymptotically equivalent. We obtain

the exact distribution of the proposed estimators and based on the exact distributions confi-

dence intervals are obtained. For comparison purposes, we have also considered asymptotic
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and bootstrap confidence intervals. Extensive simulation results indicate that the confidence

intervals based on the exact distribution of the proposed estimators and the bootstrap con-

fidence intervals work quite well. To perform the Bayesian analysis, we have taken very

flexible Beta-Gamma distribution as a prior distribution of the unknown parameters. The

Bayes estimates and the associated highest posterior distributions credible intervals have

been computed. The performance of the Bayes estimates are quite satisfactory, and they

can be implemented in practice quite easily. Although, for notational simplicity only two

causes of failures have been considered, the results can be easily extended for more than two

causes.

In this paper for analytical simplicity we have assumed that the competing causes of

failures follow exponential distribution. It is well known that exponential distribution has

some serious limitations. It will be more interesting to consider the case when the latent

failures distribution may not be exponential. More work is needed along that direction.
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Appendix

In the Appendix we obtain P (λ̂1 ≤ x)

P (λ̂1 ≤ x) = P (λ̂1 ≤ x|D1 = 0)P (D1 = 0) + P (0 < λ̂1 ≤ x|D1 > 0)P (D1 > 0)

= P (D1 = 0) + P (0 < λ̂1 ≤ x|D1 > 0)P (D1 > 0).
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We derive P (D1 = 0) and P (0 < λ̂1 ≤ x|D1 > 0)P (D1 > 0) separately.

P (D1 = 0) = P (D1 = 0, T < ZR:n) + P (D1 = 0, ZR:n < T )

=
R−1∑

i=0

(
n

i

)(
1− e−Tλ

)i
e−(n−i)Tλ

(
λ2

λ1 + λ2

)R

+
n∑

i=R

(
n

i

)(
1− e−Tλ

)i
e−(n−i)Tλ

(
λ2

λ1 + λ2

)i

.

P (0 < λ̂1 ≤ x|D1 > 0) = P

[
1

λ̂1

≥ x
∣∣D1 > 0

]

= P

[
1

λ̂1

≥ x, T ≤ ZR:n

∣∣D1 > 0

]
+ P

[
1

λ̂1

≥ x, ZR:n < T
∣∣D1 > 0

]

=
R∑

i=1

P

[
1

λ̂1

≥ x, T ≤ ZR:n, D1 = i
∣∣D1 > 0

]

+
n∑

j=R

j∑

i=1

P

[
1

λ̂1

≥ x, ZR:n < T, J = j,D1 = i
∣∣D1 > 0

]

=
R∑

i=1

P

[
1

λ̂1

≥ x
∣∣T < ZR:n, D1 = i

]
P
[
T < ZR:n, D1 = i

∣∣D1 > 0
]

+
n∑

j=R

j∑

i=1

P

[
1

λ̂1

≥ x
∣∣ZR:n < T, J = j,D1 = i

]

P
[
ZR:n < T, J = j,D1 = i

∣∣D1 > 0
]

=
R∑

i=1

Gi(x)qi +
n∑

j=R

j∑

i=1

Gij(x)qij,

where

Gi(x) = P
[ 1
λ̂1

≥ x
∣∣T < ZR:n, D1 = i

]
, qi = P

[
T < ZR:n, D1 = i

∣∣D1 > 0
]
,

Gij(x) = P
[ 1
λ̂1

≥ x
∣∣ZR:n < T, J = j,D1 = i

]
, qij = P

[
ZR:n < T, J = j,D1 = i

∣∣D1 > 0
]
.
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We provide each of the above terms separately. For i = 1, 2, . . . , n

qi = P
[
T < ZR:n, D1 = i

∣∣D1 > 0
]

=
1

P [D1 > 0]
P
[
T < ZR:n

]
P
[
D1 = i|T < ZR:n

]

=
1

P [D1 > 0]
P
(
T < ZR:n

)(R
i

)(
λ1

λ1 + λ2

)i(
λ2

λ1 + λ2

)R−i

.

(18)

The last term of equation (18) holds since, given T < ZR:n, D1 ∼ Bin

(
R, λ1

λ1+λ2

)
.

For j = R, . . . , n, we note that J ∼ Bin
(
n, 1− e−Tλ

)
and D1 ∼ Bin

(
j, λ1

λ1+λ2

)
. Thus for

j = R, . . . , n and i = 1, . . . , j we have,

qij = P
[
ZR:n < T, J = j,D1 = i|D1 > 0

]

=
1

P [D1 > 0]
P
[
ZR:n < T, J = j,D1 = i

]

=
1

P [D1 > 0]
P
[
J = j,D1 = i

]
{since, for j = R, . . . , n, {J = j} =⇒ {ZR:n < T}}

=
1

P [D1 > 0]
P
[
J = j

]
P
[
D1 = i|J = j

]

=
1

P [D1 > 0]

(
n

j

)(
1− e−Tλ

)j
e−T (n−j)λ

(
j

i

)(
λ1

λ1 + λ2

)i(
λ2

λ1 + λ2

)j−i

.

(19)

To find Gi(x) and Gij(x) we need the following two lemmas.

Lemma 2: The joint distribution of Z1:n, . . . , ZR:n given T < ZR:n, D1 = i, for i = 1, . . . , R

at z1 < . . . < zR, is given by

fZ1:n,...,ZR:n|T<ZR:n,D1=i(z1, . . . , zR) =
1

P (T < ZR:n)

n!

(n−R)!
λRe

−λ
R∑

k=1
zk
e−λ(n−R)zR .
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Proof: Let us consider

P (z1 < Z1:n < z1 + dz1, . . . , zR < ZR:n < zR + dzR|T < ZR:n, D1 = i)

=
1

P (T < ZR:n, D1 = i)
P (z1 < Z1:n < z1 + dz1, . . . , zR < ZR:n < zR + dzR, T < ZR:n, D1 = i)

=

λi
1λ

R−i
2 e

−λ
R∑

k=1
zk
e−λ(n−R)zR

(
R

i

)
n!

(n−R)!

P (T < ZR:n)P (D1 = i|T < ZR:n)
dz1 . . . dzR

=
1

P (T < ZR:n)

n!

(n−R)!
λRe

−λ
R∑

k=1
zk
e−λ(n−R)zRdz1 . . . dzR.

Lemma 4: The joint distribution of Z1:n, . . . , ZJ :n given ZR:n < T,D1 = i, J = j for

i = 1, 2, . . . , j, j = R, . . . , n, at z1 < . . . < zJ , is given by

fZ1:n,...,ZJ:n|ZR:n<T,D1=i,J=j(z1, . . . , zJ) =
j!λje

−λ
j∑

k=1
zk

(1− e−λ)j
.

Proof: Let us consider

P
(
z1 < Z1:n < z1 + dz1, . . . , zJ < ZJ :n < zJ + dzJ

∣∣ZR:n < T,D1 = i, J = j
)

=
P (z1 < Z1:n < z1 + dz1, . . . , zJ < ZJ :n < zJ + dzJ , ZR:n < T,D1 = i, J = j)

P (ZR:n < T,D1 = i, J = j)

=

λi
1λ

j−i
2 e

−λ
j∑

k=1
zk
e−(n−j)Tλ n!

(n−j)!

(
j

i

)

(
n

j

)
(1− e−Tλ)je−Tλ(n−j)

(
j

i

)
( λ1

λ1+λ2
)i( λ2

λ1+λ2
)j−i

dz1, . . . , dzj

=
j!λje

−λ
j∑

k=1
zk

(1− e−Tλ)j
dz1, . . . , dzj.

To find Gi(x), we find conditional MGF E(e
t 1

λ̂1 |T < ZR:n, D1 = i) for i = 1, . . . , R and is
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derived below.

E
[
e
t 1

λ̂1 |T < ZR:n, D1 = i
]

= E


et

R∑

k=1
Zk:n+(n−R)ZR:n

D1

∣∣∣∣T < ZR:n, D1 = i




= E

[
e

t
i
(
R−1∑
k=1

Zk:n+(n−R+1)ZR:n)
∣∣∣∣T < ZR:n, D1 = i

]

=
1

P (T < ZR:n)

n!

(n−R)!
λR

∞∫

T

zR∫

0

. . .

z2∫

0

e−
(
λ− t

i

)
z1−...

(
λ− t

i

)
zR−1e−

(
n−R+1

)(
λ− t

i

)
zRdz1 . . . dzR−1dzR

(20)

=
1

P (T < ZR:n)

n!

(n−R)!
λR

(
λ−

t

i

)1−R
1

(R− 1)!
∞∫

T

[
1− e−(λ− t

ı

)
zR

]R−1[ zR∫

0

. . .

z2∫

0

(R− 1)!
(λ− t

i
)R−1

[
1− e−(λ− t

ı

)
zR

]R−1
×

e−
(
λ− t

i

)
z1−...

(
λ− t

i

)
zR−1dz1 . . . dzR−1

]
e−
(
n−R+1

)(
λ− t

i

)
zR dzR

(Note that the above R− 1 fold integration is 1 as it is the PDF of (21)

truncated order statistics)

=
1

P (T < ZR:n)

n!

(n−R)!
λR

(
λ−

t

i

)1−R
1

(R− 1)!
×

∞∫

T

[
1− e−

(
λ− t

ı

)
zR

]R−1

e−
(
n−R+1

)(
λ− t

i

)
zRdzR

=
1

P (T < ZR:n)

n!

(n−R)!(R− 1)!
λR

(
λ−

t

i

)1−R

×

R−1∑

k=0

(
R− 1

k

)
(−1)k

∞∫

T

e−
(
λ− t

i

)(
n−R+1+k

)
zdz

=
1

P (T < ZR:n)
n

(
n− 1

R− 1

)(
1−

t

iλ

)−R R−1∑

k=0

(
R− 1

k

)
(−1)k

e−
(
λ− t

i

)(
n−R+1+k

)
T

(
n−R + 1 + k

) .(22)
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Hence, using the uniqueness property of the MGF, from (22), we can obtain the conditional

PDF of
1

λ̂1

given that T < ZR:n and D1 = i for i = 1, 2, . . . R, as the following,

f 1

λ̂1
|D1=i,T<ZR:n

(
x
)
=

1

P (T < ZR:n)
n

(
n− 1

R− 1

) R−1∑

k=0

(
R−1
k

)
(−1)k

n−R + 1 + k
e−Tλ(n−R+1+k)

fG

(
x;

T

i
(n−R + 1 + k) , R, iλ

)
.

Therefore, Gi(x) can be obtained as

Gi(x) =

∫ ∞

x

f 1

λ̂1
|D1=i,T<ZR:n

(
y
)
dy.

Similarly to find Gij(x) for i = 1, . . . , j and j = R, . . . , n, we find conditional moment

generating function of E(e
t 1

λ̂1 |ZR:n < T,D1 = i, J = j) and is derived below.

E

[
e

t

λ̂ 1

∣∣∣∣ZR:n < T,D1 = i, J = j

]

= E

[
e

t
i

j∑
k=1

Zk:n+(n−j)T
∣∣∣∣ZR:n < T,D1 = i, J = j

]

=
j!λj

(1− e−λ)j
e

(
n−j
)

Tt
i

T∫

0

zj∫

0

. . .

z2∫

0

e−
(
λ− t

i

)
z1−...−

(
λ− t

i

)
zj−1−

(
λ− t

i

)
zj dz1 . . . dzj−1dzj

=
j!λj

(1− e−Tλ)j(j − 1)!
e

(
n−j
)

Tt
i

(
λ−

t

i

)1−j
T∫

0

e−
(
λ− t

i

)
z

[
1− e−

(
λ− t

i

)
z

]j−1

dz

=
e(n−j)Tt

i

(1− e−Tλ)j

(
1−

t

iλ

)−j[
1− e−

(
λ− t

i

)
T

]j
×

1

(1− e−Tλ)j

j∑

k=0

(
j

k

)
(−1)ke−

(
λ− t

i

)
Tke(n−j)Tt

i

(
1−

t

iλ

)−j

.

Hence, similarly as before, we can obtain the conditional PDF of 1

λ̂1
given that T < ZR:n,

D1 = i and J = j, for i = 1, 2, . . . , j and j = R,R + 1, . . . , n as the following.

f 1

λ̂1

∣∣ZR:n<T,J=j,D1=i

(
x
)
=

1

(1− e−Tλ)j

j∑

k=0

(
j

k

)
(−1)ke−TkλfG

(
x;
(
n− j + k

)T
i
, j, iλ

)
.

Therefore, Gij(x) can be obtained as

Gij(x) =

∫ ∞

x

f 1

λ̂1

∣∣ZR:n<T,J=j,D1=i

(
y
)
dy.
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Proof of Lemma 5:

Note that to prove Lemma 5, it is enough to prove that for any b > 0,

lim
λ1→0

Pλ1(λ̂1 ≤ b) → 1 and lim
λ1→∞

Pλ1(λ̂1 ≤ b) → 0.

For b > 0, the distribution function of λ̂1 is written as before

Pλ1(λ̂1 ≤ b) =
n∑

i=0

ci(λ1) +
R∑

i=1

R−1∑

s=0

ci,s(b;λ1, λ2) +
n∑

j=R

j∑

i=1

j∑

s=0

dj,i,s(b;λ1, λ2),

where for fixed b and λ2,

(a) ci(λ1) = ci as a function of λ1 for i = 0, 1, . . . , n

(b) ci,s(b;λ1, λ2) = ci,s(b) as a function of λ1 for i = 1, 2, . . . , R; s = 0, 1, . . . , R− 1

(c) dj,i,s(b;λ1, λ2) = dj,i,s(b) as a function of λ1 for s = 0, . . . , j; i = 1, . . . , j and j = R, . . . , n.

We consider two cases separately.

Case-I λ1 → 0

Note that for i = 0, 1, . . . , n,

ci(λ1) →

(
n

i

)
(1− e−Tλ2)ie−(n−i)Tλ2 as λ1 → 0

Thus
∑n

i=0 ci(λ1) → 1 as λ1 → 0.

For i = 1, . . . , R and s = 0, . . . , R− 1,

ci,s(b;λ1, λ2) → 0 as λ1 → 0.

For s = 0, . . . , j, i = 1, . . . , j and j = R, . . . , n,

dj,i,s(b;λ1, λ2) → 0 as λ1 → 0.

Hence Pλ1(λ̂1 ≤ b) → 1 as λ1 → 0 for fixed b > 0 and λ2.
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Case-II λ1 → ∞

Note that for i = 0, 1, . . . , n,

ci(λ1) → 0 as λ1 → ∞.

For i = 1, . . . , R and s = 0, . . . , R− 1,

ci,s(b;λ1, λ2) → 0 as λ1 → ∞.

Note that,

lim
λ1→∞

dj,i,s(b;λ1, λ2) =





lim
λ1→∞

FG

(
1

b
;n, n(λ1 + λ2)

)
if s = 0; i = j = n

0 o.w.

Now,

FG

(
1

b
;n, n(λ1 + λ2)

)
=

(
n(λ1 + λ2)

)n

Γ(n)

∫ ∞

1
b

e−n(λ1+λ2)zzn−1dz

=
1

Γ(n)

∫ ∞

n(λ1+λ2)
x

e−uun−1du taking, u = n(λ1 + λ2)z

→ 0 as λ1 → ∞.

Hence Pλ1(λ̂1 ≤ b) → 0 as λ1 → ∞ for fixed b > 0 and λ2.

Since Pλ1(λ̂1 ≤ b) is a monotonically decreasing and continuous function of λ1, the

solutions of two equations Pλ1(λ̂1 ≤ b) =
α

2
and Pλ1(λ̂1 ≤ x) = 1−

α

2
, always exist.
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Figure 1: Plot of Pλ1(λ̂1 ≤ x), for n = 10, R = 8, T = 1.2, λ2 = 1.3, x = 1.0
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Figure 2: Plot of Pλ2(λ̂2 ≤ x), for n = 10, R = 8, T = 1.2, λ1 = 1.0, x = 1.3
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Figure 3: Histogram of λ̂1 along with its PDF
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Figure 4: Histogram of λ̂2 along with its PDF
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