Bayesian Analysis of Simple Step-stress Model under Weibull Lifetimes

A. Ganguly ${ }^{1}$, D. Kundu ${ }^{2,3}$, S. Mitra ${ }^{2}$

Abstract

Step-stress model is becoming quite popular in recent times for analyzing lifetime data obtained from accelerated life testing experiments. In the usual step-stress experiment, stress levels are allowed to change at each step to get rapid failure of the experimental units. The expected lifetime of the experimental unit is shortened as the stress level increases. The simple step-stress model under different censoring schemes based on Weibull lifetimes is considered in this paper. It is assumed that the lifetime distributions of the experimental units have different scale parameters at different stress levels but they have the same shape parameter. Moreover, the lifetimes satisfy KhamisHiggins model assumption. It is further assumed that as the stress level increases, the scale parameter also increases. We provide Bayesian inference of the unknown parameters of the Weibull distribution under this order restriction on the scale parameters. Monte Carlo simulations have been performed to see the effectiveness of the proposed method, and a data set has been analyzed for illustrative purposes.

Key Words and Phrases: Step-stress life-tests; Khamis-Higgins model; censoring schemes; prior distribution; posterior analysis.
${ }^{1}$ Department of Statistics, University of Pune, Pune 411 007, India.
${ }^{2}$ Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
${ }^{3}$ Corresponding author. e-mail: kundu@iitk.ac.in

Acronym and Notation

AE Average estimate
ALT Accelerated life test(ing)
CDF Cumulative distribution function
CRI Credible interval
HCS Hybrid censoring scheme
MCMC Markov chain Monte Carlo
MSE Mean squares error(s)
SSLT Step-stress life test(ing)

AL Average length
BE Bayes estimate
CEM Cumulative exposure model
HPD Highest posterior density
KHM Khamis-Higgins model
MLE Maximum likelihood estimator(s)
PDF Probability density function

1 Introduction

Long duration of life testing experiment is one of the problems, which is faced by experimenters experimenting with a durable product. Nowadays ALT experiments are gaining popularity to overcome this problem. In an ALT experiment, certain number of units under consideration are put on a life test and are exposed to extreme environmental conditions so that they fail more rapidly than the normal operating condition. It implies that the experimenters observe more failure data within an affordable time. SSLT is a particular type of ALT. A SSLT enables the experimenter to change the stress levels during the experiment. Suppose, n number of items are put on a test at an initial stress level s_{1}. Let s_{2}, \ldots, s_{m} be $m-1$ stress levels and $\tau_{1}<\ldots<\tau_{m-1}$ be $m-1$ prefixed times. At the time point τ_{1}, the stress level is changed to s_{2} from s_{1}. Similarly, the stress level is changed to s_{3} from s_{2} at the time τ_{2} and so on. Finally, at the time point τ_{k-1}, the stress level is changed from τ_{k-1} to τ_{k}. The failure times are recorded chronologically. Let $\tau(t)=s_{i}$ for $\tau_{i-1} \leq t<\tau_{i}$, $i=1,2, \ldots, m$ with $\tau_{0}=0$ and $\tau_{m}=\infty$. We will call the mapping $\tau(\cdot)$ as step-stress pattern. A simple SSLT is a special case of SSLT, where only two stress levels are considered, and the stress level is changed from s_{1} to s_{2} at a prefixed time τ_{1}.

To analyze such data one needs a model that relates the distributions of lifetimes under different stress levels to that of lifetimes under the step-stress pattern. Different models are available in the literature to describe these relationships. Among them, the most popular
one is CEM, first introduced by Seydyakin [18]. Let us assume that the CDF of the lifetime at the stress level s_{i} is $F_{i}(\cdot)$ and $F(\cdot)$ is the CDF of lifetime under the step-stress pattern. CEM assumes that the remaining lifetime of an unit depends only on the cumulative exposure accumulated at the current stress level, regardless of how the exposure is actually accumulated, and mathematically it can be written as

$$
F(t)=F_{i}\left(t-h_{i-1}\right) \text { for } \tau_{i-1} \leq t<\tau_{i}, i=1,2, \ldots, k,
$$

where $\tau_{0}=0, \tau_{k}=\infty, h_{0}=0$, and $h_{i}, i=2,3, \ldots, k-1$ is the solution of the equation

$$
F_{i+1}\left(\tau_{i}-h_{i}\right)=F_{i}\left(\tau_{i}-h_{i-1}\right) .
$$

This model has been extensively discussed in the literature specially for the exponential lifetimes, see for example Bagdonavicius [1], Nelson [17], and a recent review article by Balakrishnan [4]. Analysis of simple step-stress model has also been performed when lifetimes have a Weibull distribution, mainly under frequentist setup. Analysis of the CEM was performed by Komori [11], when the lifetimes of the experimental units follow Weibull distribution. Inferential aspects of step-stress model under Type-I and Type-II censoring schemes were addressed by Bai and Kim [2] and Kateri and Balakrishnan [8], respectively, when the distribution of lifetimes is assumed to be Weibull. However, it is noticed that MLEs of the unknown parameters of Weibull distribution under SSLT do not exist in closed form and therefore finding MLEs of the unknown parameters involves heavy computations. Most of the further statistical analysis mainly rely on asymptotic distribution of the MLEs. Moreover, the results provided in Bai and Kim [2] and Kateri and Balakrishnan [8] cannot be easily extended to more general censoring situations, i.e., to hybrid and progressive censoring schemes. It seems that Bayesian analysis is a natural choice in this case.

It may be worth mentioning that though some inferential issues on the parameters of Weibull distribution under step-stress model have been addressed in the literature, no attention has been paid to develop the inference under the order restriction on the means of the lifetimes at different stress levels. The frequentist approach to the order restricted inference for parameters of Weibull distribution under step-stress model is quite involved, hence in
this case also Bayesian approach is a natural alternative.

Liu [15] considered a step-stress model for Weibull distributed lifetimes under Bayesian setup when the lifetimes follow CEM. No order restriction on the means of the lifetime at different stress levels was considered in this article. Author used the MCMC technique using Gibbs sampling to obtain BEs and to construct the CRIs of some parametric functions. In this paper we consider a simple SSLT, when the lifetimes are assumed to have two-parameter Weibull distribution with different scale parameters but same shape parameter at two different stress levels. Though CEM is the most popular model in case of exponential lifetimes, it is not mathematically tractable under Weibull lifetimes. Weibull CEM does not transform to exponential CEM under power transformation. An alternative model for Weibull lifetimes is KHM (see Section 3 for more details), proposed by Khamis and Higgins [10]. CDF under KHM assumption coincides with the CDF under CEM assumption for exponentially distributed lifetime under power transform. Moreover, it may be worth mentioning that the KHM and CEM for Weibull distributed lifetimes are difficult to distinguish in practice, see Khamis and Higgins [10]. For these reasons analysis in this article has been performed under KHM assumptions, which is mathematically more tractable than CEM assumptions for Weibull lifetime. We consider order restriction on the means of the lifetime under different stress levels. We use importance sampling technique to obtain BEs and to construct the CRIs of some parametric functions.

Rest of the article is organized as follows. Different censoring schemes and available data are briefly provided in Section 2. Model assumptions and prior information on the unknown parameters are considered in Section 3. In Section 4, we provide the posterior analysis and the Bayes estimators in details for type-I censored data. In Section 5, simulation study has been performed to judge the effectiveness of the procedures described in Section 4, and analysis of a data set has been provided for illustrative purposes. In Section 6, we have indicated how the proposed method can be implemented for other censoring schemes. Finally, we conclude the paper in Section 7.

2 Different Censoring Schemes and Available Data

A total of n units is placed on a simple step-stress life testing experiment. The stress level is changed from s_{1} to s_{2} at a prefixed time τ_{1}, and $\tau_{2}>\tau_{1}$ is another prefixed time. The positive integer $r \leq n$ is also pre-fixed. The role of r and τ_{2} will be clear later. Let τ^{*} and n^{*} denote the termination time of the experiment and total number of failures observed before τ^{*}, respectively. Note that τ^{*} and n^{*} depend on the censoring scheme. Let the ordered lifetimes of the items be denoted by $t_{1: n}<\ldots<t_{n: n}$. Let n_{1}^{*} and n_{2}^{*} denote the number of failures before the time τ_{1} and between τ_{1} and τ_{2} respectively. They can also be zero. Now we briefly describe different censoring schemes, and available data in each case.

Type-I Censoring Scheme

In a Type-I censoring scheme the experiment is terminated at a prefixed time. For more details of Type-I censoring scheme, readers are referred to Lawless [14], Miller [16], and Bain and Englehardt [3]. A simple SSLT is terminated when the time τ_{2} on the test has been reached under Type-I censoring scheme, and the available data are one of the following forms.
(a) $\left\{\tau_{1}<t_{1: n}<\ldots<t_{n_{2}^{*}: n}<\tau_{2}\right\}$,
(b) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<t_{n_{1}+1: n}<\ldots<t_{n_{1}^{*}+n_{2}^{*}: n}<\tau_{2}\right\}$,
(c) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<\tau_{2}\right\}$.

Type-II Censoring Scheme

In a Type-II censoring scheme, the test is terminated when r-th failure takes place, i.e., it is terminated at a random time $t_{r: n}$. Interested readers are referred to Lawless [14], Miller [16], and Bain and Englehardt [3] for more details of this censoring scheme. The available data from a simple SSLT are one of the following forms under Type-II censoring scheme.
(a) $\left\{\tau_{1}<t_{1: n}<\ldots<t_{r: n}\right\}$,
(b) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<t_{n_{1}^{*}+1: n}<\ldots<t_{r: n}\right\}, n_{1}<r$,
(c) $\left\{t_{1: n}<\ldots<t_{r: n}<\tau_{1}<\tau_{2}\right\}$.

Type-I Hybrid Censoring Scheme

The test is terminated when r-th failure occurs or time τ_{2} is reached on the test, whichever is earlier, i.e., it is terminated at a random time $\tau^{*}=\min \left\{t_{r: n}, \tau_{2}\right\}$. This censoring scheme was introduced by Epstein [7]. The available data from a simple SSLT are one of the following forms under Type-I HCS.
(a) $\left\{\tau_{1}<t_{1: n}<\ldots<t_{r: n}\right\}$ if $t_{r: n}<\tau_{2}$,
(b) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<t_{n_{1}^{*}+1: n}<\ldots<t_{r: n}\right\}$ if $t_{r: n}<\tau_{2}, n_{1}<r$,
(c) $\left\{t_{1: n}<\ldots<t_{r: n}<\tau_{1}\right\}$ if $t_{r: n}<\tau_{2}$,
(d) $\left\{\tau_{1}<t_{1: n}<\ldots<t_{n_{2}^{*}: n}<\tau_{2}\right\}$ if $t_{r: n}>\tau_{2}$,
(e) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<t_{n_{1}^{*}+1: n}<\ldots<t_{n_{1}^{*}+n_{2}^{*}: n}<\tau_{2}\right\}$ if $t_{r: n}>\tau_{2}, n_{1}<r$,
(f) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<\tau_{2}\right\}$ if $t_{r: n}>\tau_{2}$.

Type-II Hybrid Censoring Scheme

This censoring scheme was proposed by Childs et al. [6]. In Type-II HCS, the experiment is terminated when r-th item fails or time τ_{2} is reached on the test, whichever is later, i.e., the experiment termination time is $\tau^{*}=\max \left\{t_{r: n}, \tau_{2}\right\}$. The available data from a simple SSLT are one of the following forms under this censoring scheme.
(a) $\left\{\tau_{1}<t_{1: n}<\ldots<t_{r: n}\right\}$ if $t_{r: n} \geq \tau_{2}$,
(b) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<t_{n_{1}^{*}+1: n}<\ldots<t_{r: n}\right\}$ if $t_{r: n} \geq \tau_{2}, n_{1}<r$,
(c) $\left\{\tau_{1}<t_{1: n}<\ldots<t_{n_{2}^{*}: n}<\tau_{2}\right\}$ if $t_{r: n}<\tau_{2}$,
(d) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<t_{n_{1}^{*}+1: n}<\ldots<t_{n_{1}^{*}+n_{2}^{*}: n}<\tau_{2}\right\}$ if $t_{r: n}<\tau_{2}$,
(e) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<\tau_{2}\right\}$ if $t_{r: n}<\tau_{2}$.

Type-II Progressive Censoring Scheme

Let R_{1}, \ldots, R_{m} be m prefixed non-negative integers such that

$$
m+\sum_{j=1}^{m} R_{j}=n .
$$

At the time of the first failure, say $t_{1: n}, R_{1}$ units are chosen at random from the remaining $(n-1)$ units and they are removed from the experiment. Similarly, at the time of the second
failure, say $t_{2: n}, R_{2}$ units are chosen at random from the remaining ($n-R_{1}-2$) surviving units and they are removed from the test, and so on. Finally at the time of the m th failure, say $t_{m: n}$, the rest of the $n-m-\sum_{j=1}^{m-1} R_{j}=R_{m}$ units are removed and the experiment is stopped. In this case the available data are one of the following forms.
(a) $\left\{\tau_{1}<t_{1: n}<\ldots<t_{m: n}\right\}$ if $\tau_{1}<t_{1: n}$,
(b) $\left\{t_{1: n}<\ldots<t_{n_{1}^{*}: n}<\tau_{1}<t_{n_{1}^{*}+1: n}<\ldots<t_{m: n}\right\}$ if $t_{1: n}<\tau_{1}<t_{m: n}$,
(c) $\left\{t_{1: n}<\ldots<t_{m: n}<\tau_{1}\right\}$ if $\tau_{1} \geq t_{m: n}$.

3 Model Assumption and Prior Information

In this article we consider a simple step-stress life testing, where n units are put on a life testing experiment at the initial stress level s_{1}. Let τ_{1} be a prefixed time at which the stress level is changed from s_{1} to s_{2}. It is assumed that the lifetimes of the experimental units are independently distributed random variables having Weibull distribution. PDF and the CDF of the lifetime under stress level s_{i} for $i=1,2$, are given by

$$
f\left(t ; \beta, \lambda_{i}\right)=\beta \lambda_{i} t^{\beta-1} e^{-\lambda_{i} t^{\beta}} \quad \text { for } \quad 0<t<\infty \quad \beta>0 \quad \lambda_{i}>0,
$$

and

$$
\begin{equation*}
F\left(t ; \beta, \lambda_{i}\right)=1-e^{-\lambda_{i} t^{\beta}} \quad \text { for } \quad 0<t<\infty \quad \beta>0 \quad \lambda_{i}>0, \tag{1}
\end{equation*}
$$

respectively. It is further assumed that the failure time data come from a KHM under the step-stress pattern, hence, it has the following CDF;

$$
G\left(t ; \beta, \lambda_{1}, \lambda_{2}\right)= \begin{cases}1-e^{-\lambda_{1} t^{\beta}} & \text { if } 0<t<\tau_{1} \\ 1-e^{-\lambda_{2}\left(t^{\beta}-\tau_{1}^{\beta}\right)-\lambda_{1} \tau_{1}^{\beta}} & \text { if } \tau_{1} \leq t<\infty\end{cases}
$$

The corresponding PDF is given by

$$
g\left(t ; \beta, \lambda_{1}, \lambda_{2}\right)= \begin{cases}\beta \lambda_{1} t^{\beta-1} e^{-\lambda_{1} t^{\beta}} & \text { if } 0<t<\tau_{1} \\ \beta \lambda_{2} t^{\beta-1} e^{-\lambda_{2}\left(t^{\beta}-\tau_{1}^{\beta}\right)-\lambda_{1} \tau_{1}^{\beta}} & \text { if } \tau_{1} \leq t<\infty\end{cases}
$$

For developing the Bayesian inference, we need to assume some priors on the unknown
parameters. Suppose λ_{1} and λ_{2} are independently distributed according to gamma distribution. If β is known, they are conjugate priors for λ_{1} and λ_{2}. However, following the argument of Soland [19] it can be shown that there does not exist any continuous conjugate prior for $\left(\beta, \lambda_{1}, \lambda_{2}\right)$. A continuous-discrete conjugate prior do exist, where continuous part corresponds to the scale parameters and discrete part corresponds to the shape parameter. Khaminskiy and Krivtsov [9] criticized this choice of priors as it is difficulty to apply in real life, hence it is not addressed further.

Following the approach of Berger and Sun [5], Kundu and Gupta [13], and Kundu [12], here we assume that λ_{i} has a gamma prior with shape and scale parameters $a_{i}>0$ and $b_{i}>0$, respectively, i.e., the prior assumption on λ_{i} is summarized in the following PDF.

$$
\begin{equation*}
\pi_{i}\left(\lambda_{i}\right) \propto \lambda_{i}^{a_{i}-1} e^{-\lambda_{i} b_{i}} ; \quad \lambda_{i}>0, \quad i=1,2 \tag{2}
\end{equation*}
$$

The prior on the shape parameter β is also assumed to be a gamma distribution with shape and scale parameter $a_{3}>0$ and $b_{3}>0$, respectively, i.e., the prior PDF of β is given by

$$
\begin{equation*}
\pi_{3}(\beta) \propto \beta^{a_{3}-1} e^{-b_{3} \beta} \quad \text { for } \quad \beta>0 \tag{3}
\end{equation*}
$$

It is further assumed that β, λ_{1}, and λ_{2} are independently distributed. We discuss the posterior analysis of type-I censored data in details in Section 4.1 under this prior assumptions.

Next we consider order restricted inference of the parameters under the same model assumptions. Note that the main aim of a SSLT is to get rapid failures by imposing severe stress level on the products under test. Hence, it is natural to assume that the mean lifetime at the stress level s_{1} is greater than the mean lifetime at the stress level s_{2}, which implies $\lambda_{1}<\lambda_{2}$ under lifetime distribution (1). Therefore, one of the ways to incorporate order restriction is to assume that $\lambda_{1}=\alpha \lambda_{2}$ with $0<\alpha<1$. The following priors are assumed under this order restricted situation. It is assumed that priors on β and λ_{2} are same as the previous case, i.e., they have priors $\pi_{2}(\cdot)$ and $\pi_{3}(\cdot)$, respectively, and α has a beta prior, with parameters $a_{4}>0$ and $b_{4}>0$, having PDF

$$
\begin{equation*}
\pi_{4}(\alpha) \propto \alpha^{a_{4}-1}(1-\alpha)^{b_{4}-1} \quad \text { for } \quad 0<\alpha<1 . \tag{4}
\end{equation*}
$$

Here also we assume that α, β, and λ_{2} are independently distributed. Therefore, the joint prior PDF of $\left(\lambda_{1}, \lambda_{2}\right)$ can be written as;

$$
\pi\left(\lambda_{1}, \lambda_{2}\right)=\frac{b^{a}}{\Gamma(a) B(c, d)} \lambda_{2}^{a-c-d} e^{-b \lambda_{2}} \lambda_{1}^{c-1}\left(\lambda_{2}-\lambda_{1}\right)^{d-1} \quad \text { for } \quad 0<\lambda_{1}<\lambda_{2}<\infty
$$

As the joint prior on (λ_{1}, λ_{2}) is complicated, a gray-scale plot is provided in Figure 1 for different values of hyper-parameters. In the plot black color represents the maximum value of the density function, whereas white color represents the minimum value, which is zero in all the plots. We have taken $b=1.0$ only, as different values of b only affects the spread of the density function for fixed shape parameter.

4 Posterior Analysis under Type-I Censoring Scheme

4.1 Under Unrestricted Prior Assumption

In case of Type-I censoring scheme, $\tau^{*}=\tau_{2}$. For Case (a): $n_{1}^{*}=0, n_{2}^{*}=n_{2} \leq n$, Case (b): $n_{1}^{*}=n_{1}>0, n_{2}^{*}=n_{2}>0$, Case (c): $n_{1}^{*}=n_{1}>0, n_{2}^{*}=0$. Let $n^{*}=n_{1}^{*}+n_{2}^{*}$. Based on the observations from a simple SSLT under Type-I censoring scheme, the likelihood function can be written as

$$
\begin{equation*}
l_{1}\left(\text { Data } \mid \beta, \lambda_{1}, \lambda_{2}\right) \propto \beta^{n_{1}^{*}+n_{2}^{*}} \lambda_{1}^{n_{1}^{*}} \lambda_{2}^{n_{2}^{*}}\left(\prod_{i=1}^{n_{1}^{*}+n_{2}^{*}} t_{i: n}\right)^{\beta-1} e^{-\lambda_{1} D_{1}(\beta)-\lambda_{2} D_{2}(\beta)} \tag{5}
\end{equation*}
$$

where $D_{1}(\beta)=\sum_{j=1}^{n_{1}^{*}} t_{j: n}^{\beta}+\left(n-n_{1}^{*}\right) \tau_{1}^{\beta}$ and $D_{2}(\beta)=\sum_{j=n_{1}^{*}+1}^{n^{*}}\left(t_{j: n}^{\beta}-\tau_{1}^{\beta}\right)+\left(n-n^{*}\right)\left(\tau^{* \beta}-\tau_{1}^{\beta}\right)$. Therefore, based on the priors $\pi_{1}(\cdot), \pi_{2}(\cdot)$, and $\pi_{3}(\cdot)$ mentioned above posterior PDF of β, λ_{1}, and λ_{2} becomes

$$
\begin{array}{r}
l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid \text { Data }\right) \propto \beta^{n^{*}+a_{3}-1} \lambda_{1}^{n_{1}^{*}+a_{1}-1} \lambda_{2}^{n_{2}+a_{2}-1} e^{-\left(b_{3}-c_{1}\right) \beta-\lambda_{1} A_{1}(\beta)-\lambda_{2} A_{2}(\beta)} \\
\text { if } \beta>0, \lambda_{1}>0, \lambda_{2}>0 \tag{6}
\end{array}
$$

where $A_{1}(\beta)=b_{1}+D_{1}(\beta), A_{2}(\beta)=b_{2}+D_{2}(\beta)$, and $c_{1}=\sum_{i=1}^{n^{*}} \ln t_{i: n}$. Note that the right hand side of (6) is integrable if we take proper priors on the unknown parameters, see Appendix A. 1 for details. If we want to compute the BEs of some functions of β, λ_{1},

Figure 1: Plot of prior density for different values of hyper-parameters.
and λ_{2}, say $g\left(\beta, \lambda_{1}, \lambda_{2}\right)$, with respect to the squared error loss function, it will be posterior expectation of $g\left(\beta, \lambda_{1}, \lambda_{2}\right)$, i.e.,

$$
\begin{equation*}
\widehat{g}\left(\beta, \lambda_{1}, \lambda_{2}\right)=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} g\left(\beta, \lambda_{1}, \lambda_{2}\right) l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid \text { Data }\right) d \lambda_{2} d \lambda_{1} d \beta \tag{7}
\end{equation*}
$$

Unfortunately, the closed form of (7) cannot be obtained in most of the cases. One may use numerical techniques to compute (7). Alternatively, other approximation can be used to compute (7). However, CRI for a parametric function cannot be constructed by these numerical methods. Hence, we propose to use an importance sampling technique to compute Bayes estimate as well as to construct CRI of a parametric function. Note that

$$
l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid \text { Data }\right)=l_{3}\left(\lambda_{1} \mid \beta, \text { Data }\right) \times l_{4}\left(\lambda_{2} \mid \beta, \text { Data }\right) \times l_{5}(\beta \mid \text { Data }),
$$

where

$$
\begin{array}{lll}
l_{3}\left(\lambda_{1} \mid \beta, \text { Data }\right)=\frac{\left\{A_{1}(\beta)\right\}^{n_{1}^{*}+a_{1}}}{\Gamma\left(n_{1}^{*}+a_{1}\right)} \lambda_{1}^{n_{1}^{*}+a_{1}-1} e^{-\lambda_{1} A_{1}(\beta)} & \text { if } & \lambda_{1}>0, \\
l_{4}\left(\lambda_{2} \mid \beta, \text { Data }\right)=\frac{\left\{A_{2}(\beta)\right\}^{n_{2}^{*}+a_{2}}}{\Gamma\left(n_{2}^{*}+a_{2}\right)} \lambda_{2}^{n_{2}^{*}+a_{2}-1} e^{-\lambda_{2} A_{2}(\beta)} & \text { if } & \lambda_{2}>0, \tag{9}
\end{array}
$$

and

$$
\begin{equation*}
l_{5}(\beta \mid \text { Data })=c_{2} \frac{\beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}\right) \beta}}{\left\{A_{1}(\beta)\right\}^{n_{1}^{*}+a_{1}}\left\{A_{2}(\beta)\right\}^{n_{2}^{*}+a_{2}}} \quad \text { if } \quad \beta>0 . \tag{10}
\end{equation*}
$$

The normalizing constant c_{2} in (10) can be found using numerical method. Though it is not easy to prove the log-concavity of the $l_{5}(\beta \mid$ Data), the plots (see Figure 2) suggest that $l_{5}(\beta \mid$ Data $)$ is a unimodal function. Hence, we try to approximate $l_{5}(\beta \mid$ Data) by a gamma density function using similar idea as in Kundu [12], where the parameters of the gamma distribution are determined by equating mean and variance of $l_{5}(\beta \mid$ Data) to those of a gamma distribution. Let m_{1} and m_{2} denote the mean and variance, respectively, corresponding to the density $l_{5}(\beta \mid$ Data $)$. The shape and scale parameters of the approximating gamma distribution are given by $a_{5}=\frac{m_{1}^{2}}{m_{2}}$ and $b_{5}=\frac{m_{1}}{m_{2}}$, respectively. Let us define

$$
l_{6}(\beta \mid \text { Data })=\frac{b_{5}^{a_{5}}}{\Gamma\left(a_{5}\right)} \beta^{a_{5}-1} e^{-b_{5} \beta} \quad \text { for } \quad \beta>0 .
$$

Note that $l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid\right.$ Data $)$ can be expressed as follows.

$$
l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid \text { Data }\right)=w_{1}(\beta) \times l_{3}\left(\lambda_{1} \mid \beta, \text { Data }\right) \times l_{4}\left(\lambda_{2} \mid \beta, \text { Data }\right) \times l_{6}(\beta \mid \text { Data }),
$$

where $w_{1}(\beta)=\frac{l_{5}(\beta \mid \text { Data })}{l_{6}(\beta \mid \text { Data })}$. Now we propose to use the following algorithm based on importance sampling technique to compute BE and to construct the CRI of function $g\left(\beta, \lambda_{1}, \lambda_{2}\right)$.

Algorithm 4.1

Step 1. Generate β_{1} from $\operatorname{Gamma}\left(a_{5}, b_{5}\right)$ distribution.
Step 2. For the given β_{1}, generate λ_{11} from (8).
Step 3. For the given β_{1}, generate λ_{21} from (9).
Step 4. Continue the process M times to get $\left\{\left(\beta_{1}, \lambda_{11}, \lambda_{21}\right), \ldots,\left(\beta_{M}, \lambda_{1 M}, \lambda_{2 M}\right)\right\}$.
Step 5. Compute $g_{i}=g\left(\beta_{i}, \lambda_{1 i}, \lambda_{2 i}\right) ; i=1,2, \ldots, M$.
Step 6. Calculate the weights $w_{1 i}=w_{1}\left(\beta_{i}\right) ; i=1,2, \ldots, M$.
Step 7. Compute the BE of $g\left(\beta, \lambda_{1}, \lambda_{2}\right)$ as

$$
\widehat{g}_{B E}\left(\beta, \lambda_{1}, \lambda_{2}\right)=\frac{1}{M} \sum_{j=1}^{M} w_{1 j} g_{j} .
$$

Step 8. To construct a $100(1-\gamma) \%$ CRI of $g\left(\beta, \lambda_{1}, \lambda_{2}\right)$, first order g_{j} for $j=1, \ldots, M$, say $g_{(1)}<g_{(2)}<\ldots<g_{(M)}$, and order w_{j} accordingly to get $w_{1(1)}, w_{1(2)}, \ldots, w_{1(M)}$. Note that $w_{1(1)}, w_{1(2)}, \ldots, w_{1(M)}$ may not be ordered. A $100(1-\gamma) \%$ CRI can be obtained as $\left(g_{\left(j_{1}\right)}, g_{\left(j_{2}\right)}\right)$, where j_{1} and j_{2} satisfy

$$
\begin{equation*}
j_{1}, j_{2} \in\{1,2, \ldots, M\}, \quad j_{1}<j_{2}, \quad \frac{1}{M} \sum_{i=j_{1}}^{j_{2}} w_{1(i)} \leq 1-\gamma<\frac{1}{M} \sum_{i=j_{1}}^{j_{2}+1} w_{1(i)} \tag{11}
\end{equation*}
$$

The $100(1-\gamma) \% \operatorname{HPD}$ CRI of $g\left(\beta, \lambda_{1}, \lambda_{2}\right)$ becomes $\left(g_{\left(j_{1}^{*}\right)}, g_{\left(j_{2}^{*}\right)}\right)$, where $j_{1}^{*}<j_{2}^{*}, j_{1}^{*}, j_{2}^{*} \in$ $\{1,2, \ldots, M\}$ satisfy

$$
\frac{1}{M} \sum_{i=j_{1}^{*}}^{j_{2}^{*}} w_{1(i)} \leq 1-\gamma<\frac{1}{M} \sum_{i=j_{1}^{*}}^{j_{2}^{*}+1} w_{1(i)}, \quad g_{\left(j_{2}^{*}\right)}-g_{\left(j_{1}^{*}\right)} \leq g_{\left(j_{2}\right)}-g_{\left(j_{1}\right)}
$$

for all j_{1} and j_{2} satisfying (11).

4.2 Under Order Restricted Prior Assumption

Computations of BE and construction of associated CRI of some parametric function $g\left(\beta, \lambda_{1}, \lambda_{2}\right)$ under order restricted priors are addressed in this subsection. Using the reparameterization
$\lambda_{1}=\alpha \lambda_{2}(0<\alpha<1)$ and (2), (3), (4), and (5), one can express the posterior density function of $\left(\alpha, \beta, \lambda_{2}\right)$ as

$$
\begin{align*}
l_{7}\left(\alpha, \beta, \lambda_{2} \mid \text { Data }\right) \propto & \alpha^{n_{1}^{*}+a_{4}-1}(1-\alpha)^{b_{4}-1} \beta^{n^{*}+a_{3}-1} \lambda_{2}^{n^{*}+a_{2}-1} \\
& \times e^{-\lambda_{2}\left(\alpha D_{1}(\beta)+D_{2}(\beta)+b_{2}\right)-\left(b_{3}-c_{1}\right) \beta} \quad \text { if } 0<\alpha<1, \beta>0, \lambda_{2}>0 \tag{12}
\end{align*}
$$

Like in the previous case, the right hand side of (12) is integrable if proper priors are assumed on the unknown parameters, see Appendix A. 2 for details. Now under squared error loss function BE of parametric function $g\left(\alpha, \beta, \lambda_{2}\right)$ is given by

$$
\widehat{g}\left(\alpha, \beta, \lambda_{2}\right)=\int_{0}^{1} \int_{0}^{\infty} \int_{0}^{\infty} g\left(\alpha, \beta, \lambda_{2}\right) l_{7}\left(\alpha, \beta, \lambda_{2} \mid \text { Data }\right) d \lambda_{2} d \beta d \alpha
$$

Note that

$$
l_{7}\left(\alpha, \beta, \lambda_{2} \mid \text { Data }\right) \propto w_{2}(\alpha, \beta) \times l_{8}\left(\lambda_{2} \mid \alpha, \beta, \text { Data }\right) \times l_{9}(\beta \mid \text { Data }),
$$

where

$$
\begin{align*}
& w_{2}(\alpha, \beta)=\frac{\alpha^{n_{1}^{*}+a_{4}-1}(1-\alpha)^{b_{4}-1} e^{c_{2} \beta}}{\left\{\alpha D_{1}(\beta)+D_{2}(\beta)+b_{2}\right\}^{n^{*}+a_{2}}} \\
& l_{8}\left(\lambda_{2} \mid \alpha, \beta, \text { Data }\right)=\frac{\left\{\alpha D_{1}(\beta)+D_{2}(\beta)+b_{2}\right\}^{n^{*}+a_{2}}}{\Gamma\left(n^{*}+a_{2}\right)} \lambda_{2}^{n^{*}+a_{2}-1} e^{-\lambda_{2}\left(\alpha D_{1}(\beta)+D_{2}(\beta)+b_{2}\right)} \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
l_{9}(\beta \mid \text { Data })=\frac{\left(b_{3}-c_{1}\right)^{n^{*}+a_{3}}}{\Gamma\left(n^{*}+a_{3}\right)} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}+c_{2}\right) \beta} \tag{14}
\end{equation*}
$$

with $c_{2}=n_{3}^{*} \tau_{2}^{*}, n_{3}^{*}$ is the number of failure times which are less than one, and

$$
\tau_{2}^{*}= \begin{cases}\tau_{2} & \text { if } n-n^{*}>0 \\ t_{n: n} & \text { if } n-n^{*}=0\end{cases}
$$

Depending upon the previous expression of $l_{7}\left(\alpha, \beta, \lambda_{2} \mid\right.$ Data $)$, the following algorithm is proposed to compute BE as well as to construct CRI.

Algorithm 4.2

Step 1. Generate α_{1} from $\mathrm{U}(0,1)$ distribution.
Step 2. Generate β_{1} from (14).
Step 3. For the given α_{1} and β_{1}, generate λ_{21} from (13).

Step 4. Continue the process M times to get $\left\{\left(\alpha_{1}, \beta_{1}, \lambda_{21}\right), \ldots,\left(\alpha_{M}, \beta_{M}, \lambda_{2 M}\right)\right\}$.
Step 5. Calculate $g_{i}=g\left(\alpha_{i}, \beta_{i}, \lambda_{2 i}\right) ; i=1,2, \ldots, M$.
Step 6. Calculate the weights $w_{2 i}=w_{2}\left(\alpha_{i}, \beta_{i}\right) ; i=1,2, \ldots, M$.
Step 7. Calculate the normalize weights $w_{2 i}^{*}=\frac{w_{2 i}}{\sum_{j=1}^{M} w_{2 j}} ; i=1,2, \ldots, M$.
Step 8. Compute the BE of $g\left(\alpha, \beta, \lambda_{2}\right)$ as $\widehat{g}_{B E}\left(\beta, \lambda_{1}, \lambda_{2}\right)=\sum_{j=1}^{M} w_{2 j}^{*} g_{j}$.
Step 9. To construct a $100(1-\gamma) \%$ CRI of $g\left(\alpha, \beta, \lambda_{2}\right)$, first order g_{j} for $j=1, \ldots, M$, say $g_{(1)}<g_{(2)}<\ldots<g_{(M)}$, and order $w_{2 j}^{*}$ accordingly to get $w_{2(1)}^{*}, w_{2(2)}^{*}, \ldots, w_{2(M)}^{*}$. Note that $w_{2(1)}^{*}, w_{2(2)}^{*}, \ldots, w_{2(M)}^{*}$ may not be ordered. A $100(1-\gamma) \%$ CRI can be obtained as $\left(g_{\left(j_{1}\right)}, g_{\left(j_{2}\right)}\right)$, where j_{1} and j_{2} satisfy

$$
\begin{equation*}
j_{1}, j_{2} \in\{1,2, \ldots, M\}, \quad j_{1}<j_{2}, \quad \sum_{i=j_{1}}^{j_{2}} w_{2(i)}^{*} \leq 1-\gamma<\sum_{i=j_{1}}^{j_{2}+1} w_{2(i)}^{*} \tag{15}
\end{equation*}
$$

The $100(1-\gamma) \%$ HPD CRI of $g\left(\alpha, \beta, \lambda_{2}\right)$ becomes $\left(g_{\left(j_{1}^{*}\right)}, g_{\left(j_{2}^{*}\right)}\right)$, where $j_{1}^{*}<j_{2}^{*}, j_{1}^{*}, j_{2}^{*} \in$ $\{1,2, \ldots, M\}$ satisfy

$$
\sum_{i=j_{1}^{*}}^{j_{2}^{*}} w_{2(i)}^{*} \leq 1-\gamma<\sum_{i=j_{1}^{*}}^{j_{2}^{*}+1} w_{2(i)}^{*}, \quad \quad g_{\left(j_{2}^{*}\right)}-g_{\left(j_{1}^{*}\right)} \leq g_{\left(j_{2}\right)}-g_{\left(j_{1}\right)}
$$

for all j_{1} and j_{2} satisfying (15).

5 Simulations and Data Analysis

5.1 Simulation Results

In this section we present some simulation results to judge the performance of the proposed procedures in the Sections 4.1 and 4.2 for different values of τ_{1}, τ_{2} and n. Here we choose two sets of priors. Prior I: $a_{1}=0.0001, b_{1}=0.0001, a_{2}=0.0001, b_{2}=0.0001, a_{3}=0.0001$, $b_{3}=0.0001, a_{4}=1$, and $b_{4}=1$. Prior II : $a_{1}=64.0, b_{1}=80.0, a_{2}=48.5, b_{2}=22.0$, $a_{3}=40.0, b_{3}=20.0, a_{4}=4.41$, and $b_{4}=7.7$. Note that the priors on β, λ_{1} and λ_{2} are assumed to be very flat in unrestricted case for Prior I, and they are 'almost' non-informative.

Table 1: AEs and MSEs of BEs of β, λ_{1}, and λ_{2} for unrestricted case.

n	τ_{1}	τ_{2}	Prior I						Prior II					
			β		λ_{1}		λ_{2}		β		λ_{1}		λ_{2}	
			AE	MSE										
40	0.60	0.80	2.180	0.5033	1.087	0.4869	2.477	0.5826	2.003	0.0674	0.799	0.0088	2.205	0.0738
		1.20	2.105	0.3179	0.981	0.2372	2.429	0.4292	1.999	0.0557	0.801	0.0088	2.204	0.0680
	0.65	0.85	2.159	0.4464	0.997	0.2378	2.438	0.5955	2.001	0.0665	0.799	0.0088	2.204	0.0795
		1.25	2.099	0.2961	0.942	0.1559	2.437	0.4792	2.006	0.0549	0.799	0.0086	2.206	0.0706
	0.70	0.90	2.139	0.3707	0.939	0.1341	2.415	0.6383	2.003	0.0636	0.800	0.0085	2.204	0.0777
		1.30	2.103	0.2742	0.918	0.1143	2.424	0.5191	1.999	0.0548	0.800	0.0089	2.204	0.0732
	0.75	0.95	2.118	0.3147	0.902	0.0922	2.426	0.6838	1.997	0.0620	0.800	0.0080	2.205	0.0818
		1.35	2.105	0.2601	0.899	0.0848	2.425	0.5768	1.997	0.0523	0.801	0.0083	2.203	0.0756
	0.80	1.00	2.110	0.2934	0.881	0.0669	2.406	0.7211	2.002	0.0589	0.799	0.0081	2.207	0.0795
		1.40	2.111	0.2478	0.886	0.0650	2.435	0.6153	2.001	0.0529	0.800	0.0082	2.205	0.0725
50	0.60	0.80	2.153	0.4111	1.028	0.3297	2.405	0.4110	2.002	0.0622	0.800	0.0088	2.205	0.0750
		1.20	2.071	0.2375	0.943	0.1611	2.395	0.3357	1.999	0.0507	0.801	0.0089	2.210	0.0620
	0.65	0.85	2.136	0.3322	0.959	0.1586	2.374	0.4159	2.002	0.0607	0.800	0.0087	2.206	0.0748
		1.25	2.085	0.2258	0.927	0.1198	2.384	0.3453	1.998	0.0521	0.800	0.0086	2.206	0.0666
	0.70	0.90	2.112	0.2841	0.921	0.1014	2.354	0.4610	2.003	0.0601	0.799	0.0080	2.204	0.0764
		1.30	2.082	0.2115	0.905	0.0843	2.384	0.4023	2.000	0.0508	0.800	0.0080	2.201	0.0673
	0.75	0.95	2.101	0.2445	0.895	0.0706	2.354	0.4933	2.000	0.0564	0.801	0.0081	2.206	0.0789
		1.35	2.091	0.2005	0.889	0.0638	2.369	0.4214	1.998	0.0485	0.801	0.0080	2.202	0.0696
	0.80	1.00	2.084	0.2096	0.874	0.0525	2.367	0.5525	2.001	0.0541	0.800	0.0077	2.208	0.0783
		1.40	2.091	0.1890	0.876	0.0495	2.358	0.4355	2.002	0.0469	0.800	0.0078	2.207	0.0723

Table 2: ALs of Symmetric CRI of β for unrestricted case.

n	τ_{1}	τ_{2}	Prior I			Prior II		
			90\%	95\%	99\%	90\%	95\%	99\%
40	0.60	0.80	2.124	2.534	3.340	0.836	0.997	1.311
		1.20	1.753	2.084	2.721	0.782	0.932	1.225
	0.65	0.85	1.966	2.346	3.095	0.829	0.989	1.301
		1.25	1.694	2.014	2.634	0.777	0.926	1.217
	0.70	0.90	1.828	2.181	2.876	0.821	0.978	1.287
		1.30	1.638	1.949	2.554	0.764	0.911	1.198
	0.75	0.95	1.707	2.037	2.686	0.807	0.962	1.267
		1.35	1.578	1.878	2.464	0.752	0.897	1.180
	0.80	1.00	1.608	1.919	2.530	0.797	0.950	1.250
		1.40	1.522	1.813	2.380	0.743	0.886	1.165
50	0.60	0.80	1.877	2.239	2.950	0.804	0.958	1.259
		1.20	1.552	1.845	2.413	0.747	0.890	1.170
	0.65	0.85	1.738	2.073	2.732	0.797	0.950	1.249
		1.25	1.506	1.792	2.346	0.739	0.881	1.158
	0.70	0.90	1.609	1.920	2.530	0.788	0.939	1.235
		1.30	1.450	1.726	2.261	0.730	0.870	1.144
	0.75	0.95	1.508	1.799	2.371	0.774	0.922	1.214
		1.35	1.402	1.670	2.191	0.718	0.856	1.126
	0.80	1.00	1.418	1.691	2.227	0.761	0.907	1.194
		1.40	1.349	1.607	2.111	0.708	0.844	1.110

Table 3: ALs of HPD CRI of β for unrestricted case.

			Prior I				Prior II		
n	τ_{1}	τ_{2}	90%	95%	99%		90%	95%	99%
40	0.60	0.80	2.077	2.477	3.257		0.831	0.990	1.298
		1.20	1.734	2.059	2.678		0.777	0.926	1.213
	0.65	0.85	1.927	2.298	3.025	0.824	0.981	1.287	
		1.25	1.673	1.989	2.593	0.772	0.919	1.206	
	0.70	0.90	1.795	2.140	2.816		0.815	0.971	1.273
		1.30	1.618	1.925	2.515		0.759	0.904	1.186
	0.75	0.95	1.679	2.003	2.635		0.802	0.955	1.254
		1.35	1.559	1.855	2.427	0.748	0.891	1.168	
	0.80	1.00	1.584	1.890	2.484	0.791	0.943	1.238	
		1.40	1.504	1.791	2.345		0.738	0.880	1.154
50	0.60	0.80	1.843	2.197	2.888		0.799	0.951	1.247
		1.20	1.536	1.826	2.380		0.743	0.885	1.160
	0.65	0.85	1.709	2.038	2.679	0.792	0.943	1.237	
		1.25	1.491	1.773	2.314		0.735	0.875	1.148
	0.70	0.90	1.585	1.890	2.485		0.783	0.932	1.223
		1.30	1.435	1.707	2.231		0.726	0.865	1.134
	0.75	0.95	1.488	1.774	2.332		0.769	0.916	1.202
		1.35	1.388	1.652	2.162	0.714	0.851	1.115	
	0.80	1.00	1.400	1.669	2.193	0.756	0.901	1.182	
		1.40	1.336	1.590	2.083		0.704	0.838	1.099

Table 4: ALs of Symmetric CRI of λ_{1} for unrestricted case.

				Prior I				Prior II		
n	τ_{1}	τ_{2}	90%	95%	99%		90%	95%	99%	
40	0.60	0.80	1.803	2.322	3.712		0.309	0.368	0.485	
		1.20	1.392	1.723	2.482		0.309	0.368	0.485	
	0.65	0.85	1.384	1.734	2.584		0.306	0.365	0.480	
		1.25	1.183	1.451	2.043		0.305	0.364	0.479	
	0.70	0.90	1.115	1.370	1.945		0.303	0.361	0.475	
		1.30	1.028	1.251	1.730		0.302	0.360	0.474	
	0.75	0.95	0.937	1.138	1.569		0.299	0.357	0.469	
		1.35	0.905	1.094	1.490		0.299	0.357	0.469	
	0.80	1.00	0.820	0.989	1.339	0.296	0.352	0.464		
		1.40	0.809	0.974	1.312		0.296	0.353	0.464	
50	0.60	0.80	1.497	1.889	2.867		0.305	0.364	0.479	
		1.20	1.187	1.456	2.057		0.305	0.364	0.479	
	0.65	0.85	1.171	1.447	2.083		0.302	0.360	0.473	
		1.25	1.035	1.262	1.751		0.301	0.359	0.473	
	0.70	0.90	0.965	1.177	1.639		0.298	0.355	0.467	
		1.30	0.901	1.092	1.493		0.297	0.354	0.466	
	0.75	0.95	0.826	0.999	1.362		0.294	0.350	0.461	
		1.35	0.799	0.963	1.302		0.293	0.350	0.460	
	0.80	1.00	0.723	0.870	1.170	0.290	0.345	0.454		
		1.40	0.715	0.859	1.151	0.289	0.345	0.454		

Table 5: ALs of HPD CRI of λ_{1} for unrestricted case.

n	τ_{1}	τ_{2}	Prior I			Prior II		
			90\%	95\%	99\%	90\%	95\%	99\%
40	0.60	0.80	1.551	2.000	3.204	0.307	0.366	0.480
		1.20	1.270	1.575	2.275	0.307	0.366	0.480
	0.65	0.85	1.249	1.564	2.329	0.304	0.362	0.475
		1.25	1.040	1.278	1.811	0.303	0.362	0.475
	0.70	0.90	0.974	1.185	1.637	0.301	0.358	0.470
		1.30	1.102	1.353	1.906	0.300	0.358	0.470
	0.75	0.95	0.894	1.085	1.493	0.297	0.354	0.465
		1.35	0.868	1.050	1.428	0.297	0.354	0.465
	0.80	1.00	0.793	0.956	1.291	0.294	0.350	0.459
		1.40	0.784	0.944	1.268	0.294	0.350	0.460
50	0.60	0.80	1.330	1.681	2.551	0.303	0.362	0.475
		1.20	1.103	1.355	1.915	0.303	0.361	0.474
	0.65	0.85	1.082	1.337	1.923	0.300	0.357	0.469
		1.25	0.978	1.192	1.654	0.299	0.356	0.468
	0.70	0.90	0.914	1.115	1.549	0.296	0.352	0.463
		1.30	0.863	1.046	1.428	0.295	0.352	0.462
	0.75	0.95	0.796	0.962	1.308	0.292	0.348	0.457
		1.35	0.773	0.931	1.257	0.291	0.347	0.456
	0.80	1.00	0.704	0.846	1.135	0.288	0.343	0.450
		1.40	0.698	0.838	1.120	0.287	0.343	0.450

Table 6: ALs of Symmetric CRI of λ_{2} for unrestricted case.

n	τ_{1}	τ_{2}	Prior I			Prior II		
			90\%	95\%	99\%	90\%	95\%	99\%
40	0.60	0.80	2.393	2.919	4.097	0.919	1.096	1.442
		1.20	2.057	2.529	3.616	0.853	1.018	1.340
	0.65	0.85	2.402	2.927	4.085	0.921	1.098	1.446
		1.25	2.171	2.660	3.764	0.864	1.031	1.357
	0.70	0.90	2.455	2.989	4.158	0.924	1.102	1.451
		1.30	2.264	2.769	3.890	0.875	1.044	1.375
	0.75	0.95	2.555	3.111	4.320	0.929	1.108	1.458
		1.35	2.360	2.882	4.027	0.886	1.057	1.392
	0.80	1.00	2.628	3.198	4.428	0.934	1.114	1.466
		1.40	2.456	2.994	4.166	0.897	1.069	1.408
50	0.60	0.80	2.060	2.496	3.446	0.896	1.068	1.405
		1.20	1.798	2.193	3.068	0.825	0.984	1.295
	0.65	0.85	2.075	2.511	3.444	0.899	1.071	1.410
		1.25	1.880	2.288	3.180	0.837	0.998	1.314
	0.70	0.90	2.138	2.590	3.552	0.902	1.076	1.416
		1.30	1.977	2.403	3.324	0.848	1.012	1.333
	0.75	0.95	2.217	2.686	3.681	0.908	1.083	1.426
		1.35	2.050	2.488	3.429	0.861	1.027	1.353
	0.80	1.00	2.308	2.797	3.829	0.914	1.091	1.436
		1.40	2.122	2.575	3.538	0.875	1.043	1.374

Table 7: ALs of HPD CRI of λ_{2} for unrestricted case.

n	τ_{1}	τ_{2}	Prior I			Prior II		
			90\%	95\%	99\%	90\%	95\%	99\%
40	0.60	0.80	2.296	2.792	3.883	0.913	1.088	1.428
		1.20	1.957	2.399	3.399	0.847	1.010	1.327
	0.65	0.85	2.302	2.798	3.877	0.914	1.090	1.431
		1.25	2.065	2.526	3.551	0.858	1.023	1.343
	0.70	0.90	2.348	2.854	3.948	0.918	1.093	1.436
		1.30	2.152	2.628	3.676	0.869	1.036	1.361
	0.75	0.95	2.436	2.963	4.100	0.922	1.099	1.443
		1.35	2.243	2.736	3.810	0.880	1.049	1.377
	0.80	1.00	2.500	3.040	4.201	0.927	1.105	1.451
		1.40	2.333	2.842	3.945	0.890	1.061	1.393
50	0.60	0.80	1.996	2.413	3.303	0.890	1.060	1.391
		1.20	1.728	2.105	2.924	0.819	0.977	1.282
	0.65	0.85	2.008	2.428	3.311	0.892	1.063	1.396
		1.25	1.807	2.197	3.036	0.831	0.990	1.301
	0.70	0.90	2.063	2.496	3.409	0.896	1.068	1.402
		1.30	1.898	2.306	3.177	0.842	1.004	1.319
	0.75	0.95	2.134	2.584	3.529	0.902	1.075	1.411
		1.35	1.967	2.387	3.279	0.855	1.019	1.339
	0.80	1.00	2.217	2.685	3.668	0.908	1.082	1.421
		1.40	2.036	2.469	3.385	0.868	1.035	1.360

Table 8: AEs and MSEs of BEs of β, λ_{1}, and λ_{2} for order restricted case.

n	τ_{1}	τ_{2}	Prior I						Prior II					
			β		λ_{1}		λ_{2}		β		λ_{1}		λ_{2}	
			AE	MSE										
40	0.60	0.80	2.156	0.2940	0.984	0.1186	2.302	0.3892	2.011	0.0727	0.800	0.0443	2.202	0.0749
		1.20	2.201	0.2457	0.997	0.1057	2.250	0.2503	1.969	0.0610	0.792	0.0425	2.202	0.0649
	0.65	0.85	2.191	0.3094	0.980	0.1040	2.272	0.3565	2.004	0.0707	0.807	0.0396	2.205	0.0723
		1.25	2.212	0.2410	0.976	0.0872	2.219	0.2576	1.977	0.0608	0.802	0.0376	2.210	0.0643
	0.70	0.90	2.215	0.3279	0.962	0.0866	2.233	0.3652	2.011	0.0710	0.800	0.0353	2.201	0.0739
		1.30	2.219	0.2404	0.960	0.0727	2.185	0.2832	1.977	0.0585	0.802	0.0346	2.210	0.0672
	0.75	0.95	2.196	0.2990	0.938	0.0668	2.226	0.4216	2.004	0.0623	0.807	0.0338	2.204	0.0727
		1.35	2.242	0.2616	0.944	0.0604	2.168	0.3476	1.975	0.0561	0.798	0.0334	2.205	0.0668
	0.80	1.00	2.197	0.2703	0.923	0.0565	2.186	0.4282	2.000	0.0621	0.801	0.0304	2.202	0.0727
		1.40	2.264	0.3077	0.932	0.0507	2.134	0.3644	1.979	0.0556	0.796	0.0299	2.204	0.0690
50	0.60	0.80	2.110	0.2156	0.958	0.0915	2.250	0.2940	2.013	0.0686	0.806	0.0385	2.202	0.0692
		1.20	2.185	0.1990	0.985	0.0947	2.226	0.1973	1.961	0.0604	0.787	0.0369	2.204	0.0565
	0.65	0.85	2.158	0.2430	0.961	0.0851	2.239	0.3071	2.008	0.0681	0.806	0.0340	2.205	0.0694
		1.25	2.200	0.2048	0.965	0.0750	2.198	0.2100	1.967	0.0571	0.797	0.0331	2.209	0.0607
	0.70	0.90	2.169	0.2376	0.943	0.0676	2.214	0.3092	2.007	0.0644	0.807	0.0314	2.205	0.0704
		1.30	2.206	0.2089	0.948	0.0601	2.167	0.2413	1.968	0.0550	0.788	0.0305	2.209	0.0611
	0.75	0.95	2.168	0.2304	0.922	0.0552	2.205	0.3309	2.007	0.0595	0.802	0.0287	2.204	0.0705
		1.35	2.228	0.2169	0.937	0.0490	2.136	0.2883	1.964	0.0568	0.797	0.0271	2.208	0.0638
	0.80	1.00	2.161	0.2086	0.911	0.0443	2.178	0.3438	2.008	0.0567	0.806	0.0252	2.204	0.0705
		1.40	2.250	0.2350	0.926	0.0412	2.083	0.3050	1.974	0.0525	0.795	0.0264	2.208	0.0663

Table 9: ALs of Symmetric CRI of β for order restricted case.

n	τ_{1}	τ_{2}	Non-informative Prior			Informative Prior		
			90\%	95\%	99\%	90\%	95\%	99\%
40	0.60	0.80	1.573	1.763	2.037	0.842	0.989	1.234
		1.20	1.504	1.751	2.167	0.711	0.821	0.990
	0.65	0.85	1.631	1.846	2.146	0.827	0.971	1.211
		1.25	1.455	1.693	2.097	0.696	0.804	0.973
	0.70	0.90	1.656	1.905	2.257	0.814	0.956	1.193
		1.30	1.387	1.610	2.001	0.680	0.787	0.957
	0.75	0.95	1.611	1.893	2.328	0.793	0.930	1.159
		1.35	1.313	1.525	1.900	0.667	0.773	0.944
	0.80	1.00	1.533	1.817	2.323	0.772	0.906	1.127
		1.40	1.222	1.421	1.777	0.653	0.758	0.929
50	0.60	0.80	1.346	1.513	1.759	0.808	0.947	1.178
		1.20	1.359	1.581	1.950	0.662	0.762	0.917
	0.65	0.85	1.418	1.602	1.865	0.790	0.926	1.153
		1.25	1.310	1.521	1.880	0.642	0.741	0.895
	0.70	0.90	1.464	1.681	1.983	0.772	0.905	1.126
		1.30	1.237	1.433	1.775	0.631	0.729	0.884
	0.75	0.95	1.442	1.690	2.066	0.754	0.884	1.098
		1.35	1.153	1.336	1.661	0.611	0.707	0.862
	0.80	1.00	1.370	1.622	2.063	0.732	0.857	1.064
		1.40	1.059	1.229	1.538	0.596	0.691	0.847

Table 10: ALs of HPD CRI of β for order restricted case.

n	τ_{1}	τ_{2}	Prior I			Prior II		
			90\%	95\%	99\%	90\%	95\%	99\%
40	0.60	0.80	1.438	1.636	1.948	0.821	0.957	1.185
		1.20	1.427	1.659	2.062	0.690	0.794	0.955
	0.65	0.85	1.516	1.729	2.057	0.806	0.942	1.166
		1.25	1.371	1.595	1.991	0.673	0.775	0.936
	0.70	0.90	1.565	1.801	2.163	0.794	0.928	1.150
		1.30	1.291	1.507	1.894	0.657	0.758	0.920
	0.75	0.95	1.545	1.805	2.227	0.774	0.904	1.120
		1.35	1.208	1.415	1.791	0.643	0.743	0.906
	0.80	1.00	1.485	1.750	2.220	0.754	0.881	1.089
		1.40	1.110	1.306	1.670	0.628	0.727	0.891
50	0.60	0.80	1.219	1.395	1.677	0.783	0.911	1.128
		1.20	1.284	1.493	1.850	0.637	0.732	0.882
	0.65	0.85	1.310	1.493	1.783	0.765	0.892	1.106
		1.25	1.226	1.427	1.781	0.616	0.709	0.858
	0.70	0.90	1.379	1.584	1.899	0.749	0.874	1.082
		1.30	1.142	1.332	1.676	0.604	0.697	0.847
	0.75	0.95	1.382	1.610	1.973	0.732	0.855	1.057
		1.35	1.050	1.231	1.562	0.583	0.674	0.825
	0.80	1.00	1.326	1.561	1.970	0.712	0.830	1.025
		1.40	0.950	1.121	1.440	0.567	0.658	0.809

Table 11: ALs of Symmetric CRI of λ_{1} for order restricted case.

				Prior I				Prior II		
n		τ_{1}	τ_{2}	90%	95%	99%		90%	95%	
40	0.60	0.80	1.107	1.291	1.604		0.672	0.800	1.052	
		1.20	1.080	1.274	1.636		0.650	0.773	1.012	
	0.65	0.85	1.036	1.215	1.525		0.642	0.764	1.005	
		1.25	0.973	1.151	1.488		0.625	0.744	0.974	
	0.70	0.90	0.945	1.117	1.426		0.609	0.726	0.954	
		1.30	0.879	1.041	1.352		0.598	0.712	0.933	
	0.75	0.95	0.850	1.010	1.313	0.585	0.697	0.915		
		1.35	0.796	0.946	1.233		0.572	0.681	0.893	
	0.80	1.00	0.767	0.914	1.199		0.558	0.665	0.874	
		1.40	0.727	0.866	1.131		0.550	0.655	0.859	
50	0.60	0.80	0.967	1.128	1.411		0.636	0.759	0.998	
		1.20	0.993	1.171	1.506		0.606	0.721	0.945	
	0.65	0.85	0.915	1.074	1.352		0.601	0.717	0.943	
		1.25	0.893	1.057	1.365		0.579	0.689	0.904	
	0.70	0.90	0.846	1.000	1.279		0.571	0.680	0.894	
		1.30	0.799	0.948	1.233		0.550	0.655	0.859	
	0.75	0.95	0.764	0.910	1.181		0.542	0.646	0.849	
		1.35	0.721	0.857	1.119		0.528	0.629	0.825	
	0.80	1.00	0.693	0.825	1.081		0.518	0.618	0.812	
		1.40	0.653	0.777	1.017		0.507	0.604	0.792	

Table 12: ALs of HPD CRI of λ_{1} for order restricted case.

				Prior I				Prior II		
n	τ_{1}	τ_{2}	90%	95%	99%		90%	95%	99%	
40	0.60	0.80	1.025	1.212	1.537		0.658	0.784	1.031	
		1.20	1.035	1.227	1.584		0.636	0.757	0.992	
	0.65	0.85	0.970	1.149	1.463	0.629	0.751	0.987		
		1.25	0.935	1.111	1.444	0.612	0.729	0.955		
	0.70	0.90	0.897	1.065	1.372		0.598	0.713	0.938	
		1.30	0.845	1.006	1.314		0.586	0.698	0.916	
	0.75	0.95	0.818	0.973	1.268		0.575	0.685	0.901	
		1.35	0.765	0.913	1.199	0.561	0.668	0.877		
	0.80	1.00	0.746	0.889	1.164	0.549	0.655	0.860		
		1.40	0.696	0.834	1.098		0.539	0.642	0.843	
50	0.60	0.80	0.899	1.063	1.353		0.623	0.744	0.979	
		1.20	0.952	1.129	1.459		0.593	0.706	0.926	
	0.65	0.85	0.861	1.017	1.298	0.590	0.704	0.927		
		1.25	0.858	1.020	1.326	0.567	0.675	0.886		
	0.70	0.90	0.805	0.955	1.231		0.560	0.668	0.879	
		1.30	0.767	0.915	1.198		0.538	0.642	0.842	
	0.75	0.95	0.737	0.877	1.142		0.533	0.635	0.835	
		1.35	0.691	0.826	1.087		0.517	0.616	0.810	
	0.80	1.00	0.674	0.804	1.052	0.510	0.608	0.799		
		1.40	0.622	0.746	0.986		0.496	0.591	0.777	

Table 13: ALs of Symmetric CRI of λ_{2} for order restricted case.

				Prior I				Prior II		
n		τ_{1}	τ_{2}	90%	95%	99%		90%	95%	
40	0.60	0.80	2.393	2.919	4.097		0.887	1.057	1.392	
		1.20	2.057	2.529	3.616		0.820	0.978	1.285	
	0.65	0.85	2.402	2.927	4.085	0.886	1.057	1.391		
		1.25	2.455	2.989	4.158		0.829	0.989	1.299	
	0.70	0.90	2.264	2.769	3.890		0.885	1.056	1.388	
		1.30	2.171	2.660	3.764		0.838	0.998	1.312	
	0.75	0.95	2.555	3.111	4.320	0.887	1.059	1.391		
		1.35	2.360	2.882	4.027		0.845	1.008	1.322	
	0.80	1.00	2.628	3.198	4.428		0.890	1.062	1.396	
		1.40	2.456	2.994	4.166		0.852	1.016	1.331	
50	0.60	0.80	2.060	2.496	3.446		0.863	1.028	1.352	
		1.20	1.798	2.193	3.068	0.790	0.942	1.237		
	0.65	0.85	2.075	2.511	3.444		0.862	1.027	1.351	
		1.25	1.880	2.288	3.180		0.800	0.954	1.251	
	0.70	0.90	2.138	2.590	3.552		0.863	1.029	1.352	
		1.30	1.977	2.403	3.324		0.810	0.966	1.266	
	0.75	0.95	2.217	2.686	3.681		0.866	1.032	1.355	
		1.35	2.050	2.488	3.429	0.818	0.976	1.277		
	0.80	1.00	2.308	2.797	3.829		0.870	1.036	1.362	
		1.40	2.122	2.575	3.538		0.827	0.986	1.289	

Table 14: ALs of HPD CRI of λ_{2} for order restricted case.

			Prior I				Prior II		
n	τ_{1}	τ_{2}	90%	95%	99%		90%	95%	99%
40	0.60	0.80	2.296	2.792	3.883		0.876	1.044	1.366
		1.20	1.957	2.399	3.399		0.808	0.962	1.257
	0.65	0.85	2.302	2.798	3.877	0.875	1.043	1.365	
		1.25	2.348	2.854	3.948	0.815	0.971	1.270	
	0.70	0.90	2.152	2.628	3.676		0.874	1.041	1.363
		1.30	2.065	2.526	3.551		0.823	0.980	1.281
	0.75	0.95	2.436	2.963	4.100	0.876	1.043	1.365	
		1.35	2.243	2.736	3.810	0.829	0.988	1.290	
	0.80	1.00	2.500	3.040	4.201	0.878	1.046	1.369	
		1.40	2.333	2.842	3.945		0.836	0.995	1.298
50	0.60	0.80	1.996	2.413	3.303		0.852	1.014	1.327
		1.20	1.728	2.105	2.924		0.776	0.924	1.208
	0.65	0.85	2.008	2.428	3.311	0.850	1.013	1.325	
		1.25	1.807	2.197	3.036	0.785	0.935	1.221	
	0.70	0.90	2.063	2.496	3.409		0.851	1.013	1.326
		1.30	1.898	2.306	3.177		0.794	0.945	1.234
	0.75	0.95	2.134	2.584	3.529		0.853	1.016	1.328
		1.35	1.967	2.387	3.279	0.801	0.954	1.245	
	0.80	1.00	2.217	2.685	3.668	0.856	1.020	1.334	
		1.40	2.036	2.469	3.385		0.809	0.963	1.256

Once again in order restricted case, priors on β and λ_{2} are 'almost' non-informative, whereas the prior on α is a non-informative in Prior I. In Prior II, the prior means of β, λ_{1} and λ_{2} are approximately $2.0,0.8$, and 2.2 respectively, whereas the prior variances are approximately 0.01 for all the parameters in both unrestricted and order restricted cases. Hence Prior II is an informative prior. For Prior I, we generate the failure times form the KHM with $\beta=2$, $\lambda_{1}=1 / 1.2 \simeq 0.83$, and $\lambda_{2}=1 / 0.45 \simeq 2.22$. However, we generate β, λ_{1}, and λ_{2} from their respective prior distribution and these generated β, λ_{1}, and λ_{2} are used in KHM to generate failure times in case of Prior II. All the results are based on 5000 simulations and $M=8000$. For different values of τ_{1}, τ_{2}, and n, AEs and MSEs of BEs for β, λ_{1}, and λ_{2} are presented in Table 1 for unrestricted case and in Table 8 for order restricted case. ALs of symmetric and HPD CRIs of β, λ_{1}, and λ_{2} are reported in Tables 2, 3, 4, 5, 6, and 7 for unrestricted case and in Tables $9,10,11,12,13$, and 14 for order restricted case. In all the calculations we discard those samples for which BE of any of the parameters is greater than ten times of its original value. We have noticed that for both values of n, there is only one sample for which BE of λ_{1} is greater than 8.33 in case of unrestricted inference and for Prior I, when $\tau_{1}=0.6$ and $\tau_{2}=0.8$. We have also noticed that sometimes some of the points (less than 10 out of 8000) cover more than 99% of the weights in case of order restricted inference for the Prior II. All these points correspond to the outliers with respect to (14). Hence, we only accept a generated point x form (14), if $0.0003<P(X \leq x)<0.997$, where X has PDF (14).

As expected the MSEs of the estimates and ALs of the CRIs of the parameters for Prior II are less than that for Prior I. MSEs of all the unknown parameters decrease as n increases for both the priors and for both unrestricted and restricted cases. As τ_{1} increases, MSEs of β and λ_{1} decrease in unrestricted case. MSE of λ_{2} decreases as τ_{2} increases keeping τ_{1} fixed under unrestricted framework. In the same case MSE of λ_{1} also decreases with increase in τ_{2}. It is further noticed that ALs of symmetric and HPD CRI for all unknown parameters decrease as n increases keeping other parameters fixed. The MSEs of estimators of all unknown parameters decrease as τ_{2} increases keeping other parameters fixed in the case of order restricted inference also. They also decrease as n increases. It is also observed
that MSEs of estimators of all unknown parameters are smaller in case of order restricted inference than those in the unrestricted case for both the priors.

5.2 Data Analysis

Table 15: Data for illustrative example.

Stress Level	Data							
1	0.1526	0.3381	0.3891	0.3936	0.4684	0.4716	0.4783	0.5575
	0.5685							
2	0.6009	0.6144	0.6276	0.6563	0.6566	0.6591	0.6629	0.6693
	0.6776	0.6948	0.6958	0.7089	0.7097	0.7113	0.7385	0.7679

Table 16: CRIs for unknown parameters for data in Table 15 under unrestricted priors.

Level	Type of CRI	Prior I						Prior II					
		β		λ_{1}		λ_{2}		β		λ_{1}		λ_{2}	
		LL	UL										
90%	Symm. CRI	1.270	3.717	0.344	1.997	1.580	3.926	1.510	2.342	0.640	0.948	1.654	2.532
	HPD CRI	1.095	3.474	0.228	1.643	1.448	3.725	1.485	2.313	0.635	0.941	1.632	2.509
95\%	Symm. CRI	1.120	4.038	0.290	2.382	1.437	4.249	1.441	2.444	0.613	0.980	1.579	2.627
	HPD CRI	1.053	3.891	0.195	2.023	1.328	4.053	1.413	2.400	0.609	0.974	1.562	2.605
99\%	Symm. CRI	0.842	4.665	0.208	3.519	1.156	5.034	1.322	2.634	0.562	1.045	1.439	2.852
	HPD CRI	0.816	4.568	0.173	3.007	1.048	4.739	1.304	2.599	0.558	1.038	1.400	2.794

Table 17: CRIs for unknown parameters for data in Table 15 under order restricted priors.

Level	Type of CRI	Prior I						Prior II					
		β		λ_{1}		λ_{2}		β		λ_{1}		λ_{2}	
		LL	UL										
90\%	Symm. CRI	1.497	3.271	0.451	1.569	1.564	3.456	1.464	2.325	0.430	1.068	1.655	2.511
	HPD CRI	1.698	3.271	0.404	1.493	1.564	3.456	1.429	2.278	0.413	1.030	1.641	2.490
95\%	Symm. CRI	1.329	3.271	0.384	1.863	1.433	3.845	1.419	2.422	0.385	1.141	1.597	2.620
	HPD CRI	1.497	3.271	0.345	1.631	1.352	3.610	1.381	2.340	0.378	1.120	1.575	2.574
99\%	Symm. CRI	1.057	3.271	0.289	1.888	1.190	4.349	1.381	2.592	0.320	1.306	1.472	2.812
	HPD CRI	1.149	3.271	0.321	1.908	1.011	4.086	1.354	2.540	0.312	1.287	1.447	2.749

In this section we present a data analysis to illustrate the procedures described in Section 4. The data given in Table 15 is considered for this purpose. This data is artificially generated from KHM with $\beta=2, \lambda_{1}=0.833, \lambda_{2}=2.222, \tau_{1}=0.6, \tau_{2}=0.8$, and $n=40$. The priors assumptions are same as in Section 5.1. For Prior I, the estimates of β, λ_{1}, and λ_{2} are 2.35, 0.93, and 2.61, respectively, in case of unrestricted inference, whereas in case of order restricted inference they are $2.49,1.01$, and 2.50 , respectively. For Prior II, the estimates of β, λ_{1}, and λ_{2} are 1.91, 0.78 , and 2.08, respectively, in case of unrestricted inference,

Figure 2: Gamma Approximation to $l_{5}(\beta \mid$ Data) for Prior I.
whereas in case of order restricted inference they are $1.89,0.72$, and 2.06 , respectively. Symmetric and HPD CRI of unknown parameters for unrestricted and order restricted priors are reported in Tables 16 and 17 , respectively. Plot of marginal posterior density function of β and its gamma approximation is provided in Figure 2 which depicts that the approximation is quite nice at least for this data set.

6 Posterior Analysis under Other Censoring Schemes

Type-II Censoring Scheme

Based on the observed sample, the likelihood function is given in (5), where $\tau^{*}=t_{r: n}$, in Case (a), $n_{1}^{*}=0, n_{2}^{*}=r$, in Case (b), $n_{1}^{*}=n_{1}, n_{2}^{*}=r-n_{1}$ and in Case (c), $n_{1}^{*}=r, n_{2}^{*}=0$. $D_{1}(\beta)$ and $D_{2}(\beta)$ have the same expression as given in case of Type-I censoring.

Type-I Hybrid Censoring Scheme

Based on the data from Type-I HCS, the likelihood function is same as (5), where in Case (a), $n_{1}^{*}=0, n_{2}^{*}=r$, in Case (b), $n_{1}^{*}=n_{1}, n_{2}^{*}=r-n_{1}$, in Case (c), $n_{1}^{*}=r, n_{2}^{*}=0$, in Case (d), $n_{1}^{*}=0, n_{2}^{*}=n_{2}$, in Case (e), $n_{1}^{*}=n_{1}, n_{2}^{*}=n_{2}$, and in Case (f), $n_{1}^{*}=n_{1}, n_{2}^{*}=0$. Also in
the Cases (a)-(b), $\tau^{*}=t_{r: n}$, where for the rest of the cases $\tau^{*}=\tau_{2} . D_{1}(\beta)$ and $D_{2}(\beta)$ have the same expression as given in case of Type-I censoring.

Type-II Hybrid Censoring Scheme

Based on the observed sample from Type-II HCS, the likelihood function is given in (5), where in Case (a), $n_{1}^{*}=0, n_{2}^{*}=r$, for Case (b), $n_{1}^{*}=n_{1}, n_{2}^{*}=r-n_{1}$, in Case (c), $n_{1}^{*}=0$, $n_{2}^{*}=n_{2}$, for Case (d), $n_{1}^{*}=n_{1}, n_{2}^{*}=n_{2}$ and for Case (e), $n_{1}^{*}=n_{1}, n_{2}^{*}=0 . \tau^{*}=t_{r: n}$ for Cases (a) and (b), whereas for the rest of the cases $\tau^{*}=\tau_{2} . D_{1}(\beta)$ and $D_{2}(\beta)$ have the same expression as given in case of Type-I censoring.

Progressive Type-II Censoring Scheme

With the observed Progressive Type-II censoring data, the likelihood function is given by (5), where for Case (a), $n_{1}^{*}=0, n_{2}^{*}=m$, for Case (b), $n_{1}^{*}=n_{1}, n_{2}^{*}=m-n_{1}$ and for Case (c) $n_{1}^{*}=m, n_{2}^{*}=0$. For all the cases $\tau^{*}=t_{m: n}, D_{1}(\beta)=\sum_{k=1}^{n_{1}^{*}}\left(R_{k}+1\right) t_{k: n}^{\beta}+\left(n-n_{1}^{*}-\sum_{k=1}^{n^{*}} R_{k}\right) \tau_{1}^{\beta}$ and $D_{2}(\beta)=\sum_{k=n_{1}^{*}+1}^{m}\left(R_{k}+1\right)\left(t_{k: n}^{\beta}-\tau_{1}^{\beta}\right)$.

In all the above cases, likelihood function are in the same form as Type-I censoring scheme and hence, the posterior density will also be in the same form as given in (6). In all these cases we will be able to compute the BE and construct the associated CRI for some function of unknown parameters exactly along the same line.

7 Conclusion

A simple SSLT has been considered under the Bayesian framework. It has been assumed that the lifetimes at each stress level have a Weibull distribution with common shape parameter and different scale parameters. Analysis has been performed under KHM assumption. We have discussed both unrestricted and order restricted inference of the unknown parameters. It is noticed that in most of the cases BE of parametric function cannot be obtained in closed form, when it exists. We have proposed algorithms based on the importance sampling to
compute BE and to construct associate CRI of parametric function. An extensive simulation has also been performed to judge the performance of the algorithms proposed. It is noticed that the proposed methods are working quite well for large values of n. For small values of n, MSEs of unknown parameters are quite large. It is also noticed that MSEs of BEs of unknown parameters are less in case of order restricted inference than those of unrestricted case. The proposed order restricted prior is a fairly general prior. It can be used for other lifetime distributions as well as for other censoring schemes also. It should be mentioned that the choice of proper priors is an important issue, which has not been pursued here and more work is needed in that direction.

Acknowledgements: The authors would like to thank the associate editor and two unknown reviewers for their constructive comments.

A Appendix

A. 1 Integrability Conditions for Unrestricted Case

Note that $A_{1}(\beta)>0$ and $A_{2}(\beta)>0$ for all $\beta>0$. Also $n_{1}^{*}+a_{1}>0$ and $n_{2}^{*}+a_{2}>0$. Now

$$
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid \text { Data }\right) d \lambda_{1} d \lambda_{2} d \beta \propto \int_{0}^{\infty} l_{5}(\beta \mid \text { Data }) d \beta
$$

where $l_{5}(\beta \mid$ Data) is given in (10). Let us define

$$
\tau_{1}^{*}=\left\{\begin{array}{ll}
\tau_{1} & \text { if } n-n_{1}^{*}>0 \\
t_{n: n} & \text { if } n-n_{1}^{*}=0,
\end{array} \quad \tau_{2}^{*}= \begin{cases}\tau_{2} & \text { if } n-n^{*}>0 \\
t_{n: n} & \text { if } n-n^{*}=0\end{cases}\right.
$$

Case I: $0<\tau_{1}^{*}<\tau_{2}^{*}<1$
In this case, $0<t_{i: n}<1$ for all $i=1,2, \ldots, n_{1}^{*}+n_{2}^{*}$ and hence, $A_{1}(\beta) \rightarrow b_{1}, A_{2}(\beta) \rightarrow b_{2}$ as $\beta \rightarrow \infty$. For some positive constants c_{2} and c_{3},

$$
c_{2} \int_{0}^{\infty} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}\right) \beta} d \beta \leq \int_{0}^{\infty} l_{5}(\beta \mid \text { Data }) d \beta \leq c_{3} \int_{0}^{\infty} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}\right) \beta} d \beta .
$$

Clearly $l_{5}\left(\beta \mid\right.$ Data) is integrable if $n^{*}+a_{3}>0$ and $b_{3}-c_{1}>0$. As $c_{1}=\sum_{i=1}^{n_{1}^{*}+n_{2}^{*}} \ln t_{i: n}<0$, $l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid\right.$ Data $)$ is integrable if $n_{1}^{*}+a_{1}>0, n_{2}^{*}+a_{2}>0, n^{*}+a_{3}>0$, and $b_{3}>0$.

Case II : $0<\tau_{1}^{*}<1<\tau_{2}^{*}$
In this case, $0<t_{i: n}<1$ for $i=1,2, \ldots, n_{1}^{*}$ and hence, $A_{1}(\beta) \rightarrow b_{1}$ as $\beta \rightarrow \infty$. As $\beta \rightarrow \infty$, $\frac{A_{2}(\beta)}{\tau_{2}^{* \beta}} \rightarrow\left(n-n^{*}\right)$ if $n-n^{*}>0$. If $n-n^{*}=0, \frac{A_{2}(\beta)}{\tau_{2}^{* \beta}} \rightarrow 1$ as $\beta \rightarrow \infty$. Hence, for some positive constants c_{2} and c_{3},

$$
\begin{aligned}
c_{2} \int_{0}^{\infty} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*}\right) \beta} d \beta & \leq \int_{0}^{\infty} l_{5}(\beta \mid \text { Data }) d \beta \\
& \leq c_{3} \int_{0}^{\infty} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*}\right) \beta} d \beta
\end{aligned}
$$

Clearly $l_{5}(\beta \mid$ Data $)$ is integrable if $n^{*}+a_{3}>0$ and $b_{3}-c_{1}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*}>0$. Now

$$
b_{3}-c_{1}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*}=b_{3}-\sum_{i=1}^{n_{1}^{*}} \ln t_{i: n}+\sum_{i=n_{1}^{*}+1}^{n^{*}}\left(\ln \tau_{2}^{*}-\ln t_{i: n}\right)+a_{2} \ln \tau_{2}^{*}
$$

As $0<t_{i: n}<1$ for $i=1,2, \ldots, n_{1}^{*}$ and $t_{i: n} \leq \tau_{2}^{*}$ for $i=n_{1}^{*}+1, n_{1}^{*}+2, \ldots, n^{*}, \sum_{i=1}^{n_{1}^{*}} \ln t_{i: n}<0$ and $\sum_{i=n_{1}^{*}+1}^{n^{*}}\left(\ln \tau^{*}-\ln t_{i: n}\right)>0$. Therefore $l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid\right.$ Data $)$ is integrable if $n_{1}^{*}+a_{1}>0$, $n_{2}^{*}+a_{2}>0, n^{*}+a_{3}>0$, and $b_{3}>0$.

Case III : $1<\tau_{1}^{*}<\tau_{2}^{*}$
In this case,

$$
\frac{A_{1}(\beta)}{\tau_{1}^{*}} \rightarrow\left\{\begin{array} { l l }
{ n - n _ { 1 } ^ { * } } & { \text { if } n - n _ { 1 } ^ { * } > 0 } \\
{ 1 } & { \text { if } n - n _ { 1 } ^ { * } = 0 , }
\end{array} \quad \frac { A _ { 2 } (\beta) } { \tau _ { 2 } ^ { * } } \rightarrow \left\{\begin{array}{ll}
n-n^{*} & \text { if } n-n^{*}>0 \\
1 & \text { if } n-n^{*}=0
\end{array}\right.\right.
$$

as $\beta \rightarrow \infty$. Hence, for some positive constants c_{2} and c_{3},

$$
\begin{aligned}
& c_{2} \int_{0}^{\infty} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}+\left(n_{1}^{*}+a_{1}\right) \ln \tau_{1}^{*}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*}\right) \beta} d \beta \leq \int_{0}^{\infty} l_{5}(\beta \mid \text { Data }) d \beta \\
& \leq c_{3} \int_{0}^{\infty} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}+\left(n_{1}^{*}+a_{1}\right) \ln \tau_{1}^{*}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*}\right) \beta} d \beta .
\end{aligned}
$$

Clearly $l_{5}(\beta \mid$ Data $)$ is integrable if $n^{*}+a_{3}>0$ and $b_{3}-c_{1}+\left(n_{1}^{*}+a_{1}\right) \ln \tau_{1}^{*}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*}>0$. Now

$$
\begin{aligned}
& b_{3}-c_{1}+\left(n_{1}^{*}+a_{1}\right) \ln \tau_{1}^{*}+\left(n_{2}^{*}+a_{2}\right) \ln \tau_{2}^{*} \\
& =b_{3}+\sum_{i=1}^{n_{1}^{*}}\left(\ln \tau_{1}^{*}-\ln t_{i: n}\right)+\sum_{i=n_{1}^{*}+1}^{n^{*}}\left(\ln \tau_{2}^{*}-\ln t_{i: n}\right)+a_{1} \ln \tau_{1}^{*}+a_{2} \ln \tau_{2}^{*}
\end{aligned}
$$

As $t_{i: n} \leq \tau_{1}^{*}$ for $i=1,2, \ldots, n_{1}^{*}$ and $t_{i: n} \leq \tau_{2}^{*}$ for $i=n_{1}^{*}+1, n_{1}^{*}+2, \ldots, n^{*}, \sum_{i=1}^{n_{1}^{*}}\left(\ln \tau_{1}^{*}-\ln t_{i: n}\right)$ >0 and $\sum_{i=n_{1}^{*}+1}^{n^{*}}\left(\ln \tau^{*}-\ln t_{i: n}\right)>0$. Therefore $l_{2}\left(\beta, \lambda_{1}, \lambda_{2} \mid\right.$ Data $)$ is integrable if $n_{1}^{*}+a_{1}>0$, $n_{2}^{*}+a_{2}>0, n^{*}+a_{3}>0$, and $b_{3}>0$. Thus $l_{2}\left(\beta, \lambda_{1}, \lambda_{2}, \mid\right.$ Data $)$ is integrable if proper priors are assumed on the unknown parameters for unrestricted inference case.

A. 2 Integrability Conditions for Restricted Case

Note that $n^{*}+a_{2}>0$ and $\alpha D_{1}(\beta)+D_{2}(\beta)+b_{2}>0$ for all $\beta>0$ and $\alpha \in(0,1)$. Now

$$
\begin{equation*}
\int_{0}^{\infty} l_{7}\left(\alpha, \beta, \lambda_{2} \mid \text { Data }\right) d \lambda_{2} \propto \frac{\alpha^{n_{1}^{*}+a_{4}-1}(1-\alpha)^{b_{4}-1} \beta^{n^{*}+a_{3}-1} e^{-\left(b_{3}-c_{1}\right) \beta}}{\left\{\alpha D_{1}(\beta)+D_{2}(\beta)+b_{2}\right\}^{n^{*}+a_{2}}} . \tag{16}
\end{equation*}
$$

Case I: $0<\tau_{2}^{*}<1$
For fixed $\alpha \in(0,1), \alpha D_{1}(\beta)+D_{2}(\beta)+b_{2} \rightarrow b_{2}$ as $\beta \rightarrow \infty$, and hence, right hand side of (16) is integrable with respect to $\alpha \in(0,1)$ and $\beta>0$ if $n^{*}+a_{4}>0, b_{4}>0, n^{*}+a_{3}>0$, and $b_{3}>0$. Therefore $l_{7}\left(\alpha, \beta, \lambda_{2} \mid\right.$ Data $)$ is integrable if proper priors are assumed on the unknown parameters.

Case II : $\tau_{2}^{*} \geq 1$
For fixed $\alpha \in(0,1)$, as $\beta \rightarrow \infty$,

$$
\frac{\alpha D_{1}(\beta)+D_{2}(\beta)+b_{2}}{\tau_{2}^{* \beta}} \rightarrow \begin{cases}n-n^{*} & \text { if } n-n^{*} \geq 1 \\ 1 & \text { if } n-n^{*}=0\end{cases}
$$

which is independent of $\alpha \in(0,1)$. Hence, in this case also, right hand side of (16) is integrable with respect to $\alpha \in(0,1)$ and $\beta>0$ if $n^{*}+a_{4}>0, b_{4}>0, n^{*}+a_{3}>0$, and
$b_{3}>0$. Therefore $l_{7}\left(\alpha, \beta, \lambda_{2} \mid\right.$ Data $)$ is integrable under the same condition as above. Thus $l_{7}\left(\alpha, \beta, \lambda_{2} \mid\right.$ Data) is a proper PDF whenever proper priors are assumed on the unknown parameters in the case of order restricted inference.

References

[1] Bagdonavicius, V. Testing the hypothesis of additive accumulation of damages. Probability Theory Application, 23:403-408, 1978.
[2] Bai, D. S. and Kim, M. S. Optimum step-stress accelerated life test for Weibull distribution and type-I censoring. Naval Research Logistics, 40:193-210, 2006.
[3] Bain, L. and Englehardt, M. Statistical Analysis of Reliability and Life-Testing Models: Theory and Methods. Marcel Dekker, New York, 1991.
[4] Balakrishnan, N. A synthesis of exact inferential results for exponential step-stress models and associated optimal accelerated life-tests. Metrika, 69:351-396, 2009.
[5] Berger, O. J. and Sun, D. Bayesian analysis of poly-weibull distribution. Journal of American Statistical Association, 88:1412-1418, 1993.
[6] Childs, A., Chandrasekar, B., Balakrishnan, N., and Kundu, D. Exact likelihood inference based on type-I and type-II hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, 55:319-330, 2003.
[7] Epstein, B. Truncated life-test in exponential case. Annals of Mathematics Statistics, 25:555-564, 1954.
[8] Kateri, M. and Balakrishnan, N. Inference for a simple step-stress model with typeII censoring and Weibull distributed lifetime. IEEE Transactions on Reliability, 57: 616-626, 2008.
[9] Khaminskiy, M. P. and Krivtsov, V. V. A simple procedure for Bayesian estimation of Weibull distribution. IEEE Transactions on Reliability, 54:612-616, 2005.
[10] Khamis, I. H. and Higgins, J. J. A new model for step-stress testing. IEEE Transactions on Reliability, 47:131-134, 1998.
[11] Komori, Y. Properties of the Weibull cumulative exposure model. Journal of Applied Statistics, 33:17-34, 2006.
[12] Kundu, D. Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics, 50:144-154, 2008.
[13] Kundu, D. and Gupta, R. D. Estimation of $P(X<Y)$ for Weibull distribution. IEEE Transactions on Reliability, 55:270-280, 2006.
[14] Lawless, J. F. Statistical models and methods for lifetime data. John Wiley and Sons, New York, 1982.
[15] Liu, X. Bayesian designing and analysis of simple step-stress accelerated life test with Weibull lifetime distribution. Master's thesis, Russ College of Engineering and Technology, Ohio University, Ohio, 2010.
[16] Miller, R. G. Survival Analysis. John Wiley and Sons, New York, 1988.
[17] Nelson, W. B. Accelerated life testing: step-stress models and data analysis. IEEE Transactions on Reliability, 29:103-108, 1980.
[18] Seydyakin, N. M. On one physical principle in reliability theory. Technical Cybernatics, 3:80-87, 1966.
[19] Soland, R. Bayesian analysis of the Weibull process with unknown shape and scale parameters. IEEE Transactions on Reliability, 18:181-184, 1969.

