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Abstract

In this article, we consider a simple step-stress life test in the presence of expo-

nentially distributed competing risks. It is assumed that the stress is changed when

a pre-specified number of failures takes place. The data is assumed to be Type-II

censored. We obtain the maximum likelihood estimators of the model parameters and

the exact conditional distributions of the maximum likelihood estimators. Based on

the conditional distribution, approximate confidence intervals of unknown parameters

have been constructed. Percentile bootstrap confidence intervals of model parameters

are also provided. Optimal test plan is addressed. We perform an extensive simulation

study to observe the behavior of the proposed method. The performances are quite

satisfactory. Finally we analyze two data sets for illustrative purposes.

Keywords: Step-stress life test, Censoring, Competing risks, Maximum likelihood Esti-
mation, Bootstrap confidence interval.

1 Introduction

Now a days, most of the products are highly reliable due to severe competitiveness in the

market. The experimenter experimenting with such a product faces the problem of very

few failures or no failure at all, in an affordable time. The accelerated life tests (ALT) are

proposed to overcome this problem. In an accelerated life testing experiment, extreme stress

levels are imposed on the product under consideration to ensure rapid failures. Interested
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readers are referred to Nelson [41] and Bagdanavicius and Nikulin [3] for an exposure to

different ALT models.

The step-stress life test (SSLT), where the experimenter is allowed to change the stress

levels during the experiment, is a special case of ALT. In a conventional step stress exper-

iment, the stress levels are changed at pre-fixed time points. The data collected from such

a SSLT, may then be extrapolated to estimate the underlying distribution of failure times

under normal stress level. This process requires a model relating the levels of stress and the

failure time distributions. Several such models are proposed in the literature. Cumulative

exposure model (CEM) is most studied in the literature which was originally proposed by

Seydyakin [42]. SSLT with exponentially distributed lifetimes under CEM is extensively

studied by several authors. Interested readers are referred to an excellent review article by

Balakrishnan [6] in this respect. Balakrishnan et al. [13] and Balakrishnan et al. [12] consid-

ered the SSLT under the exponential CEM in the presence of Type-I and Type-II censoring

schemes, respectively. SSLT under the exponential CEM was addressed by Balakrishnan

and Xie [11] and Balakrishnan and Xie [10] under hybrid Type-I and hybrid Type-II cen-

soring schemes, respectively. The optimality issues of a SSLT under exponential CEM was

addressed by several authors including Miller and Nelson [40], Bai et al. [5], Gouno et al.

[26], Han et al. [29], Leu and Shen [37], Xie et al. [45], Fan et al. [24], Balakrishnan and

Han [7], Wu et al. [44], Yuan and Liu [48] in the presence of different censoring schemes.

Optimal step-stress test under Type-I censoring for multivariate exponential distribution

was discussed by Guan and Tang [27]. Alkhalfan [2] considered the SSLT in the presence of

different censoring schemes when the distribution of lifetime is assumed to be gamma distri-

bution. Several inferential issues along with optimality of SSLT for the Weibull distributed

lifetime can be found in Bai and Kim [4], Kateri and Balakrishnan [32], and Liu [39]. Chung

and Bai [18], Alhadeed and Yang [1], Balakrishnan et al. [14], and Lin and Chou [38] studied

the SSLT under the assumption of log-normal CEM in the presence of several censoring

schemes. Ebraheim and Al-Masri [22] and Ismail [31] addressed inferential issues for SSLT

under the assumption of log-logistic and generalized exponential lifetimes, respectively. Fard

and Li [25] and Hunt and Xu [30] studied optimality issues in designing SSLT for reliability
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prediction.

It is very common that the product under consideration is exposed to more than one

causes in a life testing experiment. In such a situation, one needs to assess the effect of

each cause in the presence of other causes. In the statistical literature, it is known as the

competing risks problem. Extensive work has been done on the analysis of competing risks

data both in the parametric and non-parametric set-up. See for example, Cox [19], David

and Moeschberger [21], Crowder [20], and the references therein for different issues related

to competing risks problems. The ALT in the presence of competing risks can be found

in Klein and Basu [33, 34]. Balakrishnan and Han [8] considered the simple SSLT model

in the presence of competing risks, when the competing causes of failures have exponential

distribution.

One major drawback of the classical SSLT is that the model parameters are estimable if

there is at least one failure at each stress level. To overcome that problem, Xiong and Milliken

[46], Xiong et al. [47], Wang and Yu [43], and Kundu and Balakrishnan [35] considered the

following model. Suppose n items are put on the test at the initial stress level s1. The stress

level is changed to the next stress level s2 as soon as the r1-th failure occurs. Similarly, the

stress level is changed to s3 form s2 as soon as the (r1 + r2)-th failure occurs. In general,

the stress level is changed to si+1 from si at the time of occurrence of (r1 + r2 + . . .+ ri)-th

failure for i = 1, 2, . . . , k − 1. Here r1, r2, . . . , rk−1 are pre-fixed positive integers such that

r1 + . . .+ rk−1 ≤ n.

The main aim of this article is to consider a simple SSLT, under the above experimental

setup, in the presence of competing risks. The following assumptions are made: (i) There

are two causes of failures and the model satisfies the latent failure time model assumption

of Cox [19]. (ii) The latent failure times are exponentially distributed with scale parameter

θij at the stress level si, i = 1, 2, in the presence of jth, j = 1, 2, cause only. (iii) The

latent failure times are independently distributed for both the causes. (iv) The data are

Type-II censored. (v) The CEM assumptions hold for each of the latent failure distributions

under the whole step-stress pattern. Though an extensive discussion on exponential CEM
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can be found in Balakrishnan [6], the exponential CEM with random stress changing time

was not addressed in this article at all. Balakrishnan and Han [8] studied the exponential

CEM in the presence of competing risks and Type-II censoring, where it is assumed that

the stress levels are changed at pre-fixed time points. The main advantage of the proposed

model is that it is analytically more tractable than the models proposed in Balakrishnan [6]

or Balakrishnan and Han [8].

We obtain the conditional maximum likelihood estimators (MLEs) of all the unknown

parameters and their exact distributions. We discuss an approximate confidence interval

(ACI) and bootstrap confidence interval (BCI) of the model parameters based on the dis-

tributions of MLEs. Optimal tests are obtained based on D-optimality and A-optimality

criteria. We have performed extensive simulation experiments to observe the performance

of the MLEs and the associated CIs. Analysis of two data set are provided for illustrative

purpose. Rest of the article is organized as follows. In the Section 2, we discuss the model

under consideration and obtain MLEs of the unknown parameters. Exact conditional dis-

tribution of MLEs of models parameters are considered in Section 3. The ACIs and BCIs

of the unknown parameters are discussed in the Section 4. The Fisher information matrix

and the optimal test plans based on the Fisher information matrix are studied in Section 5.

Simulation and data analysis are provided in Section 6. Finally the article is concluded in

Section 7. All the proofs are provided in the Appendix.

2 Model Description and MLE

Consider a simple step-stress life test with stress levels s1 < s2. Suppose that a sample of

size n is put on the life testing experiment at the initial stress level s1. The failure times are

recorded and denoted by t1:n < t1:n < . . . < tn:n. Let r1 and r2 be two pre-fixed integers such

that 0 < r1 < n, 0 < r2 < n, and 0 < r1 + r2 = r ≤ n. At the time of the r1-th failure, tr1:n,

stress level is changed form s1 to next stress level s2. Test is terminated as soon as the r-th

failure occurs. It is assumed that there are only two causes of failure of an experimental item,
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and when an item fails, the failure time and the associated cause of failure are observed. Let

the data be denoted by (ti:n, δi:n), i = 1, 2, . . . , r, where t1:n < . . . < tr1:n < . . . < tr:n, and

δi:n =





0 if ith failure occurs due to the first cause

1 if ith failure occurs due to the second cause.

Let the corresponding random variables be denoted by (Ti:n, ∆i:n), i = 1, 2, . . . , r. We

also assume that Cox’s latent failure time model assumptions hold true here, and the latent

failure times are independently exponentially distributed with mean θij at stress level si,

i = 1, 2, in the presence of j-th, j = 1, 2, cause only. Based on the CEM assumptions and

following the same procedure as in Balakrishnan and Han [8], we can obtain the likelihood

function as follows.

Let us denote T i,j = (Ti:n, . . . , Tj:n), ti,j = (ti:n:, . . . , tj:n), ∆i,j = (∆i:n, . . . , ∆j:n),

δi,j = (δi:n, . . . , δj:n), and ci,j,n =
∏j

l=i (n− l + 1) for 1 ≤ i ≤ j ≤ r. Denoting λij =
1

θij
,

i = 1, 2, j = 1, 2 and D1 =

r1∑

i=1

ti:n + (n− r1) tr1:n, the joint PDF of T 1,r1 and ∆1,r1 is given

by

fT 1,r1
,∆1,r1

(t1,r1 , δ1,r1) = c1,r1,n λ
∑r1

i=1
δi:n

11 λ
r1−

∑r1
i=1

δi:n
12 e−(λ11+λ12)D1 ,

if 0 < t1:n < . . . < tr1:n < ∞ and δi:n ∈ {0, 1} for all i = 1, 2, . . . , r1. Now using the lack

of memory property of exponential distribution and denoting D2 =
r∑

i=r1+1

(ti:n − tr1:n) + (n−

r)(tr:n − tr1:n), the conditional joint PDF of T r1+1,r and ∆r1+1,r conditioning on T 1,r1 and

∆1,r1 is given by

fT r1+1,r,∆r1+1,r
(tr1+1,r, δr1+1,r) = cr1+1,r,n λ

∑r
i=r1+1 δi:n

21 λ
r2−

∑r
i=r1+1 δi:n

22 e−(λ21+λ22)D2 ,

if tr1:n < tr1+1:n < tr1+2:n < . . . < tr:n < ∞ and δi:n ∈ {0, 1} for all i = r1 + 1, r1 + 2, . . . , r.
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Hence the joint density function of T 1,r and ∆1,r is given by

fT 1,r,∆1,r
(t1,r, δ1,r)

= c1,r,n λ
∑r1

i=1
δi:n

11 λ
r1−

∑r1
i=1

δi:n
12 λ

∑r
i=r1+1 δi:n

21 λ
r2−

∑r
i=r1+1 δi:n

22 e−(λ11+λ12)D1−(λ21+λ22)D2 , (1)

if 0 < t1:n < . . . < tr:n < ∞ and δi:n ∈ {0, 1} for all i = 1, 2, . . . , r. Let n = (n1, n2), where

n1 and n2 are the number of failures due to the first cause at the stress levels s1 and s2,

respectively, and N = (N1, N2) is the corresponding random vector. The likelihood function

of θ11, θ12, θ21, and θ22 is given by

L(θ11, θ12, θ21, θ22) ∝ θ−n1

11 θ
−(r1−n1)
12 θ−n2

21 θ
−(r2−n2)
22 e

−
(

1

θ11
+ 1

θ12

)
D1−

(
1

θ21
+ 1

θ22

)
D2 .

From the above likelihood function it is clear that the MLEs of all the known parameters

exist if n ∈ N = {n : 0 < n1 < r1, 0 < n2 < r2}. Whenever the MLEs exist, they are unique

and are given by

θ̂11 =
D1

n1

, θ̂12 =
D1

r1 − n1

, θ̂21 =
D2

n2

, θ̂22 =
D2

r2 − n2

. (2)

Clearly these are the conditional MLEs of the unknown parameters conditioned on the event

that N ∈ N .

Remark 1. Though we have considered a simple SSLT with two competing risks in this

article, it is fairly easy to extend the proposed model for multiple stress levels and for multiple

competing risks.

3 Conditional Distribution of MLEs

In this section we will provide the conditional probability density functions (CPDF) of the

MLEs conditioning on the event that N ∈ N . The conditional distribution can be used

for construction of confidence intervals of the unknown parameters. The derivation of the
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CPDFs requires the inversion of the conditional moment generating functions (CMGF) as

first suggested by Bartholmew [15]. Moreover, in constructing the confidence intervals we

need to prove certain monotonicity property of the distribution functions with respect to the

parameter values at a fixed point. We provide an explicit proof of that using the Lemma 1

in Balakrishnan and Iliopoulos [9]. The statements of all the theorems are provided in the

main text, and their proofs are given in the Appendix. Now we will define few notations

which will be used in the theorems. The PDF and CDF of a gamma distribution with shape

parameter α > 0 and scale parameter β > 0 are denoted by fG(·, α, β) and FG(·, α, β), and

they are given by

fG (x; α, β) =





βα

Γ(α)
xα−1 e−β x if x ≥ 0

0 otherwise,
FG (x; α, β) =

∫ x

−∞

fG (t; α, β) dt, (3)

respectively. Also define p1 =
θ12

θ11 + θ12
, p2 =

θ22
θ21 + θ22

, ni1k = k, ni2k = ri − k, k =

1, 2, . . . , ri − 1, and i = 1, 2.

Theorem 1. D1 has a gamma distribution with PDF fG

(
·; r1,

1

θ11
+

1

θ12

)
.

Theorem 2. D2 has a gamma distribution with PDF fG

(
·; r2,

1

θ21
+

1

θ22

)
.

Theorem 3. N1 has a Binomial distribution with parameters r1 and p1, while N2 has

a Binomial distribution with parameters r2 and p2. Also N1 and N2 are independently

distributed, i.e.,

P (N = n) =

(
r1
n1

)
pn1

1 (1− p1)
r1−n1 ×

(
r2
n2

)
pn2

2 (1− p2)
r2−n2 ,

if n1 = 0, 1, . . . , r1; n2 = 0, 1, . . . , r2 − r1.

Theorem 4. For x ∈ R, the CPDF of θ̂ij , i = 1, 2, j = 1, 2, conditioning on the event

N ∈ N is given by

f
θ̂ij
(x) =

1

1− prii − (1− pi)
ri

ri−1∑

k=1

(
ri
k

)
pki (1− pi)

ri−k fG

(
x; ri, nijk

(
1

θi1
+

1

θi2

))
.
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Corollary 1. For x ∈ R, the conditional cumulative distribution function (CCDF) of θ̂ij ,

i = 1, 2, j = 1, 2, conditioning on the event N ∈ N is given by

F
θ̂ij
(x) =

1

1− prii − (1− pi)
ri

ri−1∑

k=1

(
ri
k

)
pki (1− pi)

ri−k FG

(
x; ri, nijk

(
1

θi1
+

1

θi2

))
.

Corollary 2. The mean and the variance of θ̂ij , i = 1, 2, j = 1, 2, are given below.

E
(
θ̂ij

)
= ri

(
1

θi1
+

1

θi2

)−1

E

(
1

Xij

∣∣∣∣Xij 6= 0, ri

)

and

Var
(
θ̂ij

)
= ri

(
1

θi1
+

1

θi2

)−2

E

(
1

X2
ij

∣∣∣∣Xij 6= 0, ri

)
,

where Xi1 ∼ Bin (ri, pi) and Xi2 ∼ Bin (ri, 1− pi).

Remark 2. Note that the model under consideration is quite general in the sense that it

includes its marginal models as special cases. For example, if our aim is to estimate θ11 in

case θ12 → ∞, the MLE of θ11 exists if n1 > 0. Under the condition n1 > 0, the PDF of the

MLE of θ11 is given by

f̃
θ̂11

(x) =
1

1− (1− p1)
r1

r1∑

k=1

(
r1
k

)
pk1 (1− p1)

r1−k fG

(
x; r1, k

(
1

θ11
+

1

θ12

))
,

which approaches to fG(r1, r1) as θ12 → ∞ and this model becomes a simple step-stress

model without competing risk, which was studied by Kundu and Balakrishnan [35]. The

same holds in case any one the following holds; θ11 → ∞, θ21 → ∞ or θ22 → ∞.

4 Different Types of Confidence Intervals

In this section, we present different methods for construction of the confidence intervals (CIs)

of the unknown parameters θij, i = 1, 2 and j = 1, 2. From the Theorem 4, we can construct

ACIs for θij. However, as PDFs of θij ’s are quite complicated, we also present the BCIs for

these unknown parameters.
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4.1 Approximate Confidence Interval

For fixed x, let F
θ̂ij
(x, θij) denote the CCDF of θ̂ij, i = 1, 2, j = 1, 2, as a function of θij for

fixed θi′j′ , i
′ 6= i or j

′ 6= j. Next we state a theorem which will be used to construct ACI.

The proof of the theorem is given in the Appendix.

Theorem 5. F
θ̂ij
(x, θij) is a strictly decreasing function of θij for all x > 0.

A two-sided 100(1−α)% ACI of θij can be found based on the Corollary 1 and Theorem 5

and is given by (θijL, θijU), where θijL and θijU are the roots of the equations

F
θ̂ij
(θ̂ijobs, θijL) = 1− α

2
and F

θ̂ij
(θ̂ijobs, θijU) =

α

2
, (4)

provided the equations are feasible. Note that F
θ̂ij
(·, ·) involves other unknown parameters

and we replace those parameters with their MLEs. However, (4) are non-linear equations,

which can be solved using numerical procedures, e.g., bisection method or Newton-Raphson

method. This method of construction of confidence interval has been used by several authors

including Chen and Bhattacharya [16], Gupta and Kundu [28], Kundu and Basu [36], Childs

et al. [17] and Balakrishnan et al. [13]. Note that a one-sided 100(1− α)% ACI of θij of the

form (0, θijU) can be found by solving the non-linear equation

F
θ̂ij
(θ̂ijobs, θijU) = α.

It may be noted that the one sided confidence interval of θij can be constructed by solving

one non-linear equation only.

4.2 Bootstrap Confidence Interval

Construction of ACIs for θij as discussed in the previous subsection is computationally quite

involved, specially when r1 or r2 is large. Hence in this subsection we consider the percentile

BCI, see Efron and Tibshirani [23] for more details. We use the following algorithm to
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generate bootstrap sample and construct the BCI.

Algorithm 1

Step 1. Given n, r1, r2, and the original sample, obtain the MLEs of the unknown param-

eters θ̂11, θ̂12, θ̂21, and θ̂22 using (2).

Step 2. Generate d∗ij, i = 1, 2, j = 1, 2, . . . , B, from (3) with shape parameter α = ri and

scale parameter β =
1

θ̂i1
+

1

θ̂i2
.

Step 3. Generate n∗
ij , i = 1, 2, j = 1, 2, . . . , B, form the following truncated Binomial

distribution. For x = 1, 2, . . . , ri − 1

1

1− p̂ ri
i − (1− p̂i)ri

(
ri
x

)
p̂x
i (1− p̂)ri−x ,

where p̂i =
θ̂i2

θ̂i1 + θ̂i2
.

Step 4. Set θ̂∗i1j =
d∗ij
n∗
ij

and θ̂∗i2j =
d∗ij

ri − n∗
ij

, i = 1, 2, j = 1, 2, . . . , B.

Step 5. Arrange
{
θ̂∗ikj : j = 1, 2, . . . , B

}
in ascending order to get

{
θ̂
∗[1]
ik < . . . < θ̂

∗[B]
ik

}
,

i = 1, 2, k = 1, 2.

Step 6. A two-sided 100(1 − α)% BCI for θik is
(
θ̂
∗[B α

2
]

ik , θ̂
∗[B(1−α

2
)]

ik

)
, i = 1, 2, k = 1, 2,

where [x] denotes the largest integer less than or equal to x.

5 Optimality Criteria and Optimal Test Plans

In this section, we consider the optimal step-stress plans, which optimize different optimality

criteria with respect to r1, when other quantities are assumed to pre-fixed. Here we consider

two optimal criteria, which are based on the Fisher information matrix presented below.

Note that for given r, r1 can take values from the finite set {2, 3, . . . , r − 2}.

Remark 3. For multiple step-stress experiment designing with k stress levels, s1, s2, . . . , sk,

one important issue is to determine the middle stress levels, s2, . . . , sk−1, since in general
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the lowest, s1, and highest, sk, stress levels can be specified by the experimenter. We do not

pursue it in this article and further study is necessary in this direction.

5.1 Fisher Information Matrix

Note that under some regularity conditions the Fisher information matrix for the unknown

parameters can be computed by taking expectation of the negative of the second order partial

derivatives of log-likelihood function logL(θ11, θ12, θ21, θ22). Now for i = 1, 2

∂

∂θi1
logL(θ11, θ12, θ21, θ22) = − ni

θi1
+

D1

θ2i1
,

∂

∂θi2
logL(θ11, θ12, θ21, θ22) = −ri − ni

θi2
+

D2

θ2i2
,

and hence

∂2

∂θ2i1
logL(θ11, θ12, θ21, θ22) =

ni

θ2i1
− 2D1

θ3i1
,

∂2

∂θ2i2
logL(θ11, θ12, θ21, θ22) =

ri − ni

θ2i2
− 2D2

θ3i2
,

∂2

∂θij ∂θi′j′
logL(θ11, θ12, θ21, θ22) = 0 for i 6= i

′

or j 6= j
′

.

Using Theorems 1, 2, and 3, for i = 1, 2, i
′

= 1, 2, j = 1, 2, j
′

= 1, 2, i 6= i
′

, and j 6= j
′

− E

(
∂2

∂θ2i1
logL(θ11, θ12, θ21, θ22)

)
=

ripi
θ2i1

,

− E

(
∂2

∂θ2i2
logL(θ11, θ12, θ21, θ22)

)
=

ri(1− pi)

θ2i2
,

− E

(
∂2

∂θij ∂θi′j′
logL(θ11, θ12, θ21, θ22)

)
= 0.

Hence the Fisher information matrix of θ11, θ12, θ21, θ22 is given by

I(θ11, θ12, θ21, θ22) = Diag

(
r1p1
θ211

,
r1(1− p1)

θ212
,
r2p2
θ221

,
r2(1− p2)

θ222

)
.
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5.2 D-optimality

This optimality criterion is based on the determinant of the Fisher information matrix.

Note that the volume of the joint confidence ellipsoid of (θ11, θ12, θ21, θ22) is inversely pro-

portional to the positive square root of the determinant of the Fisher information matrix

I(θ11, θ12, θ21, θ22) at a fixed confidence level. Thus our objective function for D-optimality

is given by

φD(r1) = |I(θ11, θ12, θ21, θ22)|
1

2 =
r1(r − r1)

(θ11 + θ12) (θ21 + θ22)
√
θ11θ12θ21θ22

.

The D-optimal r1, say r1D, can be found by maximizing the above objective function. Note

that

φD(r1) ⋚ φD(r1 + 1) ⇔ r1 ⋚
r − 1

2
.

Hence the maximum attains at r1D = r
2
for even r, and at r1D = r−1

2
or r+1

2
for odd r. Clearly,

r1D does not depend on the parameter values.

5.3 A-optimality

Our next optimality criterion is based on the sum of asymptotic variances of the MLEs of

unknown parameters, i.e., it is the sum of diagonal elements of inverse of Fisher information

matrix I(θ11, θ12, θ21, θ22). Thus the objective function of A-optimal criterion is given by

φA(r1) =
θ211
r1p1

+
θ212

r1(1− p1)
+

θ221
r2p2

+
θ222

r2(1− p2)
=

θ11θ12
r1

+
θ21θ22
r − r1

.

A-optimal r1, say r1A, can be found by minimizing φA(·) with respect to r1. As it is a

discrete optimization problem, one can compute the values of φA(r1) for all possible values

of r1 ∈ {2, 3, . . . , r − 2} and choose that r1 which minimizes φA(r1). Note that r1A depends

on r, θ11, θ12, θ21, and θ22. We provide optimal values of r1 in the Table 1 for some values of
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r, θ11, θ12, θ21, and θ22.

Table 1: The optimal choice of r1 for different values of θ11, θ12, θ21, and θ22.

(a) θ11 = 1.0, θ12 = 1.100,

θ21 = 0.50, θ22 = 0.550

r r1D φD(r1D) r1A φA(r1A)

5 2 1.2128 3 0.5042
10 5 1.2128 7 0.2488
15 7 1.2128 10 0.1650
20 10 1.2128 13 0.1239
25 12 1.2128 17 0.0991
30 15 1.2128 20 0.0825
35 17 1.2128 23 0.0707
40 20 1.2128 27 0.0619
45 22 1.2128 30 0.0550
50 25 1.2128 33 0.0495

(b) θ11 = 1.0, θ12 = 1.250,

θ21 = 0.50, θ22 = 0.675

r r1D φD(r1D) r1A φA(r1A)

5 2 1.7172 3 0.5854
10 5 1.7172 7 0.2911
15 7 1.7172 10 0.1925
20 10 1.7172 13 0.1444
25 12 1.7172 16 0.1156
30 15 1.7172 20 0.0963
35 17 1.7172 23 0.0825
40 20 1.7172 26 0.0722
45 22 1.7172 30 0.0642
50 25 1.7172 33 0.0577

6 Simulation Study and Data Analysis

6.1 Simulation Study

In this section we consider numerical studies to judge the performance of the MLEs of the

unknown parameters and associated ACIs and BCIs. We consider two sets of values for the

parameters (θ11, θ12, θ21, θ22), viz., (1.0, 1.1, 0.5, 0.55) and (1.0, 1.25, 0.5, 0.675). As the

distributions of θ̂i1 and θ̂i2 depend on the ratio of θi1 to θi2, i = 1, 2, we fix θ11 and θ21 and

change the values of θ12 and θ22. We consider 20, 30, and 40 as values of n. For each value

of n, r is taken to be [3n/4] and n. For each value of r, we take r1 to be [5r/11], [r/2],

and [6r/11]. Based on 5000 replication, we compute the average estimates (AE) and mean

squared errors (MSE) of the MLEs of the unknown model parameters (see Tables 2–9). The

coverage percentages (CP) and average lengths (AL) of the ACI and BCI are also reported

in these tables. We take B = 8000 for BCI. We notice that the second equation in (4) does

not remain feasible for α = 0.1 or 0.05, when number of failure due to the cause j at the

stress level si is one and hence the procedure proposed in Section 4 for construction of the

ACI does not work in this case. We discard those data for which the number of failure due

to the cause j at the stress level si is one for computation of CPs and ALs of θij, and the
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Table 2: The AEs and MSEs of the MLEs of θ11 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.10, θ21 = 0.5, and θ22 = 0.55.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 1.1914 0.7155 92.94 4.6858 90.58 2.5237 96.82 11.0326 95.24 3.2053 4.45
8 8 1.1513 0.5939 92.32 3.8477 89.74 2.4057 96.70 7.6388 94.58 3.0843 2.27
9 7 1.1413 0.5233 91.18 3.3393 89.08 2.3106 96.14 5.9585 94.26 2.9874 1.69

9 11 1.1485 0.5494 91.78 3.3637 89.92 2.3381 96.44 6.0042 94.92 3.0261 1.38
10 10 1.1313 0.4580 91.80 2.8070 89.40 2.2079 96.14 4.5072 94.46 2.8797 0.79
11 9 1.1047 0.3566 90.68 2.5659 89.52 2.0874 95.66 3.9598 94.08 2.7278 0.30

30 10 12 1.1158 0.4161 90.86 2.8295 89.10 2.1928 95.70 4.5755 94.06 2.8569 0.66
11 11 1.1175 0.3958 90.50 2.5005 88.92 2.0958 95.20 3.7950 93.74 2.7459 0.34
12 10 1.1044 0.3307 90.60 2.2818 89.12 1.9826 95.76 3.3409 94.16 2.5866 0.22

13 17 1.0878 0.2963 91.40 2.0044 89.52 1.8395 95.74 2.8081 94.58 2.4062 0.14
15 15 1.0874 0.2499 90.20 1.7157 89.00 1.6642 95.20 2.2819 94.04 2.1612 0.06
17 13 1.0731 0.1793 90.36 1.5065 89.54 1.4979 95.48 1.9426 94.34 1.9259 0.00

40 14 16 1.0785 0.2538 90.74 1.8346 89.48 1.7209 95.62 2.5059 94.54 2.2413 0.04
15 15 1.0874 0.2499 90.20 1.7157 89.00 1.6642 95.20 2.2819 94.04 2.1612 0.06
16 14 1.0686 0.1822 90.52 1.5673 89.00 1.5462 95.24 2.0391 94.12 2.0009 0.00

18 22 1.0616 0.1478 90.60 1.3992 89.58 1.4058 95.38 1.7764 94.62 1.8017 0.00
20 20 1.0457 0.1287 90.28 1.2687 89.36 1.2715 95.46 1.5947 94.50 1.6108 0.00
22 18 1.0444 0.1114 91.30 1.1879 90.14 1.1867 95.66 1.4841 95.10 1.4913 0.00

Table 3: The AEs and MSEs of the MLEs of θ11 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.25, θ21 = 0.5, and θ22 = 0.675.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 1.1771 0.6390 92.68 4.3734 91.18 2.5012 96.96 9.8340 95.28 3.1926 3.53
8 8 1.1539 0.5753 91.76 3.5051 89.66 2.3659 96.38 6.5936 94.46 3.0505 2.15
9 7 1.1249 0.4438 91.20 2.9776 90.18 2.2204 96.10 5.0044 94.44 2.8825 1.94

9 11 1.1457 0.4913 90.86 3.1672 89.32 2.2667 95.94 5.4974 94.48 2.9377 0.93
10 10 1.1158 0.3833 90.70 2.5998 89.78 2.1015 95.56 4.0481 94.16 2.7456 0.36
11 9 1.1120 0.3662 90.88 2.3369 89.68 2.0022 95.76 3.4504 94.42 2.6137 0.28

30 10 12 1.1102 0.3364 91.12 2.6086 90.08 2.1010 96.28 4.0659 94.72 2.7422 0.34
11 11 1.1104 0.3503 90.80 2.3129 89.02 1.9915 95.64 3.4036 94.38 2.6072 0.20
12 10 1.0892 0.2921 89.68 2.0358 88.20 1.8351 95.16 2.8657 93.58 2.3939 0.26

13 17 1.0746 0.2283 90.64 1.8260 89.50 1.7183 95.24 2.4691 94.28 2.2371 0.02
15 15 1.0634 0.1790 90.12 1.5556 88.86 1.5172 95.10 2.0198 93.90 1.9549 0.00
17 13 1.0507 0.1452 90.38 1.3780 89.10 1.3600 95.34 1.7514 94.14 1.7322 0.00

40 14 16 1.0786 0.2131 91.42 1.6827 90.32 1.6361 95.96 2.2084 95.12 2.1183 0.04
15 15 1.0634 0.1790 90.12 1.5556 88.86 1.5172 95.10 2.0198 93.90 1.9549 0.00
16 14 1.0586 0.1569 90.10 1.4565 89.22 1.4318 95.36 1.8655 94.40 1.8329 0.00

18 22 1.0523 0.1375 90.16 1.3237 88.78 1.3109 95.06 1.6710 94.12 1.6617 0.00
20 20 1.0568 0.1274 90.20 1.2380 89.52 1.2284 95.46 1.5511 94.64 1.5449 0.00
22 18 1.0364 0.0994 91.24 1.1270 90.12 1.1127 95.74 1.4021 95.02 1.3867 0.00
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Table 4: The AEs and MSEs of the MLEs of θ12 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.10, θ21 = 0.5, and θ22 = 0.55.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 1.3376 0.9609 93.84 5.5800 90.92 2.8227 97.24 13.7197 95.44 3.5565 7.15
8 8 1.3145 0.8417 93.54 5.0082 90.54 2.7870 97.16 10.7353 95.22 3.5387 4.05
9 7 1.3159 0.8345 91.74 4.3676 89.18 2.7475 96.54 8.3578 94.58 3.5238 2.97

9 11 1.2641 0.6800 92.10 4.2301 89.62 2.6563 96.64 8.0539 94.82 3.4148 1.96
10 10 1.2867 0.7077 91.66 3.7427 89.20 2.6426 96.32 6.5096 94.36 3.4238 1.36
11 9 1.2305 0.5343 91.00 3.1530 88.96 2.4561 95.70 5.0756 93.72 3.2069 0.79

30 10 12 1.2756 0.6858 91.24 3.7363 88.50 2.6000 96.34 6.5452 93.96 3.3659 1.75
11 11 1.2529 0.5845 91.34 3.2178 89.18 2.4890 95.92 5.1998 94.62 3.2458 0.85
12 10 1.2213 0.4367 90.72 2.8560 88.84 2.3452 95.80 4.3982 94.22 3.0770 0.40

13 17 1.2171 0.4363 90.86 2.5858 89.12 2.2363 95.76 3.8302 94.34 2.9305 0.22
15 15 1.2149 0.3630 90.38 2.1443 89.02 2.0506 95.44 2.9482 93.96 2.6889 0.10
17 13 1.1921 0.2776 90.94 1.8467 89.72 1.8209 95.32 2.4521 94.40 2.3685 0.04

40 14 16 1.2102 0.3416 91.34 2.2720 89.84 2.1304 95.82 3.1772 94.78 2.8011 0.12
15 15 1.2149 0.3630 90.38 2.1443 89.02 2.0506 95.44 2.9482 93.96 2.6889 0.10
16 14 1.2059 0.3241 90.20 1.9933 88.88 1.9327 95.48 2.6978 94.10 2.5252 0.08

18 22 1.1827 0.2518 91.14 1.7548 89.66 1.7229 95.44 2.3208 94.40 2.2323 0.02
20 20 1.1708 0.2062 89.68 1.5509 88.84 1.5775 95.06 1.9812 93.84 2.0281 0.02
22 18 1.1544 0.1571 90.54 1.4030 89.58 1.4297 95.48 1.7647 94.42 1.8220 0.00

Table 5: The AEs and MSEs of the MLEs of θ12 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.25, θ21 = 0.5, and θ22 = 0.675.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 1.5201 1.2359 94.06 6.5457 90.98 3.1691 97.34 16.5717 96.16 3.9709 9.31
8 8 1.5137 1.1654 93.16 5.8453 90.32 3.1855 97.20 12.7452 95.10 4.0278 6.10
9 7 1.4938 1.0874 92.68 5.3947 89.88 3.1869 96.68 10.6579 95.16 4.0663 4.10

9 11 1.5037 1.1062 92.94 5.3224 90.14 3.1651 96.96 10.5102 94.90 4.0317 3.66
10 10 1.4800 1.0132 92.08 4.5818 89.20 3.0759 96.44 8.2352 94.26 3.9654 2.48
11 9 1.4487 0.8691 92.08 4.0665 89.64 2.9602 96.90 6.8594 94.88 3.8433 1.48

30 10 12 1.4780 1.0264 92.06 4.5763 89.48 3.0826 96.52 8.2101 94.02 3.9694 2.38
11 11 1.4485 0.8909 91.92 4.0293 89.20 2.9536 96.62 6.7701 94.62 3.8376 1.32
12 10 1.4409 0.8559 91.32 3.7248 89.42 2.8634 96.08 6.0245 94.12 3.7373 0.93

13 17 1.4162 0.6960 91.34 3.2779 89.48 2.7273 96.02 5.0211 94.32 3.5699 0.60
15 15 1.3961 0.5572 91.28 2.6965 89.54 2.4831 95.74 3.8430 94.62 3.2601 0.26
17 13 1.3699 0.3914 90.66 2.3333 89.28 2.2485 95.86 3.1943 94.58 2.9472 0.02

40 14 16 1.3979 0.5879 90.70 2.8601 89.04 2.5956 95.74 4.1408 94.10 3.4203 0.28
15 15 1.3961 0.5572 91.28 2.6965 89.54 2.4831 95.74 3.8430 94.62 3.2601 0.26
16 14 1.3942 0.4795 90.86 2.5329 89.28 2.3903 96.00 3.5375 94.70 3.1344 0.14

18 22 1.3622 0.4046 91.06 2.1441 89.48 2.1303 95.72 2.8654 94.44 2.7814 0.08
20 20 1.3552 0.3271 89.94 1.9134 88.68 1.9575 95.16 2.4762 94.12 2.5387 0.04
22 18 1.3455 0.2895 90.30 1.7762 89.34 1.8160 95.28 2.2763 94.40 2.3361 0.00
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Table 6: The AEs and MSEs of the MLEs of θ21 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.10, θ21 = 0.5, and θ22 = 0.55.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 0.5755 0.1387 91.70 1.6792 89.58 1.1722 96.58 2.9847 94.56 1.5182 1.61
8 8 0.5773 0.1380 91.84 1.9662 90.20 1.2146 96.36 3.9245 94.90 1.5594 2.08
9 7 0.5955 0.1798 92.58 2.3830 90.30 1.2630 96.86 5.6529 95.10 1.6034 4.58

9 11 0.5480 0.0815 89.96 1.2291 88.34 1.0231 95.78 1.8657 94.10 1.3398 0.28
10 10 0.5721 0.1176 91.26 1.4569 89.34 1.1223 95.88 2.3714 94.30 1.4597 0.81
11 9 0.5722 0.1390 91.66 1.6470 89.40 1.1565 96.52 2.9206 94.10 1.4951 1.32

30 10 12 0.5475 0.0735 91.56 1.0984 89.92 0.9719 96.02 1.5861 94.46 1.2758 0.18
11 11 0.5574 0.0931 91.38 1.2785 89.68 1.0456 96.12 1.9679 94.40 1.3664 0.34
12 10 0.5610 0.1178 90.40 1.4248 88.56 1.0955 95.36 2.3170 93.52 1.4281 0.62

13 17 0.5310 0.0418 90.82 0.7428 89.52 0.7307 95.64 0.9616 94.38 0.9385 0.02
15 15 0.5408 0.0593 90.36 0.8467 88.92 0.8264 95.42 1.1193 94.34 1.0721 0.04
17 13 0.5400 0.0662 90.34 0.9770 89.10 0.9087 95.58 1.3507 93.78 1.1886 0.08

40 14 16 0.5335 0.0529 90.58 0.7820 89.38 0.7737 95.50 1.0175 93.98 0.9988 0.06
15 15 0.5408 0.0593 90.36 0.8467 88.92 0.8264 95.42 1.1193 94.34 1.0721 0.04
16 14 0.5392 0.0592 91.14 0.8990 89.62 0.8632 95.54 1.2073 94.52 1.1252 0.02

18 22 0.5248 0.0296 90.64 0.5966 89.62 0.5960 94.98 0.7452 94.48 0.7492 0.00
20 20 0.5292 0.0337 90.56 0.6469 89.50 0.6480 95.56 0.8148 94.58 0.8218 0.00
22 18 0.5279 0.0385 90.16 0.6975 89.46 0.6945 95.54 0.8895 94.36 0.8877 0.00

Table 7: The AEs and MSEs of the MLEs of θ21 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.25, θ21 = 0.5, and θ22 = 0.675.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 0.5599 0.1037 91.46 1.4332 89.98 1.0860 96.10 2.3730 94.78 1.4125 1.38
8 8 0.5706 0.1309 91.30 1.7136 89.84 1.1618 96.64 3.1894 94.78 1.4977 1.44
9 7 0.5942 0.1653 91.64 2.1037 90.40 1.2486 96.48 4.6064 94.84 1.5957 3.72

9 11 0.5482 0.0750 90.22 1.0862 89.22 0.9580 95.18 1.5542 93.96 1.2471 0.20
10 10 0.5573 0.0845 91.38 1.2661 90.24 1.0280 96.14 1.9505 95.04 1.3388 0.30
11 9 0.5602 0.1149 91.06 1.4033 89.14 1.0795 96.14 2.3023 94.44 1.4034 0.77

30 10 12 0.5404 0.0595 90.76 0.9558 89.44 0.8836 95.30 1.3076 94.14 1.1511 0.14
11 11 0.5461 0.0695 90.64 1.0727 89.30 0.9465 95.72 1.5326 94.52 1.2366 0.10
12 10 0.5517 0.0815 90.94 1.1975 89.50 1.0134 95.90 1.7839 94.56 1.3239 0.36

13 17 0.5219 0.0355 90.28 0.6656 89.12 0.6548 95.16 0.8411 94.04 0.8307 0.00
15 15 0.5339 0.0450 89.92 0.7715 88.70 0.7425 95.56 1.0044 94.14 0.9510 0.00
17 13 0.5367 0.0544 90.86 0.8873 89.72 0.8268 95.70 1.1976 94.38 1.0715 0.00

40 14 16 0.5320 0.0394 90.60 0.7159 90.04 0.7007 95.36 0.9131 94.58 0.8933 0.02
15 15 0.5339 0.0450 89.92 0.7715 88.70 0.7425 95.56 1.0044 94.14 0.9510 0.00
16 14 0.5295 0.0479 89.80 0.7994 88.58 0.7692 95.24 1.0450 93.74 0.9914 0.00

18 22 0.5169 0.0238 90.22 0.5487 89.46 0.5384 95.38 0.6811 94.26 0.6683 0.00
20 20 0.5197 0.0273 90.54 0.5899 89.74 0.5799 95.82 0.7365 94.74 0.7251 0.00
22 18 0.5282 0.0353 89.48 0.6512 88.48 0.6415 95.22 0.8202 93.98 0.8100 0.00
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Table 8: The AEs and MSEs of the MLEs of θ22 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.10, θ21 = 0.5, and θ22 = 0.55.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 0.6490 0.1896 93.12 2.1152 90.22 1.3535 97.30 4.0000 95.08 1.7387 2.86
8 8 0.6592 0.2161 92.78 2.4472 90.14 1.3937 96.70 5.1880 94.70 1.7728 4.20
9 7 0.6614 0.2243 93.48 2.7867 90.76 1.3953 97.32 6.8729 95.32 1.7578 7.13

9 11 0.6274 0.1526 91.42 1.6043 89.58 1.2473 96.18 2.5922 94.66 1.6269 0.89
10 10 0.6402 0.1755 91.14 1.8844 89.30 1.3120 96.06 3.2924 94.10 1.6991 1.34
11 9 0.6495 0.1872 92.34 2.1912 90.32 1.3720 97.02 4.1862 94.78 1.7592 2.15

30 10 12 0.6209 0.1253 91.08 1.4546 89.18 1.1892 95.82 2.2470 94.46 1.5555 0.48
11 11 0.6281 0.1509 91.16 1.6338 88.98 1.2459 95.86 2.6659 93.76 1.6253 0.83
12 10 0.6458 0.1876 91.82 1.8818 89.44 1.3197 96.38 3.2876 94.36 1.7060 1.67

13 17 0.5976 0.0672 91.02 0.9027 89.70 0.9158 95.54 1.1775 94.56 1.1959 0.06
15 15 0.6052 0.0832 90.82 1.0638 89.36 1.0161 95.28 1.4618 93.88 1.3334 0.08
17 13 0.6177 0.1150 91.16 1.3066 89.52 1.1414 95.98 1.9259 94.76 1.4979 0.26

40 14 16 0.5996 0.0775 90.36 0.9832 88.72 0.9617 95.36 1.3228 93.98 1.2576 0.10
15 15 0.6052 0.0832 90.82 1.0638 89.36 1.0161 95.28 1.4618 93.88 1.3334 0.08
16 14 0.6106 0.0948 90.44 1.1940 88.86 1.0786 95.78 1.7099 94.22 1.4150 0.08

18 22 0.5841 0.0419 90.54 0.7149 89.52 0.7284 95.34 0.9010 94.52 0.9279 0.00
20 20 0.5894 0.0523 89.24 0.7791 88.24 0.7953 94.98 0.9920 93.76 1.0221 0.00
22 18 0.5921 0.0605 90.52 0.8761 89.32 0.8659 95.46 1.1531 94.38 1.1221 0.00

Table 9: The AEs and MSEs of the MLEs of θ22 and the ALs and CPs of the associated

ACIs and BCIs with θ11 = 1.0, θ12 = 1.25, θ21 = 0.5, and θ22 = 0.675.

90% 95%

ACI BCI ACI BCI

n r1 r2 AE MSE CP AL CP AL CP AL CP AL %

20 7 9 0.8096 0.3339 92.54 2.9696 89.46 1.7122 96.90 5.9572 94.58 2.1739 4.92
8 8 0.8289 0.3806 93.38 3.3131 90.16 1.7233 96.82 7.4081 94.76 2.1658 7.58
9 7 0.8246 0.3713 93.48 3.7430 90.32 1.7088 97.28 9.7404 95.00 2.1319 10.60

9 11 0.7985 0.2905 91.26 2.4056 88.38 1.6521 96.24 4.1875 93.80 2.1327 2.08
10 10 0.8050 0.3158 92.30 2.7084 89.68 1.6932 96.64 5.0474 94.68 2.1715 2.53
11 9 0.8104 0.3287 93.34 2.9771 90.28 1.7179 97.36 5.9812 95.26 2.1811 4.25

30 10 12 0.7924 0.2655 91.32 2.1814 89.12 1.6118 96.06 3.6145 94.06 2.0970 1.28
11 11 0.8013 0.2796 91.66 2.3755 89.44 1.6626 96.08 4.1045 94.12 2.1527 2.00
12 10 0.8097 0.3132 92.70 2.6865 89.80 1.7055 96.84 4.9757 94.82 2.1874 2.97

13 17 0.7494 0.1467 90.16 1.3342 88.88 1.2775 95.42 1.8539 94.00 1.6755 0.18
15 15 0.7594 0.1723 90.76 1.5569 89.02 1.3978 95.92 2.2687 94.04 1.8374 0.32
17 13 0.7766 0.2164 91.10 1.8966 88.92 1.5440 96.02 2.9572 94.06 2.0200 0.71

40 14 16 0.7474 0.1528 91.32 1.3547 89.76 1.3143 95.60 1.8740 94.20 1.7300 0.22
15 15 0.7594 0.1723 90.76 1.5569 89.02 1.3978 95.92 2.2687 94.04 1.8374 0.32
16 14 0.7672 0.1873 91.66 1.7857 89.88 1.4725 95.78 2.7394 94.38 1.9278 0.42

18 22 0.7323 0.0867 90.16 0.9985 89.14 1.0325 95.40 1.2852 94.50 1.3365 0.02
20 20 0.7355 0.1065 90.36 1.0984 89.44 1.1113 95.48 1.4489 94.50 1.4490 0.04
22 18 0.7449 0.1195 90.12 1.2549 89.02 1.2285 95.18 1.7102 93.98 1.6095 0.04
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percentages of this type of data are provided in the last column of Tables 2–9. Clearly these

percentages for the first stress level depend on the distance between θ11 and θ12. As the

distance between θ11 and θ12 increases, percentage of data having only one failure due to the

cause with larger mean life increases. Similar relationship also holds for the second stress

level.

The following points are quite clear from the Tables 2–9. As n increases, the MSEs of

estimators of all the unknown parameters decrease. For fixed n, the MSEs of estimators

of model parameters decrease as r increases. For fixed n and r, the MSEs of the MLEs of

θ11 and θ12 decrease and that of the MLEs of θ21 and θ22 increase with the increase in r1.

For θ11 < θ12, the MSE of the MLE of θ11 decreases and that of θ12 increases as |θ11 − θ12|

increases keeping n and r1 fixed. Similar trend is also noticed for θ21 and θ22 for fixed n and

r2. The CPs of the ACIs and BCIs are quite close to nominal level, though the ALs of BCIs

are smaller than that of ACIs specially for small values of n. As n increases, the difference

between the ALs of the ACIs and BCIs decreases. However, as we discussed, the ACI of θij ,

i = 1, 2, j = 1, 2, has an issue when number of failure is very small due to the cause j at the

stress level si. Hence, we recommend to use BCI over ACI. However, we have noticed that

as n increases, the percentage of discarded samples due to the infeasibility of (4) decreases,

specially for relatively large values of r1.

6.2 Data Analysis

In this subsection we provide the analysis of two data sets to illustrate the methods described

in Sections 2 and 4. Both the data are artificially generated from (1) with n = 30, r1 = 10,

r2 = 13, θ11 = 1, θ12 = 1.25, θ21 = 0.5, and θ22 = 0.675. The data are given in Tables 10 and

12.

Table 10: The data for illustrative example 1.

First stress level 0.024519, 0 0.046106, 0 0.052244, 0 0.096887, 0 0.117613, 1 0.181907, 0 0.183071, 1
0.201780, 1 0.247922, 1 0.293073, 0

Second stress level 0.305320, 1 0.310835, 1 0.313429, 0 0.325594, 1 0.338804, 1 0.362189, 1 0.368959, 0
0.380403, 1 0.422346, 0 0.425203, 1 0.544151, 0 0.599206, 0 0.616952, 1

18



Table 11: The ACI and BCI for illustrative example 1.

ACI BCI

90% 95% 90% 95%

Parameter LL UL LL UL LL UL LL UL

θ11 0.666115 2.701967 0.597058 3.232235 0.601998 2.488081 0.524194 2.892671
θ12 0.876948 5.092153 0.770504 6.605372 0.809575 4.998344 0.706583 6.673072
θ21 0.388649 1.804309 0.345897 2.223212 0.375779 1.863981 0.333322 2.370978
θ22 0.279012 0.923804 0.253572 1.069155 0.254216 0.861798 0.224597 0.988965
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Figure 1: The plots of CDFs of θ̂ij as a function of θij for data in Table 10.

Illustrative Example 1

Here we provide the analysis of the data given in Table 10. For this data, number of failures

due to the first cause at the first and second stress levels are 6 and 5, respectively and

that due to second cause are 4 and 8, respectively. The MLEs of θ11, θ12, θ21, and θ22

can be obtained using (2) and are 1.217764, 1.826645, 0.754119, and 0.471324, respectively.

Plots of
(
θ11, Fθ̂11

(1.217764, θ11)
)
,
(
θ12, Fθ̂12

(1.826645, θ12)
)
,
(
θ21, Fθ̂21

(0.754119, θ21)
)
, and

(
θ22, Fθ̂22

(0.471324, θ22)
)
are given in Figure 1. Clearly, (4) given in Section 4 are feasible

for 90% and 95% CIs. We construct 90% and 95% ACIs, reported in Table 11, for all

the unknown parameters by solving (4) using bisection method. One-dimensional bisection

method needs two values such that only one root of the concerned equation lies in between

them. We find out these values from Figure 1. The BCI can be constructed following the

method described in Section 4. We compute 90% and 95% BCIs, and they are reported in
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Table 11. We have noticed that the ACI and BCI of each parameter are quite close for a fixed

level of confidence. The lengths of the BCIs are marginally smaller than that of the ACIs

for θ11, θ12, and θ22, while the relation is reversed for θ21 for the data provided in Table 10.

Table 12: The data for illustrative example 2.

First stress level 0.026226, 1 0.069863, 1 0.095057, 1 0.096341, 1 0.104098, 1 0.175074, 0 0.194085, 1
0.226281, 1 0.227065, 1 0.274758, 1

Second stress level 0.278594, 0 0.291634, 0 0.296244, 0 0.314911, 0 0.321721, 1 0.327938, 0 0.362588, 0
0.396857, 0 0.411424, 0 0.423408, 1 0.447501, 0 0.448236, 0 0.456391, 1
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Figure 2: The plot of CDF of θ̂11 as a function of θ11 for data in Table 12.

Illustrative Example 2

Here we provide a data in Table 12 with number of failure due to the first cause at first

stress level is one. The MLEs of the parameters for this data are θ̂11 = 6.984, θ̂12 = 0.776,

θ̂21 = 0.248, and θ̂22 = 0.826. As there is only one failure due to the first cause of failure at the

first stress level, the MLE of θ11 is unusually larger than its true value. Plot of F
θ̂11

(6.984, θ11)

as a function of θ11 is provided in Figure 2, which depicts that as θ11 increases Fθ̂11
(6.984, θ11)

stabilizes near 0.42. Hence, the second equation in (4) will be feasible for α > 0.84, which

implies we can have at the maximum 16% two-sided confidence interval for θ11 for this data

using the approximate method of confidence interval. If one-sided confidence interval of the

form (0, θ11U) is considered, the maximum level of significance that can be achieved using

the approximate method for CI is close to 58%.
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7 Conclusion

In this article we consider a simple SSLT with random step changing time. We also assume

that in each stress levels there are two independent competing risks acting simultaneously

on the units under consideration. We assume that the lifetimes are distributed exponentially

in the presence of only one cause. It is further assumed that the assumptions of the CEM

hold for the lifetimes for each cause of failure in the absence of other cause. We have

obtained the MLEs of the model parameters and their exact conditional distributions. Based

on the conditional distributions of the MLEs, we proposed the ACI and BCI. We discuss

two optimality criteria and the optimal tests under those optimal criteria. We conduct

an extensive simulation study to judge the performance of the procedures proposed in this

article. We have noticed that approximate method of confidence interval does not work when

number of failure at the associated stress level due to associated risk is very few. However,

the BCI works quite well for all the cases and hence we recommend to use the BCI over

ACI. Further study is needed towards the construction of confidence interval of the model

parameters in case of very few failures at the associated stress level due to associated risk.

Note that in this paper we have considered the simple step-stress model. It will be of interest

to develop statistical inferences of the unknown parameters in case of multiple step-stress

model under this framework. More work is needed in this direction.
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A Appendix

Lemma 1. Suppose that X is a random variable having a gamma distribution with PDF

fG(·; α, β) as given in (3). Then for ω < β, the MGF of X is given by

E
(
eωX

)
=

(
1− ω

β

)−α

.

Proof: Proof is simple and hence it is omitted.

Proof of the Theorem 1: Joint PDF of T 1,r1 is given by

fT 1,r1
(t1,r1) =

∑
fT 1,r1

,∆1,r1
(t1,r1 , δ1,r1)

= c1,r1,n

(
1

θ11
+

1

θ12

)r1

e
−
(

1

θ11
+ 1

θ21

)
D1 for 0 < t1:n < . . . < tr1:n < ∞,

where the sum is taken over all the possible values of δi:n for i = 1, 2, . . . , r1. Hence for

ω <
1

θ11
+

1

θ12

E
(
eωD1

)
=

∫ ∞

0

. . .

∫ ∞

tr1−1:n

c1,r1,n

(
1

θ11
+

1

θ12

)r1

e
−
(

1

θ11
+ 1

θ12
−ω

)
D1dtr1:n . . . dt1:n

=

(
1− ω

1
θ11

+ 1
θ12

)−r1

.

The above expression of the MGF of D1 along with Lemma 1 proves the theorem.

Proof of the Theorem 2: The conditional joint PDF of T r1+1,r conditioning on Tr1:n is

given by

fT r1+1,r |Tr1:n
(tr1+1,r | tr1:n)

=

∑∫ tr1:n

0

. . .

∫ t2:n

0

fT 1,r,∆1,r
(t1,r, δ1,r) dt1:n . . . dtr1−1:n

∑∫ tr1:n

0

. . .

∫ t2:n

0

∫ ∞

tr1:n

. . .

∫ ∞

tr−1:n

fT 1,r,∆1,r
(t1,r, δ1,r) dtr:n . . . tr1+1:ndt1:n . . . dtr1−1:n
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= cr1+1,r,n

(
1

θ21
+

1

θ22

)r2

e
−
(

1

θ21
+ 1

θ22

)
D2 for tr1:n < tr1+1:n < . . . < tr:n < ∞,

where the sum is over all possible values of δi:n for i = 1, 2, . . . , r. Now for ω <

(
1

θ21
+

1

θ22

)
,

E(eωD2 | tr1:n) = cr1+1,r,n

(
1

θ21
+

1

θ22

)r2 ∫ ∞

tr1:n

. . .

∫ ∞

tr−1:n

e
−
(

1

θ21
+ 1

θ22
−ω

)
D2dtr:n . . . dtr1+1:n

=


1− ω(

1
θ21

+ 1
θ22

)




−r2

.

Hence

E(eωD2) =

∫ ∞

0

E
(
eω θ̂21 | tr1:n

)
fTr1:n

(tr1:n)dtr1:n =


1− ω(

1
θ21

+ 1
θ22

)




−r2

,

which along with the Lemma 1, completes the proof of Theorem 2.

Proof of the Theorem 3: Using (1), for n ∈ N ,

P (N = n) =
∑1∑2

∫ ∞

0

. . .

∫ ∞

tr−1:n

fT 1,r,∆1,r
(t1,r, δ1,r)dtr:n . . . dt1:n

=

(
r1
n1

)(
r2
n2

)
c1,r λ

n1

11 λ
r1−n1

12 λn2

21 λ
r2−n2

22

×
∫ ∞

0

. . .

∫ ∞

tr−1:n

e−(λ11+λ12)D1−(λ21+λ22)D2dtr:n . . . dt1:n

=

(
r1
n1

)
pn1

1 (1− p1)
r1−n1 ×

(
r2
n2

)
pn2

2 (1− p2)
r2−n2 ,

where
∑1 and

∑2 imply the summations over all possible arrangement of δi:n such that
∑r1

i=1 δi:n = n1 and
∑r

i=r1+1 δi:n = n2, respectively.

Proof of the Theorem 4: Note that for i = 1, 2 and j = 1, 2

E
(
eω θ̂ij |N ∈ N

)
=
∑

n∈N

E
(
eω θ̂ij |N = n

)
× P (N = n|N ∈ N ). (5)
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Now for n ∈ N and using Theorem 3,

P (N = n|N ∈ N ) =
P (N = n)

P (N ∈ N )

=

(
r1
n1

)
pn1

1 (1− p1)
r1−n1 ×

(
r2
n2

)
pn2

2 (1− p2)
r2−n2

∑
n∈N

(
r1
n1

)
pn1

1 (1− p1)
r1−n1 ×

(
r2
n2

)
pn2

2 (1− p2)
r2−n2

=

(
r1
n1

)
pn1

1 (1− p1)
r1−n1 ×

(
r2
n2

)
pn2

2 (1− p2)
r2−n2

{1− pr11 − (1− p1)r1} {1− pr22 − (1− p2)r2}
. (6)

Now using Theorem 1 or 2, for k = 1, 2, . . . , ri − 1, i = 1, 2, and j = 1, 2,

E
(
eωθ̂ij |Ni = k

)
=


1− ω

nijk

(
1
θi1

+ 1
θi2

)




−ri

if ω < nijk

(
1

θi1
+

1

θi2

)
.

Hence, using (5) and (6), the MGF of θ̂11 conditioning on N ∈ N is given by

E
(
eωθ̂ij |N ∈ N

)
=

1

1− prii − (1− pi)
ri

ri−1∑

k=1

(
ri
k

)
pki (1− pi)

ri−k


1− ω

nijk

(
1
θi1

+ 1
θi2

)




−ri

,

if ω <
1

θi1
+

1

θi2
. Now using Lemma 1, the proof of Theorem 4 is straight forward.

Proof of the Theorem 5: Note that for i = 1, 2 and j = 1, 2,

1− F
θ̂ij
(x, θij) =

ri−1∑

k=1

Pθij

(
θ̂ij > x|Ni = k

)
Pθij (Ni = k|1 ≤ Ni ≤ ri − 1) , (7)

which is in the form of (1) given in Balakrishnan and Iliopoulos [9]. Hence we will prove

that M1, M2, and M3 of Lemma 1 in Balakrishnan and Iliopoulos [9] hold for (7) to prove

stochastic monotonicity of θ̂ij in θij.

(M1) Note that

Pθij

(
θ̂ij > x|Ni = k

)
=

∫ x

0

fG

(
t; ri, nijk

(
1

θi1
+

1

θi2

))
dt.
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Now for θ
′

ij > θij,

fG

(
t; ri, nijk

(
1

θ
′

ij

+ 1
θ
ij

′

))

fG

(
t; ri, nijk

(
1
θij

+ 1
θ
ij

′

)) is an increasing function of t, where j
′ 6= j

and j
′

= 1, 2. Hence Pθij

(
θ̂ij > x|Ni = k

)
is an increasing function of θij.

(M2) The distribution of θ̂ij|Ni = k is same as
Di

nijk

and

Di

nijk

− Di

nij(k+1)

=

(
1

nijk

− 1

nij(k+1)

)
Di > 0 a.e.,

which implies Pθij

(
θ̂ij > x|Ni = k

)
in a decreasing function of k.

(M3) Note that

Pθij (Ni = k|1 ≤ Ni ≤ ri − 1) =

(
ri
k

)
pki (1− pi)

ri−k

1− prii − (1− pi)ri
for k = 1, 2, . . . , ri − 1.

Now for θ
′

ij > θij,
P
θ
′

ij
(Ni = k|1 ≤ Ni ≤ ri − 1)

Pθij (Ni = k|1 ≤ Ni ≤ ri − 1)
is a increasing function of k and hence Ni

is stochastically decreasing in θij .
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