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Abstract

Step-stress model is becoming quite popular in recent times for analyzing lifetime

data obtained from accelerated life testing experiments. In the usual step-stress ex-

periment, stress levels are allowed to change at each step to get rapid failure of the

experimental units. The expected lifetime of the experimental unit is shortened as the

stress level increases. The simple step-stress model under different censoring schemes

based on Weibull lifetimes is considered in this paper. It is assumed that the lifetime

distributions of the experimental units have different scale parameters at different stress

levels but they have the same shape parameter. Moreover, the lifetimes satisfy Khamis-

Higgins model assumption. It is further assumed that as the stress level increases, the

scale parameter also increases. We provide Bayesian inference of the unknown param-

eters of the Weibull distribution under this order restriction on the scale parameters.

Monte Carlo simulations have been performed to see the effectiveness of the proposed

method, and a data set has been analyzed for illustrative purposes.
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Acronym and Notation

AE Average estimate AL Average length
ALT Accelerated life test(ing) BE Bayes estimate
CDF Cumulative distribution function CEM Cumulative exposure model
CRI Credible interval HPD Highest posterior density
HCS Hybrid censoring scheme KHM Khamis-Higgins model
MCMC Markov chain Monte Carlo MLE Maximum likelihood estimator(s)
MSE Mean squares error(s) PDF Probability density function
SSLT Step-stress life test(ing)

1 Introduction

Long duration of life testing experiment is one of the problems, which is faced by exper-

imenters experimenting with a durable product. Nowadays ALT experiments are gaining

popularity to overcome this problem. In an ALT experiment, certain number of units under

consideration are put on a life test and are exposed to extreme environmental conditions so

that they fail more rapidly than the normal operating condition. It implies that the exper-

imenters observe more failure data within an affordable time. SSLT is a particular type of

ALT. A SSLT enables the experimenter to change the stress levels during the experiment.

Suppose, n number of items are put on a test at an initial stress level s1. Let s2, . . ., sm

be m − 1 stress levels and τ1 < . . . < τm−1 be m − 1 prefixed times. At the time point τ1,

the stress level is changed to s2 from s1. Similarly, the stress level is changed to s3 from s2

at the time τ2 and so on. Finally, at the time point τk−1, the stress level is changed from

τk−1 to τk. The failure times are recorded chronologically. Let τ(t) = si for τi−1 ≤ t < τi,

i = 1, 2, . . . , m with τ0 = 0 and τm = ∞. We will call the mapping τ(·) as step-stress pat-

tern. A simple SSLT is a special case of SSLT, where only two stress levels are considered,

and the stress level is changed from s1 to s2 at a prefixed time τ1.

To analyze such data one needs a model that relates the distributions of lifetimes under

different stress levels to that of lifetimes under the step-stress pattern. Different models are

available in the literature to describe these relationships. Among them, the most popular
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one is CEM, first introduced by Seydyakin [18]. Let us assume that the CDF of the lifetime

at the stress level si is Fi(·) and F (·) is the CDF of lifetime under the step-stress pattern.

CEM assumes that the remaining lifetime of an unit depends only on the cumulative ex-

posure accumulated at the current stress level, regardless of how the exposure is actually

accumulated, and mathematically it can be written as

F (t) = Fi(t− hi−1) for τi−1 ≤ t < τi, i = 1, 2, . . . , k,

where τ0 = 0, τk = ∞, h0 = 0, and hi, i = 2, 3, . . . , k − 1 is the solution of the equation

Fi+1(τi − hi) = Fi(τi − hi−1).

This model has been extensively discussed in the literature specially for the exponential

lifetimes, see for example Bagdonavicius [1], Nelson [17], and a recent review article by

Balakrishnan [4]. Analysis of simple step-stress model has also been performed when life-

times have a Weibull distribution, mainly under frequentist setup. Analysis of the CEM

was performed by Komori [11], when the lifetimes of the experimental units follow Weibull

distribution. Inferential aspects of step-stress model under Type-I and Type-II censoring

schemes were addressed by Bai and Kim [2] and Kateri and Balakrishnan [8], respectively,

when the distribution of lifetimes is assumed to be Weibull. However, it is noticed that

MLEs of the unknown parameters of Weibull distribution under SSLT do not exist in closed

form and therefore finding MLEs of the unknown parameters involves heavy computations.

Most of the further statistical analysis mainly rely on asymptotic distribution of the MLEs.

Moreover, the results provided in Bai and Kim [2] and Kateri and Balakrishnan [8] can-

not be easily extended to more general censoring situations, i.e., to hybrid and progressive

censoring schemes. It seems that Bayesian analysis is a natural choice in this case.

It may be worth mentioning that though some inferential issues on the parameters of

Weibull distribution under step-stress model have been addressed in the literature, no atten-

tion has been paid to develop the inference under the order restriction on the means of the

lifetimes at different stress levels. The frequentist approach to the order restricted inference

for parameters of Weibull distribution under step-stress model is quite involved, hence in
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this case also Bayesian approach is a natural alternative.

Liu [15] considered a step-stress model for Weibull distributed lifetimes under Bayesian

setup when the lifetimes follow CEM. No order restriction on the means of the lifetime at

different stress levels was considered in this article. Author used the MCMC technique using

Gibbs sampling to obtain BEs and to construct the CRIs of some parametric functions. In

this paper we consider a simple SSLT, when the lifetimes are assumed to have two-parameter

Weibull distribution with different scale parameters but same shape parameter at two differ-

ent stress levels. Though CEM is the most popular model in case of exponential lifetimes, it

is not mathematically tractable under Weibull lifetimes. Weibull CEM does not transform

to exponential CEM under power transformation. An alternative model for Weibull life-

times is KHM (see Section 3 for more details), proposed by Khamis and Higgins [10]. CDF

under KHM assumption coincides with the CDF under CEM assumption for exponentially

distributed lifetime under power transform. Moreover, it may be worth mentioning that the

KHM and CEM for Weibull distributed lifetimes are difficult to distinguish in practice, see

Khamis and Higgins [10]. For these reasons analysis in this article has been performed un-

der KHM assumptions, which is mathematically more tractable than CEM assumptions for

Weibull lifetime. We consider order restriction on the means of the lifetime under different

stress levels. We use importance sampling technique to obtain BEs and to construct the

CRIs of some parametric functions.

Rest of the article is organized as follows. Different censoring schemes and available data

are briefly provided in Section 2. Model assumptions and prior information on the unknown

parameters are considered in Section 3. In Section 4, we provide the posterior analysis and

the Bayes estimators in details for type-I censored data. In Section 5, simulation study

has been performed to judge the effectiveness of the procedures described in Section 4,

and analysis of a data set has been provided for illustrative purposes. In Section 6, we

have indicated how the proposed method can be implemented for other censoring schemes.

Finally, we conclude the paper in Section 7.
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2 Different Censoring Schemes and Available Data

A total of n units is placed on a simple step-stress life testing experiment. The stress level

is changed from s1 to s2 at a prefixed time τ1, and τ2 > τ1 is another prefixed time. The

positive integer r ≤ n is also pre-fixed. The role of r and τ2 will be clear later. Let τ
∗ and n∗

denote the termination time of the experiment and total number of failures observed before

τ ∗, respectively. Note that τ ∗ and n∗ depend on the censoring scheme. Let the ordered

lifetimes of the items be denoted by t1:n < . . . < tn:n. Let n∗
1 and n∗

2 denote the number of

failures before the time τ1 and between τ1 and τ2 respectively. They can also be zero. Now

we briefly describe different censoring schemes, and available data in each case.

Type-I Censoring Scheme

In a Type-I censoring scheme the experiment is terminated at a prefixed time. For more

details of Type-I censoring scheme, readers are referred to Lawless [14], Miller [16], and

Bain and Englehardt [3]. A simple SSLT is terminated when the time τ2 on the test has

been reached under Type-I censoring scheme, and the available data are one of the following

forms.

(a) {τ1 < t1:n < . . . < tn∗

2
:n < τ2},

(b) {t1:n < . . . < tn∗

1
:n < τ1 < tn1+1:n < . . . < tn∗

1
+n∗

2
:n < τ2},

(c) {t1:n < . . . < tn∗

1
:n < τ1 < τ2}.

Type-II Censoring Scheme

In a Type-II censoring scheme, the test is terminated when r-th failure takes place, i.e., it

is terminated at a random time tr:n. Interested readers are referred to Lawless [14], Miller

[16], and Bain and Englehardt [3] for more details of this censoring scheme. The available

data from a simple SSLT are one of the following forms under Type-II censoring scheme.

(a) {τ1 < t1:n < . . . < tr:n},

(b) {t1:n < . . . < tn∗

1
:n < τ1 < tn∗

1
+1:n < . . . < tr:n}, n1 < r,

(c) {t1:n < . . . < tr:n < τ1 < τ2}.
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Type-I Hybrid Censoring Scheme

The test is terminated when r-th failure occurs or time τ2 is reached on the test, whichever is

earlier, i.e., it is terminated at a random time τ ∗ = min{tr:n, τ2}. This censoring scheme was

introduced by Epstein [7]. The available data from a simple SSLT are one of the following

forms under Type-I HCS.

(a) {τ1 < t1:n < . . . < tr:n} if tr:n < τ2,

(b) {t1:n < . . . < tn∗

1
:n < τ1 < tn∗

1
+1:n < . . . < tr:n} if tr:n < τ2, n1 < r,

(c) {t1:n < . . . < tr:n < τ1} if tr:n < τ2,

(d) {τ1 < t1:n < . . . < tn∗

2
:n < τ2} if tr:n > τ2,

(e) {t1:n < . . . < tn∗

1
:n < τ1 < tn∗

1
+1:n < . . . < tn∗

1
+n∗

2
:n < τ2} if tr:n > τ2, n1 < r,

(f) {t1:n < . . . < tn∗

1
:n < τ1 < τ2} if tr:n > τ2.

Type-II Hybrid Censoring Scheme

This censoring scheme was proposed by Childs et al. [6]. In Type-II HCS, the experiment is

terminated when r-th item fails or time τ2 is reached on the test, whichever is later, i.e., the

experiment termination time is τ ∗ = max{tr:n, τ2}. The available data from a simple SSLT

are one of the following forms under this censoring scheme.

(a) {τ1 < t1:n < . . . < tr:n} if tr:n ≥ τ2,

(b) {t1:n < . . . < tn∗

1
:n < τ1 < tn∗

1
+1:n < . . . < tr:n} if tr:n ≥ τ2, n1 < r,

(c) {τ1 < t1:n < . . . < tn∗

2
:n < τ2} if tr:n < τ2,

(d) {t1:n < . . . < tn∗

1
:n < τ1 < tn∗

1
+1:n < . . . < tn∗

1
+n∗

2
:n < τ2} if tr:n < τ2,

(e) {t1:n < . . . < tn∗

1
:n < τ1 < τ2} if tr:n < τ2.

Type-II Progressive Censoring Scheme

Let R1, . . . , Rm be m prefixed non-negative integers such that

m+
m∑

j=1

Rj = n.

At the time of the first failure, say t1:n, R1 units are chosen at random from the remaining

(n−1) units and they are removed from the experiment. Similarly, at the time of the second
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failure, say t2:n, R2 units are chosen at random from the remaining (n − R1 − 2) surviving

units and they are removed from the test, and so on. Finally at the time of the mth failure,

say tm:n, the rest of the n −m −
∑m−1

j=1 Rj = Rm units are removed and the experiment is

stopped. In this case the available data are one of the following forms.

(a) {τ1 < t1:n < . . . < tm:n} if τ1 < t1:n,

(b) {t1:n < . . . < tn∗

1
:n < τ1 < tn∗

1
+1:n < . . . < tm:n} if t1:n < τ1 < tm:n,

(c) {t1:n < . . . < tm:n < τ1} if τ1 ≥ tm:n.

3 Model Assumption and Prior Information

In this article we consider a simple step-stress life testing, where n units are put on a life

testing experiment at the initial stress level s1. Let τ1 be a prefixed time at which the stress

level is changed from s1 to s2. It is assumed that the lifetimes of the experimental units are

independently distributed random variables having Weibull distribution. PDF and the CDF

of the lifetime under stress level si for i = 1, 2, are given by

f(t; β, λi) = βλit
β−1 e−λit

β

for 0 < t < ∞ β > 0 λi > 0,

and

F (t; β, λi) = 1− e−λit
β

for 0 < t < ∞ β > 0 λi > 0, (1)

respectively. It is further assumed that the failure time data come from a KHM under the

step-stress pattern, hence, it has the following CDF;

G(t; β, λ1, λ2) =





1− e−λ1t
β

if 0 < t < τ1

1− e−λ2(tβ−τ
β
1
)−λ1τ

β
1 if τ1 ≤ t < ∞.

The corresponding PDF is given by

g(t; β, λ1, λ2) =





βλ1 t
β−1 e−λ1t

β

if 0 < t < τ1

βλ2 t
β−1 e−λ2(tβ−τ

β
1
)−λ1τ

β
1 if τ1 ≤ t < ∞.

For developing the Bayesian inference, we need to assume some priors on the unknown
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parameters. Suppose λ1 and λ2 are independently distributed according to gamma distri-

bution. If β is known, they are conjugate priors for λ1 and λ2. However, following the

argument of Soland [19] it can be shown that there does not exist any continuous conjugate

prior for (β, λ1, λ2). A continuous-discrete conjugate prior do exist, where continuous part

corresponds to the scale parameters and discrete part corresponds to the shape parameter.

Khaminskiy and Krivtsov [9] criticized this choice of priors as it is difficulty to apply in real

life, hence it is not addressed further.

Following the approach of Berger and Sun [5], Kundu and Gupta [13], and Kundu [12],

here we assume that λi has a gamma prior with shape and scale parameters ai > 0 and

bi > 0, respectively, i.e., the prior assumption on λi is summarized in the following PDF.

πi(λi) ∝ λai−1
i e−λibi ; λi > 0, i = 1, 2. (2)

The prior on the shape parameter β is also assumed to be a gamma distribution with shape

and scale parameter a3 > 0 and b3 > 0, respectively, i.e., the prior PDF of β is given by

π3(β) ∝ βa3−1 e−b3β for β > 0. (3)

It is further assumed that β, λ1, and λ2 are independently distributed. We discuss the pos-

terior analysis of type-I censored data in details in Section 4.1 under this prior assumptions.

Next we consider order restricted inference of the parameters under the same model

assumptions. Note that the main aim of a SSLT is to get rapid failures by imposing severe

stress level on the products under test. Hence, it is natural to assume that the mean lifetime

at the stress level s1 is greater than the mean lifetime at the stress level s2, which implies

λ1 < λ2 under lifetime distribution (1). Therefore, one of the ways to incorporate order

restriction is to assume that λ1 = αλ2 with 0 < α < 1. The following priors are assumed

under this order restricted situation. It is assumed that priors on β and λ2 are same as the

previous case, i.e., they have priors π2(·) and π3(·), respectively, and α has a beta prior, with

parameters a4 > 0 and b4 > 0, having PDF

π4(α) ∝ αa4−1 (1− α)b4−1 for 0 < α < 1. (4)
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Here also we assume that α, β, and λ2 are independently distributed. Therefore, the joint

prior PDF of (λ1, λ2) can be written as;

π(λ1, λ2) =
ba

Γ(a)B(c, d)
λa−c−d
2 e−bλ2λc−1

1 (λ2 − λ1)
d−1 for 0 < λ1 < λ2 < ∞.

As the joint prior on (λ1, λ2) is complicated, a gray-scale plot is provided in Figure 1 for

different values of hyper-parameters. In the plot black color represents the maximum value

of the density function, whereas white color represents the minimum value, which is zero in

all the plots. We have taken b = 1.0 only, as different values of b only affects the spread of

the density function for fixed shape parameter.

4 Posterior Analysis under Type-I Censoring Scheme

4.1 Under Unrestricted Prior Assumption

In case of Type-I censoring scheme, τ ∗ = τ2. For Case (a): n∗
1 = 0, n∗

2 = n2 ≤ n, Case (b):

n∗
1 = n1 > 0, n∗

2 = n2 > 0, Case (c): n∗
1 = n1 > 0, n∗

2 = 0. Let n∗ = n∗
1 + n∗

2. Based on

the observations from a simple SSLT under Type-I censoring scheme, the likelihood function

can be written as

l1(Data | β, λ1, λ2) ∝ βn∗

1
+n∗

2 λ
n∗

1

1 λ
n∗

2

2




n∗

1
+n∗

2∏

i=1

ti:n




β−1

e−λ1D1(β)−λ2D2(β), (5)

where D1(β) =
∑n∗

1

j=1 t
β
j:n+(n−n∗

1)τ
β
1 and D2(β) =

∑n∗

j=n∗

1
+1(t

β
j:n− τβ1 )+ (n−n∗)(τ ∗β − τβ1 ).

Therefore, based on the priors π1(·), π2(·), and π3(·) mentioned above posterior PDF of β,

λ1, and λ2 becomes

l2(β, λ1, λ2 |Data) ∝ βn∗+a3−1 λ
n∗

1
+a1−1

1 λn2+a2−1
2 e−(b3−c1)β−λ1 A1(β)−λ2 A2(β)

if β > 0, λ1 > 0, λ2 > 0, (6)

where A1(β) = b1 + D1(β), A2(β) = b2 + D2(β), and c1 =
∑n∗

i=1 ln ti:n. Note that the

right hand side of (6) is integrable if we take proper priors on the unknown parameters,

see Appendix A.1 for details. If we want to compute the BEs of some functions of β, λ1,
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Figure 1: Plot of prior density for different values of hyper-parameters.
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and λ2, say g(β, λ1, λ2), with respect to the squared error loss function, it will be posterior

expectation of g(β, λ1, λ2), i.e.,

ĝ(β, λ1, λ2) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

g(β, λ1, λ2)l2(β, λ1, λ2 | Data) dλ2dλ1dβ. (7)

Unfortunately, the closed form of (7) cannot be obtained in most of the cases. One may

use numerical techniques to compute (7). Alternatively, other approximation can be used

to compute (7). However, CRI for a parametric function cannot be constructed by these

numerical methods. Hence, we propose to use an importance sampling technique to compute

Bayes estimate as well as to construct CRI of a parametric function. Note that

l2(β, λ1, λ2 | Data) = l3(λ1 | β, Data)× l4(λ2 | β, Data)× l5(β |Data),

where

l3(λ1 | β, Data) =
{A1(β)}

n∗

1
+a1

Γ(n∗
1 + a1)

λ
n∗

1
+a1−1

1 e−λ1 A1(β) if λ1 > 0, (8)

l4(λ2 | β, Data) =
{A2(β)}

n∗

2
+a2

Γ(n∗
2 + a2)

λ
n∗

2
+a2−1

2 e−λ2 A2(β) if λ2 > 0, (9)

and

l5(β |Data) = c2
βn∗+a3−1e−(b3−c1)β

{A1(β)}n
∗

1
+a1{A2(β)}n

∗

2
+a2

if β > 0. (10)

The normalizing constant c2 in (10) can be found using numerical method. Though it is

not easy to prove the log-concavity of the l5(β |Data), the plots (see Figure 2) suggest that

l5(β |Data) is a unimodal function. Hence, we try to approximate l5(β |Data) by a gamma

density function using similar idea as in Kundu [12], where the parameters of the gamma dis-

tribution are determined by equating mean and variance of l5(β |Data) to those of a gamma

distribution. Let m1 and m2 denote the mean and variance, respectively, corresponding

to the density l5(β |Data). The shape and scale parameters of the approximating gamma

distribution are given by a5 =
m2

1

m2

and b5 =
m1

m2

, respectively. Let us define

l6(β |Data) =
ba55

Γ(a5)
βa5−1 e−b5β for β > 0.

Note that l2(β, λ1, λ2 |Data) can be expressed as follows.

l2(β, λ1, λ2 |Data) = w1(β)× l3(λ1 | β, Data)× l4(λ2 | β, Data)× l6(β |Data),
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where w1(β) =
l5(β |Data)

l6(β |Data)
. Now we propose to use the following algorithm based on impor-

tance sampling technique to compute BE and to construct the CRI of function g(β, λ1, λ2).

Algorithm 4.1

Step 1. Generate β1 from Gamma(a5, b5) distribution.

Step 2. For the given β1, generate λ11 from (8).

Step 3. For the given β1, generate λ21 from (9).

Step 4. Continue the process M times to get {(β1, λ11, λ21), . . ., (βM , λ1M , λ2M)}.

Step 5. Compute gi = g(βi, λ1i, λ2i); i = 1, 2, . . . , M .

Step 6. Calculate the weights w1i = w1(βi); i = 1, 2, . . . , M .

Step 7. Compute the BE of g(β, λ1, λ2) as

ĝBE(β, λ1, λ2) =
1

M

M∑

j=1

w1jgj.

Step 8. To construct a 100(1−γ)% CRI of g(β, λ1, λ2), first order gj for j = 1, . . . , M , say

g(1) < g(2) < . . . < g(M), and order wj accordingly to get w1(1), w1(2), . . . , w1(M). Note

that w1(1), w1(2), . . . , w1(M) may not be ordered. A 100(1− γ)% CRI can be obtained

as (g(j1), g(j2)), where j1 and j2 satisfy

j1, j2 ∈ {1, 2, . . . , M}, j1 < j2,
1

M

j2∑

i=j1

w1(i) ≤ 1− γ <
1

M

j2+1∑

i=j1

w1(i). (11)

The 100(1−γ)% HPD CRI of g(β, λ1, λ2) becomes (g(j∗
1
), g(j∗

2
)), where j

∗
1 < j∗2 , j

∗
1 , j

∗
2 ∈

{1, 2, . . . , M} satisfy

1

M

j∗
2∑

i=j∗
1

w1(i) ≤ 1− γ <
1

M

j∗
2
+1∑

i=j∗
1

w1(i), g(j∗
2
) − g(j∗

1
) ≤ g(j2) − g(j1),

for all j1 and j2 satisfying (11).

4.2 Under Order Restricted Prior Assumption

Computations of BE and construction of associated CRI of some parametric function g(β, λ1, λ2)

under order restricted priors are addressed in this subsection. Using the reparameterization
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λ1 = αλ2 (0 < α < 1) and (2), (3), (4), and (5), one can express the posterior density

function of (α, β, λ2) as

l7(α, β, λ2 |Data) ∝ αn∗

1
+a4−1(1− α)b4−1βn∗+a3−1λn∗+a2−1

2

× e−λ2(αD1(β)+D2(β)+b2)−(b3−c1)β if 0 < α < 1, β > 0, λ2 > 0. (12)

Like in the previous case, the right hand side of (12) is integrable if proper priors are assumed

on the unknown parameters, see Appendix A.2 for details. Now under squared error loss

function BE of parametric function g(α, β, λ2) is given by

ĝ(α, β, λ2) =

∫ 1

0

∫ ∞

0

∫ ∞

0

g(α, β, λ2)l7(α, β, λ2 | Data) dλ2dβdα.

Note that

l7(α, β, λ2 |Data) ∝ w2(α, β)× l8(λ2 |α, β, Data)× l9(β |Data),

where

w2(α, β) =
αn∗

1
+a4−1(1− α)b4−1 ec2β

{αD1(β) +D2(β) + b2}
n∗+a2

,

l8(λ2 |α, β, Data) =
{αD1(β) +D2(β) + b2}

n∗+a2

Γ(n∗ + a2)
λn∗+a2−1
2 e−λ2(αD1(β)+D2(β)+b2), (13)

and

l9(β |Data) =
(b3 − c1)

n∗+a3

Γ(n∗ + a3)
βn∗+a3−1 e−(b3−c1+c2)β, (14)

with c2 = n∗
3τ

∗
2 , n

∗
3 is the number of failure times which are less than one, and

τ ∗2 =





τ2 if n− n∗ > 0

tn:n if n− n∗ = 0.

Depending upon the previous expression of l7(α, β, λ2 |Data), the following algorithm is

proposed to compute BE as well as to construct CRI.

Algorithm 4.2

Step 1. Generate α1 from U(0, 1) distribution.

Step 2. Generate β1 from (14).

Step 3. For the given α1 and β1, generate λ21 from (13).
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Step 4. Continue the process M times to get {(α1, β1, λ21), . . ., (αM , βM , λ2M)}.

Step 5. Calculate gi = g(αi, βi, λ2i); i = 1, 2, . . . , M .

Step 6. Calculate the weights w2i = w2(αi, βi); i = 1, 2, . . . , M .

Step 7. Calculate the normalize weights w∗
2i =

w2i∑M

j=1 w2j

; i = 1, 2, . . . , M .

Step 8. Compute the BE of g(α, β, λ2) as ĝBE(β, λ1, λ2) =
M∑

j=1

w∗
2jgj.

Step 9. To construct a 100(1− γ)% CRI of g(α, β, λ2), first order gj for j = 1, . . . , M , say

g(1) < g(2) < . . . < g(M), and order w∗
2j accordingly to get w∗

2(1), w
∗
2(2), . . . , w

∗
2(M). Note

that w∗
2(1), w

∗
2(2), . . . , w

∗
2(M) may not be ordered. A 100(1− γ)% CRI can be obtained

as (g(j1), g(j2)), where j1 and j2 satisfy

j1, j2 ∈ {1, 2, . . . , M}, j1 < j2,

j2∑

i=j1

w∗
2(i) ≤ 1− γ <

j2+1∑

i=j1

w∗
2(i). (15)

The 100(1−γ)% HPD CRI of g(α, β, λ2) becomes (g(j∗
1
), g(j∗

2
)), where j

∗
1 < j∗2 , j

∗
1 , j

∗
2 ∈

{1, 2, . . . , M} satisfy

j∗
2∑

i=j∗
1

w∗
2(i) ≤ 1− γ <

j∗
2
+1∑

i=j∗
1

w∗
2(i), g(j∗

2
) − g(j∗

1
) ≤ g(j2) − g(j1),

for all j1 and j2 satisfying (15).

5 Simulations and Data Analysis

5.1 Simulation Results

In this section we present some simulation results to judge the performance of the proposed

procedures in the Sections 4.1 and 4.2 for different values of τ1, τ2 and n. Here we choose

two sets of priors. Prior I: a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001, a3 = 0.0001,

b3 = 0.0001, a4 = 1, and b4 = 1. Prior II : a1 = 64.0, b1 = 80.0, a2 = 48.5, b2 = 22.0,

a3 = 40.0, b3 = 20.0, a4 = 4.41, and b4 = 7.7. Note that the priors on β, λ1 and λ2 are

assumed to be very flat in unrestricted case for Prior I, and they are ‘almost’ non-informative.
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Table 1: AEs and MSEs of BEs of β, λ1, and λ2 for unrestricted case.

Prior I Prior II

β λ1 λ2 β λ1 λ2

n τ1 τ2 AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

40 0.60 0.80 2.180 0.5033 1.087 0.4869 2.477 0.5826 2.003 0.0674 0.799 0.0088 2.205 0.0738
1.20 2.105 0.3179 0.981 0.2372 2.429 0.4292 1.999 0.0557 0.801 0.0088 2.204 0.0680

0.65 0.85 2.159 0.4464 0.997 0.2378 2.438 0.5955 2.001 0.0665 0.799 0.0088 2.204 0.0795
1.25 2.099 0.2961 0.942 0.1559 2.437 0.4792 2.006 0.0549 0.799 0.0086 2.206 0.0706

0.70 0.90 2.139 0.3707 0.939 0.1341 2.415 0.6383 2.003 0.0636 0.800 0.0085 2.204 0.0777
1.30 2.103 0.2742 0.918 0.1143 2.424 0.5191 1.999 0.0548 0.800 0.0089 2.204 0.0732

0.75 0.95 2.118 0.3147 0.902 0.0922 2.426 0.6838 1.997 0.0620 0.800 0.0080 2.205 0.0818
1.35 2.105 0.2601 0.899 0.0848 2.425 0.5768 1.997 0.0523 0.801 0.0083 2.203 0.0756

0.80 1.00 2.110 0.2934 0.881 0.0669 2.406 0.7211 2.002 0.0589 0.799 0.0081 2.207 0.0795
1.40 2.111 0.2478 0.886 0.0650 2.435 0.6153 2.001 0.0529 0.800 0.0082 2.205 0.0725

50 0.60 0.80 2.153 0.4111 1.028 0.3297 2.405 0.4110 2.002 0.0622 0.800 0.0088 2.205 0.0750
1.20 2.071 0.2375 0.943 0.1611 2.395 0.3357 1.999 0.0507 0.801 0.0089 2.210 0.0620

0.65 0.85 2.136 0.3322 0.959 0.1586 2.374 0.4159 2.002 0.0607 0.800 0.0087 2.206 0.0748
1.25 2.085 0.2258 0.927 0.1198 2.384 0.3453 1.998 0.0521 0.800 0.0086 2.206 0.0666

0.70 0.90 2.112 0.2841 0.921 0.1014 2.354 0.4610 2.003 0.0601 0.799 0.0080 2.204 0.0764
1.30 2.082 0.2115 0.905 0.0843 2.384 0.4023 2.000 0.0508 0.800 0.0080 2.201 0.0673

0.75 0.95 2.101 0.2445 0.895 0.0706 2.354 0.4933 2.000 0.0564 0.801 0.0081 2.206 0.0789
1.35 2.091 0.2005 0.889 0.0638 2.369 0.4214 1.998 0.0485 0.801 0.0080 2.202 0.0696

0.80 1.00 2.084 0.2096 0.874 0.0525 2.367 0.5525 2.001 0.0541 0.800 0.0077 2.208 0.0783
1.40 2.091 0.1890 0.876 0.0495 2.358 0.4355 2.002 0.0469 0.800 0.0078 2.207 0.0723

Table 2: ALs of Symmetric CRI of β for unrestricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 2.124 2.534 3.340 0.836 0.997 1.311
1.20 1.753 2.084 2.721 0.782 0.932 1.225

0.65 0.85 1.966 2.346 3.095 0.829 0.989 1.301
1.25 1.694 2.014 2.634 0.777 0.926 1.217

0.70 0.90 1.828 2.181 2.876 0.821 0.978 1.287
1.30 1.638 1.949 2.554 0.764 0.911 1.198

0.75 0.95 1.707 2.037 2.686 0.807 0.962 1.267
1.35 1.578 1.878 2.464 0.752 0.897 1.180

0.80 1.00 1.608 1.919 2.530 0.797 0.950 1.250
1.40 1.522 1.813 2.380 0.743 0.886 1.165

50 0.60 0.80 1.877 2.239 2.950 0.804 0.958 1.259
1.20 1.552 1.845 2.413 0.747 0.890 1.170

0.65 0.85 1.738 2.073 2.732 0.797 0.950 1.249
1.25 1.506 1.792 2.346 0.739 0.881 1.158

0.70 0.90 1.609 1.920 2.530 0.788 0.939 1.235
1.30 1.450 1.726 2.261 0.730 0.870 1.144

0.75 0.95 1.508 1.799 2.371 0.774 0.922 1.214
1.35 1.402 1.670 2.191 0.718 0.856 1.126

0.80 1.00 1.418 1.691 2.227 0.761 0.907 1.194
1.40 1.349 1.607 2.111 0.708 0.844 1.110
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Table 3: ALs of HPD CRI of β for unrestricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 2.077 2.477 3.257 0.831 0.990 1.298
1.20 1.734 2.059 2.678 0.777 0.926 1.213

0.65 0.85 1.927 2.298 3.025 0.824 0.981 1.287
1.25 1.673 1.989 2.593 0.772 0.919 1.206

0.70 0.90 1.795 2.140 2.816 0.815 0.971 1.273
1.30 1.618 1.925 2.515 0.759 0.904 1.186

0.75 0.95 1.679 2.003 2.635 0.802 0.955 1.254
1.35 1.559 1.855 2.427 0.748 0.891 1.168

0.80 1.00 1.584 1.890 2.484 0.791 0.943 1.238
1.40 1.504 1.791 2.345 0.738 0.880 1.154

50 0.60 0.80 1.843 2.197 2.888 0.799 0.951 1.247
1.20 1.536 1.826 2.380 0.743 0.885 1.160

0.65 0.85 1.709 2.038 2.679 0.792 0.943 1.237
1.25 1.491 1.773 2.314 0.735 0.875 1.148

0.70 0.90 1.585 1.890 2.485 0.783 0.932 1.223
1.30 1.435 1.707 2.231 0.726 0.865 1.134

0.75 0.95 1.488 1.774 2.332 0.769 0.916 1.202
1.35 1.388 1.652 2.162 0.714 0.851 1.115

0.80 1.00 1.400 1.669 2.193 0.756 0.901 1.182
1.40 1.336 1.590 2.083 0.704 0.838 1.099

Table 4: ALs of Symmetric CRI of λ1 for unrestricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 1.803 2.322 3.712 0.309 0.368 0.485
1.20 1.392 1.723 2.482 0.309 0.368 0.485

0.65 0.85 1.384 1.734 2.584 0.306 0.365 0.480
1.25 1.183 1.451 2.043 0.305 0.364 0.479

0.70 0.90 1.115 1.370 1.945 0.303 0.361 0.475
1.30 1.028 1.251 1.730 0.302 0.360 0.474

0.75 0.95 0.937 1.138 1.569 0.299 0.357 0.469
1.35 0.905 1.094 1.490 0.299 0.357 0.469

0.80 1.00 0.820 0.989 1.339 0.296 0.352 0.464
1.40 0.809 0.974 1.312 0.296 0.353 0.464

50 0.60 0.80 1.497 1.889 2.867 0.305 0.364 0.479
1.20 1.187 1.456 2.057 0.305 0.364 0.479

0.65 0.85 1.171 1.447 2.083 0.302 0.360 0.473
1.25 1.035 1.262 1.751 0.301 0.359 0.473

0.70 0.90 0.965 1.177 1.639 0.298 0.355 0.467
1.30 0.901 1.092 1.493 0.297 0.354 0.466

0.75 0.95 0.826 0.999 1.362 0.294 0.350 0.461
1.35 0.799 0.963 1.302 0.293 0.350 0.460

0.80 1.00 0.723 0.870 1.170 0.290 0.345 0.454
1.40 0.715 0.859 1.151 0.289 0.345 0.454
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Table 5: ALs of HPD CRI of λ1 for unrestricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 1.551 2.000 3.204 0.307 0.366 0.480
1.20 1.270 1.575 2.275 0.307 0.366 0.480

0.65 0.85 1.249 1.564 2.329 0.304 0.362 0.475
1.25 1.040 1.278 1.811 0.303 0.362 0.475

0.70 0.90 0.974 1.185 1.637 0.301 0.358 0.470
1.30 1.102 1.353 1.906 0.300 0.358 0.470

0.75 0.95 0.894 1.085 1.493 0.297 0.354 0.465
1.35 0.868 1.050 1.428 0.297 0.354 0.465

0.80 1.00 0.793 0.956 1.291 0.294 0.350 0.459
1.40 0.784 0.944 1.268 0.294 0.350 0.460

50 0.60 0.80 1.330 1.681 2.551 0.303 0.362 0.475
1.20 1.103 1.355 1.915 0.303 0.361 0.474

0.65 0.85 1.082 1.337 1.923 0.300 0.357 0.469
1.25 0.978 1.192 1.654 0.299 0.356 0.468

0.70 0.90 0.914 1.115 1.549 0.296 0.352 0.463
1.30 0.863 1.046 1.428 0.295 0.352 0.462

0.75 0.95 0.796 0.962 1.308 0.292 0.348 0.457
1.35 0.773 0.931 1.257 0.291 0.347 0.456

0.80 1.00 0.704 0.846 1.135 0.288 0.343 0.450
1.40 0.698 0.838 1.120 0.287 0.343 0.450

Table 6: ALs of Symmetric CRI of λ2 for unrestricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 2.393 2.919 4.097 0.919 1.096 1.442
1.20 2.057 2.529 3.616 0.853 1.018 1.340

0.65 0.85 2.402 2.927 4.085 0.921 1.098 1.446
1.25 2.171 2.660 3.764 0.864 1.031 1.357

0.70 0.90 2.455 2.989 4.158 0.924 1.102 1.451
1.30 2.264 2.769 3.890 0.875 1.044 1.375

0.75 0.95 2.555 3.111 4.320 0.929 1.108 1.458
1.35 2.360 2.882 4.027 0.886 1.057 1.392

0.80 1.00 2.628 3.198 4.428 0.934 1.114 1.466
1.40 2.456 2.994 4.166 0.897 1.069 1.408

50 0.60 0.80 2.060 2.496 3.446 0.896 1.068 1.405
1.20 1.798 2.193 3.068 0.825 0.984 1.295

0.65 0.85 2.075 2.511 3.444 0.899 1.071 1.410
1.25 1.880 2.288 3.180 0.837 0.998 1.314

0.70 0.90 2.138 2.590 3.552 0.902 1.076 1.416
1.30 1.977 2.403 3.324 0.848 1.012 1.333

0.75 0.95 2.217 2.686 3.681 0.908 1.083 1.426
1.35 2.050 2.488 3.429 0.861 1.027 1.353

0.80 1.00 2.308 2.797 3.829 0.914 1.091 1.436
1.40 2.122 2.575 3.538 0.875 1.043 1.374
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Table 7: ALs of HPD CRI of λ2 for unrestricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 2.296 2.792 3.883 0.913 1.088 1.428
1.20 1.957 2.399 3.399 0.847 1.010 1.327

0.65 0.85 2.302 2.798 3.877 0.914 1.090 1.431
1.25 2.065 2.526 3.551 0.858 1.023 1.343

0.70 0.90 2.348 2.854 3.948 0.918 1.093 1.436
1.30 2.152 2.628 3.676 0.869 1.036 1.361

0.75 0.95 2.436 2.963 4.100 0.922 1.099 1.443
1.35 2.243 2.736 3.810 0.880 1.049 1.377

0.80 1.00 2.500 3.040 4.201 0.927 1.105 1.451
1.40 2.333 2.842 3.945 0.890 1.061 1.393

50 0.60 0.80 1.996 2.413 3.303 0.890 1.060 1.391
1.20 1.728 2.105 2.924 0.819 0.977 1.282

0.65 0.85 2.008 2.428 3.311 0.892 1.063 1.396
1.25 1.807 2.197 3.036 0.831 0.990 1.301

0.70 0.90 2.063 2.496 3.409 0.896 1.068 1.402
1.30 1.898 2.306 3.177 0.842 1.004 1.319

0.75 0.95 2.134 2.584 3.529 0.902 1.075 1.411
1.35 1.967 2.387 3.279 0.855 1.019 1.339

0.80 1.00 2.217 2.685 3.668 0.908 1.082 1.421
1.40 2.036 2.469 3.385 0.868 1.035 1.360

Table 8: AEs and MSEs of BEs of β, λ1, and λ2 for order restricted case.

Prior I Prior II

β λ1 λ2 β λ1 λ2

n τ1 τ2 AE MSE AE MSE AE MSE AE MSE AE MSE AE MSE

40 0.60 0.80 2.156 0.2940 0.984 0.1186 2.302 0.3892 2.011 0.0727 0.800 0.0443 2.202 0.0749
1.20 2.201 0.2457 0.997 0.1057 2.250 0.2503 1.969 0.0610 0.792 0.0425 2.202 0.0649

0.65 0.85 2.191 0.3094 0.980 0.1040 2.272 0.3565 2.004 0.0707 0.807 0.0396 2.205 0.0723
1.25 2.212 0.2410 0.976 0.0872 2.219 0.2576 1.977 0.0608 0.802 0.0376 2.210 0.0643

0.70 0.90 2.215 0.3279 0.962 0.0866 2.233 0.3652 2.011 0.0710 0.800 0.0353 2.201 0.0739
1.30 2.219 0.2404 0.960 0.0727 2.185 0.2832 1.977 0.0585 0.802 0.0346 2.210 0.0672

0.75 0.95 2.196 0.2990 0.938 0.0668 2.226 0.4216 2.004 0.0623 0.807 0.0338 2.204 0.0727
1.35 2.242 0.2616 0.944 0.0604 2.168 0.3476 1.975 0.0561 0.798 0.0334 2.205 0.0668

0.80 1.00 2.197 0.2703 0.923 0.0565 2.186 0.4282 2.000 0.0621 0.801 0.0304 2.202 0.0727
1.40 2.264 0.3077 0.932 0.0507 2.134 0.3644 1.979 0.0556 0.796 0.0299 2.204 0.0690

50 0.60 0.80 2.110 0.2156 0.958 0.0915 2.250 0.2940 2.013 0.0686 0.806 0.0385 2.202 0.0692
1.20 2.185 0.1990 0.985 0.0947 2.226 0.1973 1.961 0.0604 0.787 0.0369 2.204 0.0565

0.65 0.85 2.158 0.2430 0.961 0.0851 2.239 0.3071 2.008 0.0681 0.806 0.0340 2.205 0.0694
1.25 2.200 0.2048 0.965 0.0750 2.198 0.2100 1.967 0.0571 0.797 0.0331 2.209 0.0607

0.70 0.90 2.169 0.2376 0.943 0.0676 2.214 0.3092 2.007 0.0644 0.807 0.0314 2.205 0.0704
1.30 2.206 0.2089 0.948 0.0601 2.167 0.2413 1.968 0.0550 0.788 0.0305 2.209 0.0611

0.75 0.95 2.168 0.2304 0.922 0.0552 2.205 0.3309 2.007 0.0595 0.802 0.0287 2.204 0.0705
1.35 2.228 0.2169 0.937 0.0490 2.136 0.2883 1.964 0.0568 0.797 0.0271 2.208 0.0638

0.80 1.00 2.161 0.2086 0.911 0.0443 2.178 0.3438 2.008 0.0567 0.806 0.0252 2.204 0.0705
1.40 2.250 0.2350 0.926 0.0412 2.083 0.3050 1.974 0.0525 0.795 0.0264 2.208 0.0663
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Table 9: ALs of Symmetric CRI of β for order restricted case.

Non-informative Prior Informative Prior

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 1.573 1.763 2.037 0.842 0.989 1.234
1.20 1.504 1.751 2.167 0.711 0.821 0.990

0.65 0.85 1.631 1.846 2.146 0.827 0.971 1.211
1.25 1.455 1.693 2.097 0.696 0.804 0.973

0.70 0.90 1.656 1.905 2.257 0.814 0.956 1.193
1.30 1.387 1.610 2.001 0.680 0.787 0.957

0.75 0.95 1.611 1.893 2.328 0.793 0.930 1.159
1.35 1.313 1.525 1.900 0.667 0.773 0.944

0.80 1.00 1.533 1.817 2.323 0.772 0.906 1.127
1.40 1.222 1.421 1.777 0.653 0.758 0.929

50 0.60 0.80 1.346 1.513 1.759 0.808 0.947 1.178
1.20 1.359 1.581 1.950 0.662 0.762 0.917

0.65 0.85 1.418 1.602 1.865 0.790 0.926 1.153
1.25 1.310 1.521 1.880 0.642 0.741 0.895

0.70 0.90 1.464 1.681 1.983 0.772 0.905 1.126
1.30 1.237 1.433 1.775 0.631 0.729 0.884

0.75 0.95 1.442 1.690 2.066 0.754 0.884 1.098
1.35 1.153 1.336 1.661 0.611 0.707 0.862

0.80 1.00 1.370 1.622 2.063 0.732 0.857 1.064
1.40 1.059 1.229 1.538 0.596 0.691 0.847

Table 10: ALs of HPD CRI of β for order restricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 1.438 1.636 1.948 0.821 0.957 1.185
1.20 1.427 1.659 2.062 0.690 0.794 0.955

0.65 0.85 1.516 1.729 2.057 0.806 0.942 1.166
1.25 1.371 1.595 1.991 0.673 0.775 0.936

0.70 0.90 1.565 1.801 2.163 0.794 0.928 1.150
1.30 1.291 1.507 1.894 0.657 0.758 0.920

0.75 0.95 1.545 1.805 2.227 0.774 0.904 1.120
1.35 1.208 1.415 1.791 0.643 0.743 0.906

0.80 1.00 1.485 1.750 2.220 0.754 0.881 1.089
1.40 1.110 1.306 1.670 0.628 0.727 0.891

50 0.60 0.80 1.219 1.395 1.677 0.783 0.911 1.128
1.20 1.284 1.493 1.850 0.637 0.732 0.882

0.65 0.85 1.310 1.493 1.783 0.765 0.892 1.106
1.25 1.226 1.427 1.781 0.616 0.709 0.858

0.70 0.90 1.379 1.584 1.899 0.749 0.874 1.082
1.30 1.142 1.332 1.676 0.604 0.697 0.847

0.75 0.95 1.382 1.610 1.973 0.732 0.855 1.057
1.35 1.050 1.231 1.562 0.583 0.674 0.825

0.80 1.00 1.326 1.561 1.970 0.712 0.830 1.025
1.40 0.950 1.121 1.440 0.567 0.658 0.809
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Table 11: ALs of Symmetric CRI of λ1 for order restricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 1.107 1.291 1.604 0.672 0.800 1.052
1.20 1.080 1.274 1.636 0.650 0.773 1.012

0.65 0.85 1.036 1.215 1.525 0.642 0.764 1.005
1.25 0.973 1.151 1.488 0.625 0.744 0.974

0.70 0.90 0.945 1.117 1.426 0.609 0.726 0.954
1.30 0.879 1.041 1.352 0.598 0.712 0.933

0.75 0.95 0.850 1.010 1.313 0.585 0.697 0.915
1.35 0.796 0.946 1.233 0.572 0.681 0.893

0.80 1.00 0.767 0.914 1.199 0.558 0.665 0.874
1.40 0.727 0.866 1.131 0.550 0.655 0.859

50 0.60 0.80 0.967 1.128 1.411 0.636 0.759 0.998
1.20 0.993 1.171 1.506 0.606 0.721 0.945

0.65 0.85 0.915 1.074 1.352 0.601 0.717 0.943
1.25 0.893 1.057 1.365 0.579 0.689 0.904

0.70 0.90 0.846 1.000 1.279 0.571 0.680 0.894
1.30 0.799 0.948 1.233 0.550 0.655 0.859

0.75 0.95 0.764 0.910 1.181 0.542 0.646 0.849
1.35 0.721 0.857 1.119 0.528 0.629 0.825

0.80 1.00 0.693 0.825 1.081 0.518 0.618 0.812
1.40 0.653 0.777 1.017 0.507 0.604 0.792

Table 12: ALs of HPD CRI of λ1 for order restricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 1.025 1.212 1.537 0.658 0.784 1.031
1.20 1.035 1.227 1.584 0.636 0.757 0.992

0.65 0.85 0.970 1.149 1.463 0.629 0.751 0.987
1.25 0.935 1.111 1.444 0.612 0.729 0.955

0.70 0.90 0.897 1.065 1.372 0.598 0.713 0.938
1.30 0.845 1.006 1.314 0.586 0.698 0.916

0.75 0.95 0.818 0.973 1.268 0.575 0.685 0.901
1.35 0.765 0.913 1.199 0.561 0.668 0.877

0.80 1.00 0.746 0.889 1.164 0.549 0.655 0.860
1.40 0.696 0.834 1.098 0.539 0.642 0.843

50 0.60 0.80 0.899 1.063 1.353 0.623 0.744 0.979
1.20 0.952 1.129 1.459 0.593 0.706 0.926

0.65 0.85 0.861 1.017 1.298 0.590 0.704 0.927
1.25 0.858 1.020 1.326 0.567 0.675 0.886

0.70 0.90 0.805 0.955 1.231 0.560 0.668 0.879
1.30 0.767 0.915 1.198 0.538 0.642 0.842

0.75 0.95 0.737 0.877 1.142 0.533 0.635 0.835
1.35 0.691 0.826 1.087 0.517 0.616 0.810

0.80 1.00 0.674 0.804 1.052 0.510 0.608 0.799
1.40 0.622 0.746 0.986 0.496 0.591 0.777
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Table 13: ALs of Symmetric CRI of λ2 for order restricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 2.393 2.919 4.097 0.887 1.057 1.392
1.20 2.057 2.529 3.616 0.820 0.978 1.285

0.65 0.85 2.402 2.927 4.085 0.886 1.057 1.391
1.25 2.455 2.989 4.158 0.829 0.989 1.299

0.70 0.90 2.264 2.769 3.890 0.885 1.056 1.388
1.30 2.171 2.660 3.764 0.838 0.998 1.312

0.75 0.95 2.555 3.111 4.320 0.887 1.059 1.391
1.35 2.360 2.882 4.027 0.845 1.008 1.322

0.80 1.00 2.628 3.198 4.428 0.890 1.062 1.396
1.40 2.456 2.994 4.166 0.852 1.016 1.331

50 0.60 0.80 2.060 2.496 3.446 0.863 1.028 1.352
1.20 1.798 2.193 3.068 0.790 0.942 1.237

0.65 0.85 2.075 2.511 3.444 0.862 1.027 1.351
1.25 1.880 2.288 3.180 0.800 0.954 1.251

0.70 0.90 2.138 2.590 3.552 0.863 1.029 1.352
1.30 1.977 2.403 3.324 0.810 0.966 1.266

0.75 0.95 2.217 2.686 3.681 0.866 1.032 1.355
1.35 2.050 2.488 3.429 0.818 0.976 1.277

0.80 1.00 2.308 2.797 3.829 0.870 1.036 1.362
1.40 2.122 2.575 3.538 0.827 0.986 1.289

Table 14: ALs of HPD CRI of λ2 for order restricted case.

Prior I Prior II

n τ1 τ2 90% 95% 99% 90% 95% 99%

40 0.60 0.80 2.296 2.792 3.883 0.876 1.044 1.366
1.20 1.957 2.399 3.399 0.808 0.962 1.257

0.65 0.85 2.302 2.798 3.877 0.875 1.043 1.365
1.25 2.348 2.854 3.948 0.815 0.971 1.270

0.70 0.90 2.152 2.628 3.676 0.874 1.041 1.363
1.30 2.065 2.526 3.551 0.823 0.980 1.281

0.75 0.95 2.436 2.963 4.100 0.876 1.043 1.365
1.35 2.243 2.736 3.810 0.829 0.988 1.290

0.80 1.00 2.500 3.040 4.201 0.878 1.046 1.369
1.40 2.333 2.842 3.945 0.836 0.995 1.298

50 0.60 0.80 1.996 2.413 3.303 0.852 1.014 1.327
1.20 1.728 2.105 2.924 0.776 0.924 1.208

0.65 0.85 2.008 2.428 3.311 0.850 1.013 1.325
1.25 1.807 2.197 3.036 0.785 0.935 1.221

0.70 0.90 2.063 2.496 3.409 0.851 1.013 1.326
1.30 1.898 2.306 3.177 0.794 0.945 1.234

0.75 0.95 2.134 2.584 3.529 0.853 1.016 1.328
1.35 1.967 2.387 3.279 0.801 0.954 1.245

0.80 1.00 2.217 2.685 3.668 0.856 1.020 1.334
1.40 2.036 2.469 3.385 0.809 0.963 1.256
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Once again in order restricted case, priors on β and λ2 are ‘almost’ non-informative, whereas

the prior on α is a non-informative in Prior I. In Prior II, the prior means of β, λ1 and λ2 are

approximately 2.0, 0.8, and 2.2 respectively, whereas the prior variances are approximately

0.01 for all the parameters in both unrestricted and order restricted cases. Hence Prior II is

an informative prior. For Prior I, we generate the failure times form the KHM with β = 2,

λ1 = 1/1.2 ⋍ 0.83, and λ2 = 1/0.45 ⋍ 2.22. However, we generate β, λ1, and λ2 from their

respective prior distribution and these generated β, λ1, and λ2 are used in KHM to generate

failure times in case of Prior II. All the results are based on 5000 simulations and M = 8000.

For different values of τ1, τ2, and n, AEs and MSEs of BEs for β, λ1, and λ2 are presented

in Table 1 for unrestricted case and in Table 8 for order restricted case. ALs of symmetric

and HPD CRIs of β, λ1, and λ2 are reported in Tables 2, 3, 4, 5, 6, and 7 for unrestricted

case and in Tables 9, 10, 11,12, 13, and 14 for order restricted case. In all the calculations

we discard those samples for which BE of any of the parameters is greater than ten times

of its original value. We have noticed that for both values of n, there is only one sample for

which BE of λ1 is greater than 8.33 in case of unrestricted inference and for Prior I, when

τ1 = 0.6 and τ2 = 0.8. We have also noticed that sometimes some of the points (less than

10 out of 8000) cover more than 99% of the weights in case of order restricted inference for

the Prior II. All these points correspond to the outliers with respect to (14). Hence, we only

accept a generated point x form (14), if 0.0003 < P (X ≤ x) < 0.997, where X has PDF

(14).

As expected the MSEs of the estimates and ALs of the CRIs of the parameters for Prior II

are less than that for Prior I. MSEs of all the unknown parameters decrease as n increases

for both the priors and for both unrestricted and restricted cases. As τ1 increases, MSEs

of β and λ1 decrease in unrestricted case. MSE of λ2 decreases as τ2 increases keeping

τ1 fixed under unrestricted framework. In the same case MSE of λ1 also decreases with

increase in τ2. It is further noticed that ALs of symmetric and HPD CRI for all unknown

parameters decrease as n increases keeping other parameters fixed. The MSEs of estimators

of all unknown parameters decrease as τ2 increases keeping other parameters fixed in the

case of order restricted inference also. They also decrease as n increases. It is also observed
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that MSEs of estimators of all unknown parameters are smaller in case of order restricted

inference than those in the unrestricted case for both the priors.

5.2 Data Analysis

Table 15: Data for illustrative example.

Stress Level Data

1 0.1526 0.3381 0.3891 0.3936 0.4684 0.4716 0.4783 0.5575
0.5685

2 0.6009 0.6144 0.6276 0.6563 0.6566 0.6591 0.6629 0.6693
0.6776 0.6948 0.6958 0.7089 0.7097 0.7113 0.7385 0.7679

Table 16: CRIs for unknown parameters for data in Table 15 under unrestricted priors.

Prior I Prior II

β λ1 λ2 β λ1 λ2

Level Type of CRI LL UL LL UL LL UL LL UL LL UL LL UL

90% Symm. CRI 1.270 3.717 0.344 1.997 1.580 3.926 1.510 2.342 0.640 0.948 1.654 2.532
HPD CRI 1.095 3.474 0.228 1.643 1.448 3.725 1.485 2.313 0.635 0.941 1.632 2.509

95% Symm. CRI 1.120 4.038 0.290 2.382 1.437 4.249 1.441 2.444 0.613 0.980 1.579 2.627
HPD CRI 1.053 3.891 0.195 2.023 1.328 4.053 1.413 2.400 0.609 0.974 1.562 2.605

99% Symm. CRI 0.842 4.665 0.208 3.519 1.156 5.034 1.322 2.634 0.562 1.045 1.439 2.852
HPD CRI 0.816 4.568 0.173 3.007 1.048 4.739 1.304 2.599 0.558 1.038 1.400 2.794

Table 17: CRIs for unknown parameters for data in Table 15 under order restricted priors.

Prior I Prior II

β λ1 λ2 β λ1 λ2

Level Type of CRI LL UL LL UL LL UL LL UL LL UL LL UL

90% Symm. CRI 1.497 3.271 0.451 1.569 1.564 3.456 1.464 2.325 0.430 1.068 1.655 2.511
HPD CRI 1.698 3.271 0.404 1.493 1.564 3.456 1.429 2.278 0.413 1.030 1.641 2.490

95% Symm. CRI 1.329 3.271 0.384 1.863 1.433 3.845 1.419 2.422 0.385 1.141 1.597 2.620
HPD CRI 1.497 3.271 0.345 1.631 1.352 3.610 1.381 2.340 0.378 1.120 1.575 2.574

99% Symm. CRI 1.057 3.271 0.289 1.888 1.190 4.349 1.381 2.592 0.320 1.306 1.472 2.812
HPD CRI 1.149 3.271 0.321 1.908 1.011 4.086 1.354 2.540 0.312 1.287 1.447 2.749

In this section we present a data analysis to illustrate the procedures described in Sec-

tion 4. The data given in Table 15 is considered for this purpose. This data is artificially

generated from KHM with β = 2, λ1 = 0.833, λ2 = 2.222, τ1 = 0.6, τ2 = 0.8, and n = 40.

The priors assumptions are same as in Section 5.1. For Prior I, the estimates of β, λ1, and

λ2 are 2.35, 0.93, and 2.61, respectively, in case of unrestricted inference, whereas in case of

order restricted inference they are 2.49, 1.01, and 2.50, respectively. For Prior II, the esti-

mates of β, λ1, and λ2 are 1.91, 0.78, and 2.08, respectively, in case of unrestricted inference,
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Figure 2: Gamma Approximation to l5(β |Data) for Prior I.

whereas in case of order restricted inference they are 1.89, 0.72, and 2.06, respectively. Sym-

metric and HPD CRI of unknown parameters for unrestricted and order restricted priors are

reported in Tables 16 and 17, respectively. Plot of marginal posterior density function of β

and its gamma approximation is provided in Figure 2 which depicts that the approximation

is quite nice at least for this data set.

6 Posterior Analysis under Other Censoring Schemes

Type-II Censoring Scheme

Based on the observed sample, the likelihood function is given in (5), where τ ∗ = tr:n, in

Case (a), n∗
1 = 0, n∗

2 = r, in Case (b), n∗
1 = n1, n

∗
2 = r − n1 and in Case (c), n∗

1 = r, n∗
2 = 0.

D1(β) and D2(β) have the same expression as given in case of Type-I censoring.

Type-I Hybrid Censoring Scheme

Based on the data from Type-I HCS, the likelihood function is same as (5), where in Case (a),

n∗
1 = 0, n∗

2 = r, in Case (b), n∗
1 = n1, n

∗
2 = r − n1, in Case (c), n∗

1 = r, n∗
2 = 0, in Case (d),

n∗
1 = 0, n∗

2 = n2, in Case (e), n∗
1 = n1, n

∗
2 = n2, and in Case (f), n∗

1 = n1, n
∗
2 = 0. Also in
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the Cases (a)-(b), τ ∗ = tr:n, where for the rest of the cases τ ∗ = τ2. D1(β) and D2(β) have

the same expression as given in case of Type-I censoring.

Type-II Hybrid Censoring Scheme

Based on the observed sample from Type-II HCS, the likelihood function is given in (5),

where in Case (a), n∗
1 = 0, n∗

2 = r, for Case (b), n∗
1 = n1, n

∗
2 = r − n1, in Case (c), n∗

1 = 0,

n∗
2 = n2, for Case (d), n∗

1 = n1, n
∗
2 = n2 and for Case (e), n∗

1 = n1, n
∗
2 = 0. τ ∗ = tr:n for

Cases (a) and (b), whereas for the rest of the cases τ ∗ = τ2. D1(β) and D2(β) have the same

expression as given in case of Type-I censoring.

Progressive Type-II Censoring Scheme

With the observed Progressive Type-II censoring data, the likelihood function is given by

(5), where for Case (a), n∗
1 = 0, n∗

2 = m, for Case (b), n∗
1 = n1, n

∗
2 = m−n1 and for Case (c)

n∗
1 = m, n∗

2 = 0. For all the cases τ ∗ = tm:n, D1(β) =
∑n∗

1

k=1(Rk+1)tβk:n+(n−n∗
1−

∑n∗

k=1Rk)τ
β
1

and D2(β) =
∑m

k=n∗

1
+1(Rk + 1)(tβk:n − τβ1 ).

In all the above cases, likelihood function are in the same form as Type-I censoring

scheme and hence, the posterior density will also be in the same form as given in (6). In all

these cases we will be able to compute the BE and construct the associated CRI for some

function of unknown parameters exactly along the same line.

7 Conclusion

A simple SSLT has been considered under the Bayesian framework. It has been assumed that

the lifetimes at each stress level have a Weibull distribution with common shape parameter

and different scale parameters. Analysis has been performed under KHM assumption. We

have discussed both unrestricted and order restricted inference of the unknown parameters.

It is noticed that in most of the cases BE of parametric function cannot be obtained in closed

form, when it exists. We have proposed algorithms based on the importance sampling to
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compute BE and to construct associate CRI of parametric function. An extensive simulation

has also been performed to judge the performance of the algorithms proposed. It is noticed

that the proposed methods are working quite well for large values of n. For small values

of n, MSEs of unknown parameters are quite large. It is also noticed that MSEs of BEs of

unknown parameters are less in case of order restricted inference than those of unrestricted

case. The proposed order restricted prior is a fairly general prior. It can be used for other

lifetime distributions as well as for other censoring schemes also. It should be mentioned

that the choice of proper priors is an important issue, which has not been pursued here and

more work is needed in that direction.

Acknowledgements: The authors would like to thank the associate editor and two un-

known reviewers for their constructive comments.

A Appendix

A.1 Integrability Conditions for Unrestricted Case

Note that A1(β) > 0 and A2(β) > 0 for all β > 0. Also n∗
1 + a1 > 0 and n∗

2 + a2 > 0. Now

∫ ∞

0

∫ ∞

0

∫ ∞

0

l2(β, λ1, λ2 |Data)dλ1dλ2dβ ∝

∫ ∞

0

l5(β |Data)dβ,

where l5(β |Data) is given in (10). Let us define

τ ∗1 =





τ1 if n− n∗
1 > 0

tn:n if n− n∗
1 = 0,

τ ∗2 =





τ2 if n− n∗ > 0

tn:n if n− n∗ = 0.

Case I : 0 < τ∗1 < τ∗2 < 1

In this case, 0 < ti:n < 1 for all i = 1, 2, . . . , n∗
1 + n∗

2 and hence, A1(β) → b1, A2(β) → b2 as

β → ∞. For some positive constants c2 and c3,

c2

∫ ∞

0

βn∗+a3−1e−(b3−c1)βdβ ≤

∫ ∞

0

l5(β |Data)dβ ≤ c3

∫ ∞

0

βn∗+a3−1e−(b3−c1)βdβ.
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Clearly l5(β |Data) is integrable if n∗ + a3 > 0 and b3 − c1 > 0. As c1 =

n∗

1
+n∗

2∑

i=1

ln ti:n < 0,

l2(β, λ1, λ2 |Data) is integrable if n∗
1 + a1 > 0, n∗

2 + a2 > 0, n∗ + a3 > 0, and b3 > 0.

Case II : 0 < τ∗1 < 1 < τ∗2

In this case, 0 < ti:n < 1 for i = 1, 2, . . . , n∗
1 and hence, A1(β) → b1 as β → ∞. As β → ∞,

A2(β)

τ ∗β2
→ (n − n∗) if n − n∗ > 0. If n − n∗ = 0,

A2(β)

τ ∗β2
→ 1 as β → ∞. Hence, for some

positive constants c2 and c3,

c2

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗

2
+a2) ln τ∗

2
)βdβ ≤

∫ ∞

0

l5(β |Data)dβ

≤ c3

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗

2
+a2) ln τ∗

2
)βdβ.

Clearly l5(β |Data) is integrable if n∗ + a3 > 0 and b3 − c1 + (n∗
2 + a2) ln τ

∗
2 > 0. Now

b3 − c1 + (n∗
2 + a2) ln τ

∗
2 = b3 −

n∗

1∑

i=1

ln ti:n +
n∗∑

i=n∗

1
+1

(ln τ ∗2 − ln ti:n) + a2 ln τ
∗
2 .

As 0 < ti:n < 1 for i = 1, 2, . . . , n∗
1 and ti:n ≤ τ ∗2 for i = n∗

1+1, n∗
1+2, . . . , n∗,

n∗

1∑

i=1

ln ti:n < 0

and
n∗∑

i=n∗

1
+1

(ln τ ∗ − ln ti:n) > 0. Therefore l2(β, λ1, λ2 |Data) is integrable if n∗
1 + a1 > 0,

n∗
2 + a2 > 0, n∗ + a3 > 0, and b3 > 0.

Case III : 1 < τ∗1 < τ∗2

In this case,

A1(β)

τ ∗1
→





n− n∗
1 if n− n∗

1 > 0

1 if n− n∗
1 = 0,

A2(β)

τ ∗2
→





n− n∗ if n− n∗ > 0

1 if n− n∗ = 0,

as β → ∞. Hence, for some positive constants c2 and c3,

c2

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗

1
+a1) ln τ∗

1
+(n∗

2
+a2) ln τ∗

2
)βdβ ≤

∫ ∞

0

l5(β |Data)dβ

≤ c3

∫ ∞

0

βn∗+a3−1e−(b3−c1+(n∗

1
+a1) ln τ∗

1
+(n∗

2
+a2) ln τ∗

2
)βdβ.
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Clearly l5(β |Data) is integrable if n∗+a3 > 0 and b3−c1+(n∗
1+a1) ln τ

∗
1 +(n∗

2+a2) ln τ
∗
2 > 0.

Now

b3 − c1 + (n∗
1 + a1) ln τ

∗
1 + (n∗

2 + a2) ln τ
∗
2

= b3 +

n∗

1∑

i=1

(ln τ ∗1 − ln ti:n) +
n∗∑

i=n∗

1
+1

(ln τ ∗2 − ln ti:n) + a1 ln τ
∗
1 + a2 ln τ

∗
2 .

As ti:n ≤ τ ∗1 for i = 1, 2, . . . , n∗
1 and ti:n ≤ τ ∗2 for i = n∗

1+1, n∗
1+2, . . . , n∗,

n∗

1∑

i=1

(ln τ ∗1 − ln ti:n)

> 0 and
n∗∑

i=n∗

1
+1

(ln τ ∗ − ln ti:n) > 0. Therefore l2(β, λ1, λ2 |Data) is integrable if n
∗
1 + a1 > 0,

n∗
2 + a2 > 0, n∗ + a3 > 0, and b3 > 0. Thus l2(β, λ1, λ2, |Data) is integrable if proper priors

are assumed on the unknown parameters for unrestricted inference case.

A.2 Integrability Conditions for Restricted Case

Note that n∗ + a2 > 0 and αD1(β) +D2(β) + b2 > 0 for all β > 0 and α ∈ (0, 1). Now

∫ ∞

0

l7(α, β, λ2 |Data)dλ2 ∝
αn∗

1
+a4−1(1− α)b4−1βn∗+a3−1e−(b3−c1)β

{αD1(β) +D2(β) + b2}
n∗+a2

. (16)

Case I : 0 < τ∗2 < 1

For fixed α ∈ (0, 1), αD1(β) + D2(β) + b2 → b2 as β → ∞, and hence, right hand side of

(16) is integrable with respect to α ∈ (0, 1) and β > 0 if n∗ + a4 > 0, b4 > 0, n∗ + a3 > 0,

and b3 > 0. Therefore l7(α, β, λ2 |Data) is integrable if proper priors are assumed on the

unknown parameters.

Case II : τ∗2 ≥ 1

For fixed α ∈ (0, 1), as β → ∞,

αD1(β) +D2(β) + b2

τ ∗β2
→





n− n∗ if n− n∗ ≥ 1

1 if n− n∗ = 0,

which is independent of α ∈ (0, 1). Hence, in this case also, right hand side of (16) is

integrable with respect to α ∈ (0, 1) and β > 0 if n∗ + a4 > 0, b4 > 0, n∗ + a3 > 0, and
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b3 > 0. Therefore l7(α, β, λ2 |Data) is integrable under the same condition as above. Thus

l7(α, β, λ2 |Data) is a proper PDF whenever proper priors are assumed on the unknown

parameters in the case of order restricted inference.
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