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Abstract

Type-I and Type-II censoring schemes are the widely used censoring schemes avail-
able for life testing experiments. A mixture of Type-I and Type-II censoring schemes
is known as hybrid censoring scheme. Different hybrid censoring schemes have been
introduced in recent years. In the last few years progressive censoring scheme also
has received considerable attention. In this paper we mainly consider the Bayesian
inference of the unknown parameters of two-parameter exponential distribution under
different hybrid and progressive censoring schemes. It is observed that in general the
Bayes estimate and the associated credible interval of any function of the unknown
parameters cannot be obtained in explicit form. We propose to use the Monte Carlo
sampling procedure to compute the Bayes estimate and also to construct the associ-
ated credible interval. Monte Carlo Simulation experiments have been performed to
see the effectiveness of the proposed method in case of Type-I hybrid censored sam-
ples. The performances are quite satisfactory. One data analysis has been performed
for illustrative purposes.
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1 Introduction

In life testing experiments often the data are censored. Type-I and Type-II are the two

most popular censoring schemes which are in use for any life testing experiment. Epstein

[10] first introduced a hybrid censoring scheme (HCS), which is a mixture of Type-I and

Type-II censoring schemes, and we will call this as the Type-I HCS. Like conventional Type-

I censoring, the disadvantage of Type-I HCS is that the inference results are obtained under

the condition that the number of observed failures is at least one, and in addition there may

be very few failures before the experiment stops. In that case, the efficiency of the estimator

will be very low. To avoid this problem, Childs et al. [8] proposed an alternative HCS named

as Type-II HCS, which guarantees a minimum number of failures during the experiment.

Since then several HCSs have been introduced in the literature. For example, Childs

et al. [5] introduced the generalized Type-I and Type-II HCSs, Balakrishnan et al. [4]

introduced unified HCS, Kundu and Joarder [11] and Childs et al. [9] introduced the pro-

gressive HCS. Another censoring scheme which has received considerable attention in recent

years is the progressive censoring scheme. It is also a more general censoring mechanism

than the traditional Type-I or Type-II censoring schemes, see for example the monograph

by Balakrishnan and Aggarwala [3] and also the recent review article by Balakrishnan [2]

in this respect. Moreover, other than the standard Type-I or Type-II progressive censoring

schemes, several other progressive schemes, like Type-I hybrid progressive censoring scheme,

Type-II progressive hybrid censoring scheme, adaptive progressive censoring scheme have

been introduced by several authors, and analysis have been performed under the assumption

of specific lifetime distribution. But most of the analysis have been performed under the

frequentist context. The main aim of this paper is to consider the Bayesian inference of

the unknown parameter(s) of a two-parameter exponential distribution when the data are

obtained from different censoring schemes.
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Rest of the paper is organized as follows. In Section 2, we briefly mention about the

different censoring schemes, and the prior information of the unknown parameters. In Section

3, we provide the posterior analysis and the Bayes estimators in details for Type-I HCSs.

Monte Carlo simulation results are presented in Section 4. In Section 5 we provide the

analysis of a Type-I hybrid censored data. In Section 6 we have indicated how the proposed

method can be implemented for other censoring schemes also, and finally we conclude the

paper in Section 7.

2 Different Censoring Schemes and Priors

2.1 Different Hybrid Censoring Schemes

Consider the following experiment. A total of n units is placed on a life testing experiment.

The lifetimes of the sample units are independent and identically distributed (i.i.d.) random

variables . Let the ordered lifetimes of these items be denoted by X1:n, · · · , Xn:n respectively.

In all the cases it is assumed that the failed items are not replaced.

Type-I HCS:

The test is terminated when a pre-chosen number, r < n, out of n items are failed, or

when a pre-determined time, T , on test has been reached, i.e. the test is terminated at a

random time T∗ = min{Xr:n, T}. For Type-I HCS, the available data will be of the form;

Case I: {x1:n < · · · < xr:n} if xr:n ≤ T

Case II: {x1:n < · · · < xd:n} if xr:n > T ,

here d denotes the number of observed failures that occur before time point T . For more

details on Type-I HCS, the readers are referred to Epstein [10] or Chen and Bhattacharya

[7].
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Type-II HCS:

In Type-II HCS, the experiment is terminated at a random time T ∗ = max{Xr:n, T},

here r and T are pre-determined as mentioned before. For more details on Type-II hybrid

censoring schemes, see Childs et al. [8].

Generalized Type-I HCS:

Fix r, k ∈ {1, 2, · · · , n} and T ∈ (0,∞), such that k < r < n. If the k -th failure occurs

before time T , terminate the experiment at min{Xr:n, T}. If the k-th failure occurs after

time T , terminate the experiment at Xk:n. Therefore, it is clear that this HCS modifies the

Type-I HCS by allowing the experiment to continue beyond time T if very few failures had

been observed up to time point T . Under this censoring scheme, the experimenter would

like to observe r failures, but is willing to accept a bare minimum of k failures.

Generalized Type-II HCS:

Before starting the experiment, fix r ∈ {1, 2, · · · , n}, and T1, T2 ∈ (0,∞), where T1 < T2.

If the r-th failure occurs before the time point T1, terminate the experiment at T1. If the r-th

failure occurs between T1 and T2, terminate the experiment atXr:n. Otherwise, terminate the

experiment at T2. This hybrid censoring scheme modifies the Type-II HCS by guaranteeing

that the experiment will be completed by time T2. Therefore, T2 represents the absolute

longest that the experimenter allows the experiment to continue. For more details about

generalized Type-I and Type-II HCSs, see Childs, Chandrasekhar and Balakrishnan [5].

2.2 Different Progressive Censoring Schemes

In this subsection we briefly describe different progressive censoring schemes and the data

available in each scheme.
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Type-I Progressive Censoring Scheme

Let T1, · · · , Tk be pre-fixed k time points, and R1, · · · , Rk−1 be pre-fixed (k − 1) non-

negative integers. Let n1 be the number of failures before time point T1. At the time point

T1, R1 units are chosen randomly from the remaining n − n1 units and removed from the

experiment. The experiment continues, and suppose n2 units fail between T1 and T2. At

the time point T2, from n − n1 − R1 − n2 remaining units, R2 units are chosen randomly

and removed from the experiment and so on. Finally at the time of Tk, all the remaining

units, say Rk, are removed and the experiment stops. It is assumed that nj is the number

of failures between Tj−1 and Tj, for j = 1, · · · , k, where T0 = 0. Clearly, the maximum

experimental time is Tk, and we have the following relation
k∑

j=1

nj +
k∑

j=1

Rj = n. It should be

noted that for Type-I progressive censoring scheme, it is always assumed, see Balakrishnan

[2], the feasibility of the progressive censoring scheme, i.e., the number of units still on test at

each censoring time is larger than the corresponding number of units planned to be removed.

Type-II Progressive Censoring Scheme

Let R1, · · · , Rm be m prefixed non-negative integers such that: m +
m∑
j=1

Rj = n. At the

point of the first failure say x1:n, R1 units are chosen at random from the remaining (n− 1)

units are removed from the experiment. Similarly, at the time of the second failure, say x2:n,

R2 units are chosen at random from the remaining n−R1 − 2 surviving units and removed,

and so on. Finally at the time of the m-th failure say xm:n, the rest of the Rm units are

removed and the experiment stops.

Type-II Progressive HCS

The integer m < n is pre-fixed at the beginning of the experiment, and R1, · · · , Rm are

pre-fixed integers, satisfying R1 + · · · + Rm +m = n. The time point T is also fixed before

hand. At the time of first failure, say x1:n, R1 of the remaining units are randomly removed.
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Similarly, at the time of the second failure, say x2:n, R2 of the remaining units are removed

and so on. If the m-th failure occurs at xm:n before time point T , the experiment stops at

the time point xm:n. On the other hand if the m-th failure does not occur before time point

T , and only J failures occur before the time point T , where 0 ≤ J ≤ m, then at the time

point T , all the remaining R∗
J units are removed and the experiment stops at the time point

T . Note that R∗
J = n− (R1 + · · ·+RJ)− J . Therefore, in presence of Type-II progressively

HCS, we have one of the following types of observations;

Case I: {x1:n < · · · < xm:n} if xm:n < T

Case II: {x1:n < · · · < xJ :n} if xJ :n < T < XJ+1:n. Here J < m. For detailed description

of the Type-II progressively HCS, see Kundu and Joarder [11].

2.3 Model Assumption and Prior Information

It is assumed that the failure times of the experimental units are independent and identi-

cally distributed two-parameter exponential random variables with the following probability

density function (PDF)

f(x;λ, µ) = λe−λ(x−µ); x > µ, −∞ < µ < ∞, λ > 0.

We make the following prior assumption on λ and µ. Note that for known µ, λ has a

conjugate gamma prior. It is assumed that λ has a gamma distribution with the shape and

scale parameters a > 0 and b > 0 respectively, i.e. it has the following PDF

π1(λ) =
ba

Γ(a)
λa−1e−bλ; λ > 0.

It is further assumed that µ has a uniform prior over (M1, M2), where M1 < M2, i.e. it has

the following PDF

π2(µ) =
1

M2 −M1

; M1 < µ < M2.
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3 Bayes Estimates and Credible Intervals: Type-I

HCS

Based on the observations from a Type-I HCS, the likelihood function can be written as

l(Data|λ, µ) ∝ λd∗e
−λ

(∑d∗

i=1
(xi:n−µ)+(n−d∗)(U−µ)

)
.

Here for Case I, d∗ = r, and U = xr:n, and for Case II, d∗ = d, 0 < d ≤ r − 1, and U = T .

Therefore, based on the priors π1(·) and π2(·) as mentioned above the joint posterior density

function of λ and µ becomes

l(µ, λ|Data) ∝ λa+d∗−1e−λ(b+
∑d∗

i=1
(xi:n−µ)+(n−d∗)(U−µ)); λ > 0, M1 < µ < M3, (1)

where M3 = min{M2, x1:n}. Note that l(µ, λ|Data) is integrable over the region D =

{(µ, λ) : λ > 0,M1 < µ < M3} if a+ d∗ > 0.

If we want to compute the Bayes estimate of any function of µ and λ, say g(µ, λ), with

respect to the squared error loss function, it will be posterior expectation of g(µ, λ), i.e.

ĝB(µ, λ) =

∫ ∞

0

∫ M3

M1

g(µ, λ)l(µ, λ|Data)dµdλ∫ ∞

0

∫ M3

M1

l(µ, λ|Data)dµdλ
, (2)

provided it exists and is finite. Unfortunately (2) cannot be obtained in explicit form in

most of the cases. Even when the integration (2) can be performed explicitly, it may not be

possible to construct the corresponding credible interval. For example, let us consider the

p-th percentile point, say ηp, of the two-parameter exponential distribution, i.e.

g(µ, λ) = ηp = µ− 1

λ
ln (1− p).

The Bayes estimate of ηp with respect to the squared error loss function exists when



8

a+ d∗ − 1 > 0 and d∗ > 0, and it is

η̂p =


A0 − A0−M1

a+d∗−2
×

(
A0−M1
A0−M3

)a+d∗−2

−1(
A0−M1
A0−M3

)a+d∗−1

−1

× {a+ d∗ − 1 + n log (1− p)} if a+ d∗ ̸= 2

A0 − (A0 −M1)
(
A0−M1

A0−M3
− 1

)−1
(n log(1− p) + 1) log

(
A0−M1

A0−M3

)
if a+ d∗ = 2,

where A0 =
1
n
×
(
b+

∑d∗

i=1 xi:n + (n− d∗)U
)
. However, the posterior distribution of ηp cannot

be obtained explicitly, and hence finding the credible interval analytically is not a trivial issue.

We propose to use the Monte Carlo sampling to construct the associated symmetric credible

interval (SCI) of ηp.

Note that (1) can be written as

l(µ, λ|Data) = l(λ|µ,Data)× l(µ|Data),

where

λ|{µ,Data} ∼ Gamma (a+ d∗, n(A0 − µ)) , (3)

l(µ|Data) =
c(a+ d∗ − 1)

(A0 − µ)a+d∗
; M1 < µ < M3,

here

A0 =
1
n
×
(
b+

∑d∗

i=1 xi:n + (n− d∗)U
)
, c =

{
1

(A0−M3)a+d∗−1 − 1
(A0−M1)a+d∗−1

}−1
.

Moreover, the posterior distribution of µ|Data has a compact and invertible cumulative

distribution function as

F (x) = P (µ ≤ x|Data) = c

{
1

(A0 − x)a+d∗−1
− 1

(A0 −M1)a+d∗−1

}
; M1 ≤ x < M3, (4)

and hence random numbers can be generated quite easily from l(µ|Data). Now we suggest to

use the following procedure to compute the Bayes estimate of g(µ, λ), and also to construct

the associated credible interval.
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Step 1: Generate µ1 from (4).

Step 2: Generate λ1 from l(λ|µ,Data) as given in (3).

Step 3: Continue the process, and obtain {(µ1, λ1), · · · , (µN , λN)}, and also obtain g(µ1, λ1),

· · ·, g(µN , λN)}.

Step 4: Compute the Bayes estimate of g(µ, λ) as

ĝB(µ, λ) =
1

N

N∑
i=1

g(µi, λi).

Step 5: To construct a 100(1-α)% SCI of g(µ, λ), first order g(µi, λi) for i = 1, · · · , N , say

g1 < g2 < · · · < gN , and obtain the SCI as (g[Nα/2], g[N(1−α/2)]). Here [x] denotes the largest

integer less than or equal to x.

Similar methodology can be applied for other censoring schemes also, and we will briefly

mention all the cases in Section 6 for completeness purposes.

4 Monte Carlo Simulations for Type-I Hybrid Cen-

soring

In this section we present some simulation results to show how the proposed Bayes estimate

and the associate credible interval behave for different sample sizes in case of Type-I hybrid

censoring. We consider g(µ, λ) = η 0.90, and through out we assume a = 2, b = 0.1, M1 =

−100, M2 = 100, and n = 10. In all the cases we have considered µ = 0 and λ = 10. We

computed the Bayes estimate both theoretically and by Monte Carlo sampling. We computed

the 90%, 95% and 99% SCIs using Monte Carlo sampling as suggested in the previous section.

We report the average estimates and mean squared errors of the Bayes estimates, and the

coverage percentages, the average lengths of SCIs based on 5000 replications and N = 5000

in each case. The results are reported in Table 1.
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It is observed that in each case as T increases the biases and the MSEs decrease, it

verifies the consistency properties of the estimates.In all the cases the coverage percentages

are also quite close to the nominal levels even for very small sizes. For fixed sample size n

and effective sample size, the coverage percentages decrease as T increases. For fixed n as

r increases the biases, MSEs and the length of the credible intervals decrease. Moreover, in

all the cases the theoretical and simulated Bayes estimates match very well.

Table 1: The average estimate (AE) and the corresponding MSE of η 0.90 and average lengths
(AL) of the three different credible intervals and the associated coverage percentages (CP)

r T
Sim. Theo. 90% 95% 99%

AE MSE AE MSE CP AL CP AL CP AL

5

0.050 0.25 0.0226 0.25 0.0227 90.46 0.394 96.16 0.517 99.72 0.865
0.075 0.24 0.0099 0.24 0.0100 89.76 0.334 96.22 0.428 99.70 0.671
0.100 0.23 0.0089 0.23 0.0089 89.88 0.324 95.60 0.414 99.62 0.646
0.125 0.23 0.0083 0.23 0.0083 90.14 0.322 95.92 0.411 99.50 0.640
0.150 0.23 0.0083 0.23 0.0083 90.14 0.322 95.92 0.411 99.50 0.640

10

0.050 0.27 0.0186 0.27 0.0187 92.60 0.389 96.30 0.506 99.12 0.827
0.075 0.25 0.0107 0.25 0.0107 90.16 0.308 95.88 0.389 99.16 0.588
0.100 0.24 0.0071 0.24 0.0071 89.74 0.262 94.74 0.326 99.24 0.478
0.125 0.24 0.0064 0.24 0.0064 89.22 0.246 95.12 0.306 99.04 0.442
0.150 0.23 0.0055 0.23 0.0055 90.20 0.238 94.86 0.295 98.92 0.424

15

0.050 0.26 0.0161 0.26 0.0161 91.96 0.377 96.06 0.488 99.24 0.791
0.075 0.25 0.0095 0.25 0.0095 91.08 0.303 95.98 0.382 99.24 0.575
0.100 0.24 0.0067 0.24 0.0068 90.96 0.265 95.66 0.330 99.28 0.482
0.125 0.24 0.0064 0.24 0.0064 90.94 0.246 95.50 0.304 98.92 0.439
0.150 0.24 0.0051 0.24 0.0051 90.08 0.228 94.86 0.281 98.88 0.401

5 Data Analysis

For illustrative purposes, we present the analysis of Type-I hybrid censoring data set. The

data set has been obtained from Bain [1]. In this case 20 items are put on a life-test and

they are observed for 150 hours. During that period 13 items fail with the following lifetime,

measured in hours: 3, 19, 23, 26, 37, 38, 41, 45, 58, 84, 90, 109, and 138. In this case n = 20,
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r = 13, and T = 150.

For this data set we obtain the Bayes estimates of η 0.90 and the associated SCIs with a =

5, b = 0.1, M1 = −100, andM2 = 100. The results are as follows: η̂ 0.90(Theoretical) = 92.80,

and η̂ 0.90(Simulation) = 93.29. The associated 90%, 95%, and 99% SCIs are (62.26, 137.39),

(58.50, 149.28), and (51.64, 179.40) respectively.

Now we will provide the empirical Bayes estimator of η 0.90. Note that in empirical Bayes

analysis a popular choice of the hyper-parameters are argument maximum of the integrated

posterior density function. In this case for a + d∗ > 1, the integrated posterior density

function, say I(a, b, M1, M2), can be written as

I(a, b, M1, M2) =
∫ ∫

D
l(µ, λ|Data)dλdµ

=
ba Γ(a+ d∗ − 1)

n (M1 −M2) Γ(a)
×
[

1

(b+ A1)a+d∗−1
− 1

(b+ A2)a+d∗−1

]
,

where D = {(µ, λ) : M1 < µ < M3, λ > 0}, A1 =
d∗∑
i=1

xi:n + (n − d∗)U − nM3, and A2 =

d∗∑
i=1

xi:n + (n − d∗)U − nM1. Here we assume M1 and M2 are known and want to maximize

I(a, b, M1, M2) with respect to a and b only. When M1 and M2 are known, we denote

I(a, b, M1, M2) by I(a, b) for simplicity. For fixed a, the value of b, say b∗(a), which maxi-

mizes the integrated posterior density function, is a positive solution of the equation

h(x) = 0,

where

h(b) = a(b+ A1)(b+ A2)
a+d∗ − a(b+ A1)

a+d∗(b+ A2)

+(a+ d∗ − 1)b(b+ A1)
a+d∗ − (a+ d∗ − 1)b(b+ A2)

a+d∗ .

Analytically we could not prove that I(a, b) does not have a maximum for finite (a, b).
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However, the contour plot of log {I(a, b)} (see Figure 1), suggests that I(a, b) does not

possess a maximum.

Next empirical Bayes estimator of η 0.90 is considered when M1 → −∞ and M2 → ∞. In

this case the integrated posterior density function exists if d∗ > 1, and it is given by

I1(a, b) =
∫ x1:n

−∞

∫ ∞

0
l(µ, λ|Data)dλdµ

=
ba Γ(a+ d∗ − 1)

nΓ(a)
× 1

(b+ A1)a+d∗−1
. (5)

In this case for fixed a, the value of b, say b∗(a), which maximizes (5) is given by

b∗(a) =
Aa

d∗ − 1
, (6)

when d∗ > 1. It can be shown, see in the Appendix, that I1(a, b
∗(a)) is an increasing function

of a. Contour plot of log {I1(a, b)} is reported in the Figure 1 along with the contour plot of

log {I(a, b)} withM1 = −100 andM2 = 100. These two contour plots are not distinguishable

as we take quite large range for the prior distribution of µ.

Since it seems, there does not exist any maximizers of the integrated posterior density

function, we consider some large values of a and b for data analysis purpose, and the results

are as follows:

Case 1: a = 250 and b = 13354.17: η̂ 0.90(Theoretical) = 123.75, η̂ 0.90(Simulation) = 123.62.

The associated 90%, 95%, and 99% SCIs are (110.79, 137.39), (108.37, 140.49), and (103.56,

145.73).

Case 2: a = 500 and b = 26708.33: η̂ 0.90(Theoretical) = 123.29, η̂ 0.90(Simulation) = 123.18.

The associated 90%, 95%, and 99% SCIs are (113.20, 132.86), (111.36, 135.11), and (107.41,

138.53).

Case 3: a = 1000 and b = 53416.67: η̂ 0.90(Theoretical) = 123.35, η̂ 0.90(Simulation) = 123.24.
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Figure 1: Contour plots of the logarithm of the integrated posterior density functions.

The associated 90%, 95%, and 99% SCIs are (115.43, 130.39), (113.38, 131.94), and (109.30,

134.60).

6 Other Censoring Schemes

The results corresponding to Type-II HCS, Generalized Type-I HCS and Generalized Type-

II HCS can be obtained in a very similar way as the Type-I HCS. Now we will briefly discuss

the Bayesian inference of the unknown parameters based on the observations obtained from

different progressive censoring schemes.

Type-I Progressive Censoring Scheme

Based on the observations from a Type-I Progressive Censoring Scheme (PCS), the like-
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lihood function can be written as

l(Data|λ, µ) ∝ λme−λW (µ),

here

W (µ) =
m∑
i=1

(xi:n − µ) +
k∑

j=1

Rj(Tj − µ) =
m∑
i=1

xi:n +
k∑

j=1

RjTj − nµ.

The posterior density function of λ and µ can be written as

l(µ, λ|Data) = l(λ|µ,Data)× l(µ|Data); λ > 0, M1 < µ < M3,

here

λ|{µ,Data} ∼ Gamma (a+m, b+W (µ)) ,

l(µ|Data) = c1 (a+m− 1)

(A3 − µ)a+m
; M1 < µ < M3,

where

A3 =
1

n
×

b+ m∑
i=1

xi:n +
k∑

j=1

RjTj

 and c1 =

{
1

(A3 −M3)a+m−1
− 1

(A3 −M1)a+m−1

}−1

.

Therefore, in this case also the Bayes estimate and the associated credible interval can be

constructed in a very similar way.

Type-II Progressive Censoring Scheme

Based on the data obtained from a Type-II PCS, the likelihood function in this case can

be written as

l(Data|λ, µ) ∝ λme−λW (µ),

here

W (µ) =
m∑
i=1

(xi:n − µ) +
m∑
i=1

Rj(xi:n − µ) =
m∑
i=1

(Ri + 1)xi:n − nµ.

The posterior density function of λ and µ can be written as

l(µ, λ|Data) = l(λ|µ,Data)× l(µ|Data); λ > 0, M1 < µ < M3,
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where

λ|{µ,Data} ∼ Gamma (a+m, b+W (µ)) ,

l(µ|Data) = c2 (a+m− 1)

(A4 − µ)a+m
; M1 < µ < M3,

A4 =
1

n
×
(
b+

m∑
i=1

(Ri + 1)xi:n

)
, and c2 =

{
1

(A4 −M3)a+m−1
− 1

(A4 −M1)a+m−1

}−1

.

Therefore, in this case also the Bayes estimate and the associated credible interval can be

constructed in a very similar way.

Type-II Progressive HCS

Based on the observations from a Type-II Progressive HCS, the likelihood function can

be written as

l(Data|λ, µ) ∝ λd∗e−λW (µ),

where for Case I, d∗ = m and W =
m∑
i=1

(1 + Ri)(xi:m:n − µ), and for Case II, d∗ = J , and

W =
∑J

i=1(1 + Ri)(xi:m:n − µ) + (T − µ)R∗
J . The posterior density function of λ and µ can

be written as

l(µ, λ|Data) = l(λ|µ, Data)× l(µ|Data); λ > 0, M1 < µ < M3,

where

λ|{µ,Data} ∼ Gamma (a+ d∗, b+W (µ))

l(µ|Data) = c3 (a+ d∗ − 1)

(A5 − µ)a∗+d
; M1 < µ < M3,

A5 =


1
n
× (b+

∑m
i=1(1 +Ri)xi:m:n) for Case I

1
n
×
(
b+

∑J
i=1(1 +Ri)xi:m:n +R∗

JT
)

for Case II
,

and

c3 =

{
1

(A5 −M3)a+d∗−1
− 1

(A5 −M1)a+d∗−1

}−1

.

Therefore, in this case also the Bayes estimate and the associated credible interval can be

constructed in a very similar way.
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7 Conclusions

In this paper we have considered the Bayesian inference of the two-parameter exponential

model when the data are hybrid or progressively censored. We have assumed a uniform prior

on the location parameter and gamma prior on the scale parameter. The Bayes estimates

may not be obtained explicitly in many cases, even when they exist, and we have suggested

to use the Monte Carlo sampling to compute simulation consistent Bayes estimators and also

to construct the credible intervals. Monte Carlo simulation results suggest that the proposed

Bayes estimators work quite well.
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Appendix

In this section we provide a formal proof that J(a) = nI1(a, b
∗(a)), where b∗(a) =

Aa

d∗ − 1
is

an increasing function of a. Note that

J(a) =
Γ(a+ d∗ − 1)

(
Aa

d∗−1

)a
Γ(a)

(
Aa

d∗−1
+ A

)a+d∗−1 .

Now we will show that log J(a) is an increasing function of a. Let us consider

d ln J(a)

da
=

d∗−2∑
i=0

1

a+ i
− log

(
1 +

d∗ − 1

a

)
. (7)

We will show that the right hand side of (7) is positive and we will show it by induction on

d∗. Note that for d∗ = 2, the right hand side of (7) is clearly positive. Now consider d∗ = 3,
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and let

f(a) = log(1 +
2

a
)− log(1 +

1

a
)− 1

a+ 1
.

Using x =
1

a
, consider the function

g(x) = f
(
1

a

)
= log(1 + 2x)− log(1 + x)− x

x+ 1
,

therefore for x ≥ 0,

g′(x) =
2

1 + 2x
− 1

1 + x
− 1

(1 + x)2
= − x

(1 + 2x)(1 + x)2
≤ 0.

This implies that g(x) is a decreasing function of x for x ≥ 0. Since g(0) = 0, g(x) ≤ 0 for

x ≥ 0. Moreover, since log(1 + x) ≤ x, for x ≥ 0, we have

log(1 + 2x) ≤ log(1 + x) +
x

1 + x
≤ x+

x

1 + x
. (8)

From (8) it immediately follows

1

a
+

1

a+ 1
− log(1 +

2

a
) ≥ 0.

Hence log J(a) is an increasing function of a for d∗ = 3. Let it be true for d∗ = m and will

prove that it is true for d∗ = m+ 1 also. Let

fm(a) = log(1 +
m− 1

a
)− log(1 +

1

a
)−

m−2∑
i=1

1

a+ i

fm+1(a) = log(1 +
m

a
)− log(1 +

1

a
)−

m−1∑
i=1

1

a+ i

= fm(a) + hm(a),

where

hm(a) = log
(
1 +

m

a

)
− log

(
1 +

m− 1

a

)
− 1

a+m− 1
.

Using x =
1

a
we consider the new function

gm(x) = hm

(
1

a

)
= log(1 +mx)− log(1 + (m− 1)x)− x

1 + (m− 1)x
.
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Since for x ≥ 0,

g′m(x) =
m

1 +mx
− m− 1

1 + (m− 1)x
− 1

(1 + (m− 1)x)2
=

−x

(1 +mx)(1 + (m− 1)x)
≤ 0,

gm(x) is an decreasing function of x. As gm(0) = 0, gm(x) ≤ 0 for all x ≥ 0, ⇒ hm(a) ≤ 0

for a ≥ 0. Since fm(a) ≤ 0 due to induction hypothesis, fm+1(a) ≤ 0. Therefore,

log
(
1 +

m

a

)
≤ log

(
1 +

1

a

)
+

m−1∑
i=1

1

a+ i
≤

m−1∑
i=0

1

a+ i
,

hence
m−1∑
i=0

1

a+ i
− log

(
1 +

m

a

)
≥ 0.
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