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Abstract

Epstein [9] introduced the Type-I hybrid censoring scheme as a mixture of Type-I and
Type-II censoring schemes. Childs et al. [5] introduced the Type-II hybrid censoring scheme
as an alternative to Type-I hybrid censoring scheme, and provided the exact distribution of
the maximum likelihood estimator of the mean of a one parameter exponential distribution
based on Type-II hybrid censored samples. The associated confidence interval also has been
provided. The main aim of this paper is to consider a two-parameter exponential distribution,
and to derive the exact distribution of the maximum likelihood estimators of the unknown
parameters based on Type-II hybrid censored samples. The marginal distributions and the
exact confidence intervals are also provided. The results can be used to derive the exact
distribution of the maximum likelihood estimator of the percentile point, and to construct the
associated confidence interval. Different methods are compared using extensive simulations
and one data analysis has been performed for illustrative purposes.
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1 Introduction

In life testing experiments, often the data are censored. Among the different censoring schemes,

Type-I and Type-II censoring schemes are the two most popular censoring schemes. In Type-I

censoring scheme, the experimental time is fixed, but the number of failures is random, whereas
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in Type-II censoring scheme, the experimental time is random but the number of failures is fixed.

A mixture of Type-I and Type-II censoring scheme is known as the hybrid censoring scheme and

it can be described as follows: Suppose a total of n units is placed on a life testing experiment,

and the lifetimes of the sample units are independent and identically distributed (i.i.d.) random

variables. Let the ordered lifetimes of these items are denoted by T1:n, . . . , Tn:n respectively. The

test is terminated when r, a pre-chosen number, out of n items are failed, or when a pre-determined

time T on test has been reached, i.e., the test is terminated at the time point T∗ = min{Tr:n, T}.

This particular censoring scheme was introduced by Epstein [9], and it is popularly known now as

the Type-I hybrid censoring scheme. It has been used quite extensively in reliability acceptance

test in MIL-STD-781C [12].

Like conventional Type-I censoring scheme, the main disadvantage of Type-I hybrid censoring

scheme is that most of the inferential results are obtained under the condition that the number of

observed failures is at least one, and moreover, there may be very few failures at the termination

point of the experiment. In that case the efficiency of the estimator(s) may be very low. Due

to this reason, Childs et al. [5] introduced the Type-II hybrid censoring scheme, as an alternative

to the Type-I hybrid censoring scheme, that would terminate the experiment at the time point

T ∗ = max{Tr:n, T}. It has the advantage of guaranteeing that at least r failures are observed at the

end of the experiment. Childs et al. [5] considered the exact distribution of the maximum likelihood

estimator (MLE) of the mean of an one-parameter exponential distribution based on a Type-II

hybrid censored samples. The exact confidence interval of the mean also has been obtained based

on the exact distribution. Recently, Banerjee and Kundu [3] considered the statistical inference of

the two-parameter Weibull distribution based on Type-II hybrid censored samples. Very recently,

Childs et al. [6] obtained the exact distributions of the MLEs of the scale and location parameters

of a two-parameter exponential distribution, when the data are Type-I hybrid censored.

The purpose of this paper is to consider a Type-II hybrid censoring scheme when the lifetime

distributions of the n experimental units are assumed to be i.i.d. two-parameter exponential distri-

bution. It is assumed that the probability density function of the lifetime of an experimental unit,
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for θ > 0, is

f(t;µ, θ) =
1

θ
e−

t−µ
θ if t > µ, (1)

and 0 otherwise. First we obtain the MLEs of the unknown parameters of µ ∈ R and θ > 0,

and provide the joint moment generating function. Based on the joint moment generating function

(MGF), we obtain the marginal MGFs, and the marginal distribution functions of the MLEs. From

the marginal distribution functions, using the same idea as in Chen and Bhattacharya [4] the

confidence interval of θ is obtained by solving non-linear equations. Since the confidence interval

based on the MLEs is quite difficult to implement, we propose to use different bootstrap confidence

intervals, whose implementation are quite straight forward.

Rest of the paper is organized as follows. In Section 2, we present the maximum likelihood

estimators (MLEs) of the unknown parameters, and the joint and marginal moment generating

functions of the MLEs are derived in the same section. Different confidence intervals are proposed

in Section 3. Simulation results and the analysis of a data set are presented in Section 4. Finally

we conclude the paper in Section 5. Proof of the theorems are provided in the appendix.

2 Maximum Likelihood Estimators and Their Marginal

Distributions

Let N be the number of units failed before the time T , then the likelihood of the observed data is

given by

L (µ, θ |Data) =


n!

(n−N)! θN
e−

1
θ

PN
i=1(ti:n−µ)− 1

θ
(n−N)(T−µ) if tr:n < T

n!
(n−r)! θr e

− 1
θ

Pr
i=1(ti:n−µ)− 1

θ
(n−r)(tr:n−µ) if tr:n > T.

(2)

From (2), it is clear that MLE of θ does not exist when r = 1 and N = 0. So for r = 1, the

conditional MLEs, conditioning on the event {N ≥ 1} is given by

µ̂ = T1:n,

θ̂ =
1

N

{
N∑
i=2

Ti:n − (n− 1)T1:n + (n−N)T

}
.

(3)
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For r ≥ 2, MLEs of the unknown parameters exist for all values of N and they are given by

µ̂ = T1:n,

θ̂ =



1

N

{
N∑
i=2

Ti:n − (n− 1)T1:n + (n−N)T

}
if Tr:n < T

1

r

{
r−1∑
i=2

Ti:n − (n− 1)T1:n + (n− r + 1)Tr:n

}
if Tr:n > T .

(4)

Next we consider the distributions of the MLEs. When r = 1, MLE of θ does not exist if N = 0.

So for r = 1, we consider the conditional distribution of θ̂ conditioning on the event {N ≥ 1}.

For r ≥ 2, MLE of θ exists for all values of N . In order to find the distribution of µ̂ and θ̂, we

first find the joint moment generating function (MGF) of θ̂ and µ̂, and then inverting it to get the

distribution of the MLEs.

Theorem 2.1. For r = 1, the conditional joint MGF of (θ̂, µ̂) conditioning on the event {N ≥ 1}

exists for all −∞ < ω1 <∞ and −∞ < ω2 <∞ and is given by

E[eω1
bθ+ω2 bµ |N ≥ 1]

= (1− qn)−1

c10
eµ10ω1+µω2(

1 + ω1

λ10
− ω2

ν0

) − d10
eTω2(

1 + ω1

λ10
− ω2

ν0

) +
eµω2 − qneTω2(

1− ω1

λn

)αn (
1− ω2

νn−1

)

+
n−1∑
i=2

i−1∑
j=0

cij eµijω1+µω2(
1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

) − dij eTω2(
1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

)


+
n−2∑
j=0

cnj eµnjω1+µω2(
1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

) − dnj eTω2(
1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

)

 .
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For r ≥ 2, the joint MGF of θ̂ and µ̂ exists for ω1 <
r

θ
and ω2 <

1

θ
+
n− 1

r
ω1 and is given by

E[eω1
bθ+ω2 bµ]

=
qn eTω2(

1− ω1

λ1

)α1
(

1− ω2

νn−1

) +
eµω2 − qneTω2(

1− ω1

λn

)αn (
1− ω2

νn−1

)
+

n−1∑
i=1

i−1∑
j=0

cij
eµij ω1+µω2(

1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

) − n−1∑
i=1

i−1∑
j=0

dij
eTω2(

1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

)
+

n−2∑
j=0

cnj
eµnj ω1+µω2(

1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

) − n−2∑
j=0

dnj
eTω2(

1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

)
when µ < T and for µ ≥ T

E[eω1
bθ+ω2 bµ] =

eµω2(
1− ω1

λ1

)α1
(

1− ω2

νn−1

) , (5)

where
q = e−

T−µ
θ

µij =


1

r
(n− j − 1) (T − µ)

1

i
(n− j − 1) (T − µ)

for j = 0, · · · , i− 1, i = 1, · · · , r − 1

for j = 0, · · · , i− 1, i = r, · · · , n.

(6)

αi =


r − 1

i− 1

for i = 1, · · · , r − 1

for i = r, · · · , n

νi =
i+ 1

θ
for i = 0, · · · , n− 1

λi =


r

θ

i

θ

for i = 1, · · · , r − 1

for i = r, · · · , n

λij =


r (j + 1)

(n− j − 1) θ

i (j + 1)

(n− j − 1) θ

for j = 0, · · · , i− 1, i = 1, · · · , r − 1

for j = 0, · · · , i− 1, i = r, · · · , n

cij = (−1)i−j−1

(
n

i

)(
i

j + 1

)
qn−j−1 for j = 0, · · · , i− 1, i = 1, · · · , n

dij = (−1)i−j−1

(
n

i

)(
i

j + 1

)
qn for j = 0, · · · , i− 1, i = 1, · · · , n

(7)
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Remark 1. Note that as T →∞, the joint MGF of θ̂ and µ̂ at (ω1, ω2) reduces to

eµω2(
1− ω1

λn

)αn (
1− ω2

νn−1

)
which is the joint MGF of θ̂ and µ̂ in case of complete sample. That means as T → ∞, 2nθ̂/θ

is distributed as χ2 random variable with 2n − 2 degrees of freedom, n(µ̂ − µ)/θ is a standard

exponential random variable, and they are independently distributed.

Remark 2. For r ≥ 2, if T is smaller than the left end point of the support µ, i.e., T ≤ µ, the

joint MGF of θ̂ and µ̂ at (ω1, ω2), as given in (5), becomes the joint MGF of θ̂ and µ̂ in case of

ordinary Type-II censoring scheme. In this case 2rθ̂/θ is distributed as χ2 random variable with

2r − 2 degrees of freedom, n(µ̂ − µ)/θ is a standard exponential random variable, and they are

independently distributed.

Remark 3. It is obvious from the expression of the joint MGF of θ̂ and µ̂ that the marginal

distributions belong to the generalized mixtures of the well known distributions.

From the MGF of θ̂, PDF of θ̂ can be obtained by using the inversion technique as suggested

by Chen and Bhattacharya [4], and it is as follows:

Theorem 2.2. For r = 1, conditional PDF of θ̂ conditioned on {N ≥ 1} for −∞ < t <∞ is

fbθ (t) = g1 (t;αn, λn) + (1− qn)−1

[
c10 g1 (−t+ µ10; 1, λ10)− d10 g1 (−t; 1, λ10)

+
n−1∑
i=2

i−1∑
j=0

{cij g2 (t− µij;αi, λi, λij)− dij g2 (t;αi, λi, λij)}

+
n−2∑
j=0

{cnj g2 (t− µnj;αn, λn, λnj)− dnj g2 (t;αn, λn, λnj)}
]
. (8)

For r ≥ 2, the PDF of θ̂ for −∞ < t <∞ is

fbθ (t) =


g3(t) if µ < T

g1 (t;α1, λ1) if µ ≥ T

(9)
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where,

g1 (t;α, λ) =


λα

Γ (α)
e−λttα−1 if t ∈ (0,∞)

0 otherwise

g2 (t;α, λ1, λ2) =
α−1∑
k=0

pk g1 (t;α− k, λ1) +

(
1−

α−1∑
k=0

pk

)
g1 (−t, 1, λ2) for t ∈ R ,

pk = λ2

λ1+λ2

(
λ1

λ1+λ2

)k
.

g3(t) = qn g1 (t;α1, λ1) + (1− qn) g1 (t;αn, λn)

+
n−1∑
i=1

i−1∑
j=0

{cij g2 (t− µij;αi, λi, λij)− dij g2 (t;αi, λi, λij)}

+
n−2∑
j=0

{cnj g2 (t− µnj;αn, λn, λnj)− dnj g2 (t;αn, λn, λnj)} .

Note that g3(t) depends on µij, αi, λi, and λij; i, j = 1, . . . , n, however, for brevity we do not

write it explicitly.

Since the integration of density function over the whole range is one, we have, from the Theo-

rem 2.2, the following identity.

n−1∑
i=1

i−1∑
j=0

(cij − dij) +
n−2∑
j=0

(cnj − dnj) = 0 .

Theorem 2.3. When −∞ < t < ∞, for r = 1, conditional PDF of µ̂ conditioning on {N ≥ 1} is

given by

fbµ (t) = (1− qn)−1

[
c10 g1 (t− µ; 1, ν0)− d10g1 (t− T ; 1, ν0) + g1 (t− µ; 1, νn−1)

−qng1 (t− T ; 1, νn−1) +
n−1∑
i=2

i−1∑
j=0

{cij g1 (t− µ; 1, νj)− dij g1 (t− T ; 1, νj)}

+
n−2∑
j=0

{cnj g1 (t− µ; 1, νj)− dnj g1 (t− T ; 1, νj)}
]
,
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and for r ≥ 2, PDF of µ̂ is

fbµ (t) =


g4(t− µ) if µ < T

g1 (t− µ; 1, νn−1) if µ ≥ T ,

where

g4(t) = g1 (t; 1, νn−1) +
n−1∑
i=1

i−1∑
j=0

{cij g1 (t; 1, νj)− dij g1 (t+ µ− T ; 1, νj)}

+
n−2∑
j=0

{cnj g1 (t; 1, νj)− dnj g1 (t+ µ− T ; 1, νj)} .

Note that g4(t) depends on νi; i = 1, . . . , n, however, for brevity we do not write it explicitly.

From PDFs of θ̂, the corresponding moments can be easily obtained. The first two moments of θ̂

are as follows. For r = 1,

E[θ̂] = θ + θA1 (µ, θ) + (1− qn)−1B1 (µ, θ) ,

E[θ̂2] = θ2 + θ2C1 (µ, θ) + θD1 (µ, θ) + (1− qn)−1E1 (µ, θ) .

For r ≥ 2,

E[θ̂] =


θ + θA2 (µ, θ) +B1 (µ, θ) if µ < T(

1− 1

r

)
θ if µ ≥ T ,

E[θ̂2] =


θ2 + θ2C2 (µ, θ) + θD2 (µ, θ) + E1 (µ, θ) if µ < T(

1− 1

r

)
θ2 if µ ≥ T,
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where

A1 (µ, θ) =
1

1− qn

[ n∑
i=2

i−1∑
j=0

j 6=n−1

(cij − dij)

{
i−2∑
k=0

pjk
i− k − 1

i
−

(
1−

i−2∑
k=0

pjk

)
n− j − 1

i(j + 1)

}

−1

r
(c10 − d10)(n− 1)− 1− qn

n

]
,

B1 (µ, θ) =
n∑
i=1

i−1∑
j=0

cijµij ,

C1 (µ, θ) =

[ n∑
i=1

i−1∑
j=0

j 6=n−1

(cij − dij)

{
i−2∑
k=0

pjk
i− k − 1

(i− k)−1i2
+ 2

(
1−

i−2∑
k=0

pjk

)
n− j − 1

i2(j + 1)2

}

+2(n− 1)(c10 − d10)− 1− qn

n

]
(1− qn)−1 ,

D1 (µ, θ) = 2 (1− qn)−1

[ n∑
i=1

i−1∑
j=0

j 6=n−1

cijµij

{
i−2∑
k=0

pjk
i− k − 1

i
−

(
1−

i−2∑
k=0

pjk

)
n− j − 1

i(j + 1)

}

+(n− 1)c10µ10

]
,

E1 (µ, θ) =
n∑
i=1

i−1∑
j=0

cijµ
2
ij ,

A2 (µ, θ) = qn
(

1

n
− 1

r

)
− 1

n

+
r−1∑
i=1

i−1∑
j=0

(cij − dij)

{
r−2∑
k=0

pjk
r − k − 1

r
−

(
1−

r−2∑
k=0

pjk

)
n− j − 1

r(j + 1)

}

+
n∑
i=r

i−1∑
j=0

j 6=n−1

(cij − dij)

{
i−2∑
k=0

pjk
i− k − 1

i
−

(
1−

i−2∑
k=0

pjk

)
n− j − 1

i(j + 1)

}
,

C2 (µ, θ) =
r−1∑
i=1

i−1∑
j=0

(cij − dij)

{
r−2∑
k=0

pjk
r − k − 1

r2(r − k)−1
+ 2

(
1−

r−2∑
k=0

pjk

)
(n− j − 1)2

r2(j + 1)2

}

+
n∑
i=r

i−1∑
j=0

j 6=n−1

(cij − dij)

{
i−2∑
k=0

pjk
(i− k − 1)

i2(i− k)−1
+ 2

(
1−

i−2∑
k=0

pjk

)
(n− j − 1)2

i2(j + 1)2

}

−q
n

r
− 1− qn

n
,
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D2 (µ, θ) = 2
r−1∑
i=1

i−1∑
j=0

cijµij

{
r−2∑
k=0

pjk
r − k − 1

r
−

(
1−

r−2∑
k=0

pjk

)
n− j − 1

r(j + 1)

}

+2
n∑
i=r

i−1∑
j=0

j 6=n−1

cijµij

{
i−2∑
k=0

pjk
i− k − 1

i
−

(
1−

i−2∑
k=0

pjk

)
n− j − 1

i(j + 1)

}
.

The CDFs of θ̂ and µ̂ can be easily obtained from their respective PDFs. The CDFs are as

follows. When −∞ < t <∞, the CDF of θ̂ for r = 1 is

Fbθ(t) = Γ∗(λn t, αn) + (1− qn)−1

[
c10 e

−λ10 〈µ10−t〉 − d10 e
−λ10 〈−t〉

+
n−1∑
i=2

i−1∑
j=0

{cij G(t;µij, αi, λi, λij)− dij G (t; 0, αi, λi, λij)}

+
n−2∑
j=0

{cnj G(t;µnj, αn, λn.λnj)− dnj G (t; 0, αn, λn, λnj)}
]

,

and for r ≥ 2, the CDF is

Fbθ(t) =



qn Γ∗(λ1 t, α1) + (1− qn) Γ∗(λn t, αn)

+
n−1∑
i=2

i−1∑
j=0

{cij G(t;µij, αi, λi, λij)− dij G (t; 0, αi, λi, λij)}

+
n−2∑
j=0

{cnj G(t;µnj, αn, λn.λnj)− dnj G (t; 0, αn, λn, λnj)} if µ < T

Γ∗(λ1 t, α1) if µ ≥ T ,

where, 〈x〉 denotes the max{0, x}, and

Γ∗(t; α) =


0 if t ≤ 0∫ t

0

1

Γ(α)
e−xxα−1dx if t > 0 ,

G(t; µ, α, λ1, λ2) =



(
1−

α−1∑
k=0

pk

)
(1− Γ∗(−λ2 t; 1)) if t ≤ 0

1−

(
α−1∑
k=0

pk(1− Γ∗(λ1 t; α− k)

)
if t ≤ 0 .

The CDF of µ̂ for r = 1 is

Fbµ(t) =


0 if t < µ

(1− qn)−1 [1− e−nθ (t−µ)
]

if µ ≤ t < T
1 if t ≥ T ,
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and for r ≥ 2, the same is

Fbµ(t) =

{
0 if t < µ
1− e−nθ (t−µ) if t ≥ µ .

Note that the pth quantile of the exponential distribution given in (1) is ηp = µ + ap θ, where

ap = −ln(1 − p). Therefore the MLE of ηp can be found by replacing µ and θ by their respective

MLEs. The moment generating function of the MLE of ηp, say η̂p can be obtained easily from the

joint MGF of µ̂ and θ̂ in Theorem 2.1.

3 Confidence Intervals:

Note that the distribution of µ̂ is same as that of the lowest order statistic and this has been

extensively studied in the literature, hence we do not pursue it here. In this section, we present

different methods for construction of confidence intervals (CIs) for the unknown parameter θ. From

the Theorem 2.2, we can find the approximate CI for θ. However, as PDF of θ̂ is quite complicated,

we also present the bootstrap CI for the same parameter.

3.1 Approximate Confidence interval:

From CDF of θ̂, approximate CI can be found, based on the assumption that CDF of θ̂ is a

strictly decreasing function of θ. Several authors including Chen and Bhattacharyya [4], Gupta and

Kundu [10], Kundu and Basu [11], Childs et al. [5], and Balakrishnan et al. [2] used this method

to find the CI of θ. Though it is difficult to verify the assumption, an extensive numerical study

supports the monotonicity assumption.

Suppose θ̂obs is the estimate of θ. Then a two-sided 100(1− α)% approximate CI, say (θL, θU),

for θ can be constructed by solving the equations

FθL(θ̂obs) = 1− α

2
and FθU (θ̂obs) =

α

2

for θL(the lower bound of θ) and θU(the upper bound of θ) replacing µ by its MLE. However, they

are nonlinear equations, and we need to solve them by some numerical procedure, e.g., bisection

method or Newton-Raphson method.
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3.2 Bootstrap Confidence Interval:

The exact CIs presented in the previous section are computationally quite complicated, specially

when sample size is large. So we consider the bootstrap CIs. Here we consider two types of

bootstrap CIs, viz., percentile bootstrap CI and Bias adjusted percentile (BCa) interval; see Efron

and Tibshirani [8] for details.

3.2.1 Bootstrap sample:

Step 1. Given T , r, n, and the original Type-II sample, µ̂ and θ̂ are obtained from (3) or (4).

Step 2. Based on T , r, n, µ̂, and θ̂, a random sample of size n from Uniform(0,1) distribution is

generated, and order them to get (U1:n, . . . , Un:n).

Step 3. Let

t∗i:n = µ̂− θ̂ log Ui:n

Step 4. If t∗r:n < T , then find N1 such that

t∗N1:n < T ≤ t∗N1+1:n , and set N∗ =

{
N1 if t∗r:n < T
r if t∗r:n ≥ T

.

Now, {t∗1:n, . . . , t
∗
N∗:n} is the bootstrap sample.

Step 5. Based on n, T , r, and the bootstrap sample, µ̂∗ and θ̂∗ are obtained form (3) or (4).

Step 6. Step 1-5 are repeated B times, and θ̂∗’s are ordered in ascending order to obtain the bootstrap

sample {
θ̂∗[1], θ̂∗[2], . . . , θ̂∗[B]

}
.

3.2.2 Percentile bootstrap CI:

A two-sided 100(1− α)% bootstrap confidence interval for θ is(
θ̂∗[

α
2
B], θ̂∗[(1−

α
2

)B]
)

,

where, [x] denotes the largest integer less than or equal to x.
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3.2.3 Bias adjusted percentile (BCa) interval:

A two-sided 100(1− α)% BCa bootstrap confidence interval for θ is(
θ̂∗[α1B], θ̂∗[α2B]

)
,

where,

α1 = Φ

{
ẑ0 +

ẑ0 + z1−α/2

1− a(ẑ0 + z1−α/2)

}
and α2 = Φ

{
ẑ0 +

ẑ0 + zα/2
1− a(ẑ0 + zα/2)

}
.

Here Φ(· ) is the CDF of the standard normal distribution, zα is the upper α-point of standard

normal distribution and

ẑ0 = Φ−1

{
# of θ̂∗[j] < θ̂

B

}
, j = 1, . . . , B.

A estimate of the acceleration a is

â =

∑N∗

i=1

[
θ̂(·) − θ̂(i)

]3
6
{∑N∗

i=1

[
θ̂(·) − θ̂(i)

]2}3/2
,

where θ̂(i) is the MLE of θ based on the original sample with the ith observation deleted, and

θ̂(·) =
1

N∗

N∗∑
i=1

θ̂(i) .

4 Simulation Results and Data Analysis

In this section the results of Monte Carlo simulation is presented to study the performance of the

inference procedures described in the Sections 3. We choose the value of the location parameter µ

to be zero and different values for the scale parameter θ, viz., 1.00, 2.00, 3.00, 4.00 and 5.00. We

also take n = 20, r = 16 and different choices for T , viz., 1.5, 2.5, 3.5. The coverage percentage

of different confidence interval discussed in the section 3 are calculated based on the 10, 000 Monte

Carlo simulations and B = 1000. These values are presented in the Tables 2, 3 and 4.

It is clear from the Table 2 that the approximate method of constructing confidence interval

is always maintaining its coverage percentage to its pre-fixed nominal level. Among the bootstrap
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methods for constructing confidence interval, adjusted percentile bootstrap method is better then

percentile bootstrap method with respect to the coverage percentage. From the Table 3, we can see

that the coverage percentage of the percentile bootstrap method is quite lower than its pre-fixed

nominal level, while the same of the adjusted bootstrap method is somewhat close to its nominal

level (see Table 4). Though approximate method of construction of confidence interval is always

better with respect to coverage percentage and average length, it is very complicated to calculate

specially when n is large. So we suggest to use the BCa bootstrap CI for the large values of n.

Next, we consider a data set to illustrate the procedures described in the previous sections. Here

we consider the data provided in Bain [1]. Suppose a sample of 20 items are put on the test and

the test is terminated after 150 hours. There are 13 failures within this time and the failures times

are 3, 19, 23, 26, 37, 38, 41, 45 ,58, 84, 90, 109, and 138. To make an artificial hybrid Type-II data

from this data set one can take any r less than or equal to 13. Here we take r = 12. Under the

assumption that lifetime has two-parameters exponential distribution, MLEs of µ and θ are 3 and

130.85 respectively. Different types of confidence intervals are reported in the Table 1.

5 Conclusion

In this paper, we have considered the Hybrid Type-II censoring scheme, when life times have two-

parameters exponential distribution, under frequentist approach. We have found the MLEs for both

the parameters. We have considered different methods for construction of confidence interval. We

have seen that the approximate and BCa bootstrap methods of construction of confidence interval

are quite good. So we recommend to use BCa bootstrap method of construction of confidence

interval specially when n is large.
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A Appendix

We need the the following lemmas to prove the theorems.

Lemma A.1. Let T1:n < . . . < Tn:n be the order statistics of a random sample of size n from a

continuous distribution with PDF f(x) and the corresponding CDF is F (· ). Let T be a pre-fixed

number such that F (T ) is positive and N denote the number of order statistics less than or equal

to T . The conditional joint PDF of T1:n, . . . , TN :n conditioned on the event N = i is given by

f (t1, t2, . . . , ti |N = i) =
n!

(n− i)!P [N = i]

i∏
j=1

f (tj) {1− F (T )}n−i

if t1 < . . . < ti < T ,

where F (· ) is the distribution function of f(· ).

Proof: See [5].

Lemma A.2. Let T1:n < . . . < Tn:n be the order statistics of a random sample of size n from a

continuous distribution with PDF f(x) and the corresponding CDF is F (· ). Let T be a pre-fixed

number such that F (T ) is positive and N denote the number of order statistics less than or equal

to T . Let r ∈ {1, 2, . . . , n} be a pre-fixed integer. Then PDF of T1:n, T2:n, . . . , Tr:n conditioned on

the event N = 0 is given by

f (t1, t2, . . . , tr |N = 0) =
n!

(n− r)!P [N = 0]

r∏
j=1

f (tj) {1− F (tr)}n−r

if T < t1 < . . . < tr <∞.

For i = 1, 2, . . . , r − 1, PDF of T1:n, T2:n, . . . , Tr:n conditioned on the event N = i is given by

f (t1, t2, . . . , tr |N = i) =
n!

(n− r)!P [N = i]

r∏
j=1

f (tj) {1− F (tr)}n−r

if t1 < . . . < ti < T < ti+1 < . . . < tr <∞.

Proof: See [5].

Lemma A.3. Let X be a Gamma(α, 1) random variable, Y be a standard Exponential random

variable, and they are independently distributed. The PDF of X is

f1(x;α, λ1) =


1

Γ(α)
xα−1 e−x for x > 0

0 otherwise.
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The PDF of Y is

f2(y) =


e−y for y > 0

0 otherwise.

Then for any arbitrary constant A, λ1 and λ2 the MGF of A+ λ1X + λ2 Y is given by

MA+λ1X+λ2 Y (ω) = eωA (1− λ1 ω)−α (1− λ2 ω)−1 .

This MGF exists if

ω ∈
{

( 1
λ2
, 1
λ1

) if λ2 < 0

(−∞,min{ 1
λ1
, 1
λ2
}) if λ2 ≥ 0 .

Proof: This lemma can be proved using the joint distribution of (X, Y ), and therefore the proof

is omitted.

Lemma A.4. Let X be a Gamma(α, λ1)(with α integer) and Y be a Exponential(λ2) random

variable and they be independently distributed. Then the PDF of X − Y is given by

g2 (t;α, λ1, λ2) =
α−1∑
k=0

pk g1 (t;α− k, λ1) +

(
1−

α−1∑
k=0

pk

)
g1 (−t, 1, λ2) for t ∈ R ,

where pk = λ2

λ1+λ2

(
λ1

λ1+λ2

)k
.

Proof: See [6].

Proof of Theorem 2.1:

Note that the number of unit failed before time T , N , is a non-negative random variable with

the probability mass function (PMF)

P [N = i] =

(
n

i

)(
1− e−

T−µ
θ

)i
e−(n−i)T−µ

θ if i = 0, 1, . . . , n . (10)

Case-I: r = 1

The joint conditional MGF of (θ̂, µ̂) conditioned on the event {N ≥ 1} can be written as

E[eω1
bθ+ω2 bµ |N ≥ 1] =

n∑
i=1

E[eω1
bθ+ω2 bµ |N = i]× P [N = i |N ≥ 1] . (11)
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Using (3) and Lemma A.1,

E[eω1
bθ+ω2 bµ |N = 1]

=
1

θ
(

1− e−T−µθ
) ∫ T

µ

eω1(n−1)(T−t)+ω2 t− 1
θ

(t−µ)dt

=
e(n−1)Tω1+µ

θ

{
e−(n−1)µω1+µω2−µθ − e−Tθ −(n−1)Tω1+Tω2

}
θ
(

1− e−T−µθ
) (

1
θ

+ (n− 1)ω1 − ω2

) .

Using the above expression and (10)

E[eω1
bθ+ω2 bµ |N = 1]× P [N = 1 |N ≥ 1]

= (1− qn)−1

[
c10

eµ10 ω1+µω2

(1 + (n− 1) θω1 − θω2)
− d10

eTω2

(1 + (n− 1) θω1 − θω2)

]
, (12)

where q, c10, d10 and µ10 are as in (6) and (7). For i = 2, 3, . . . , n, using (3) and Lemma A.1, we

have

E[eω1
bθ+ω2 bµ |N = i]

=
i!

θi
(

1− e−T−µθ
)i × ∫ T

µ

∫ T

t1

. . .

∫ T

ti−1

e
ω1
i {
Pi
j=2 tj−(n−1)t1+(n−i)T}+ω2t1− 1

θ

Pi
j=1(tj−µ)dti . . . dt1

=
i! e−i

T−µ
θ

+Tω2

θi
(

1− e−T−µθ
)i ∫ T

µ

∫ T

t1

. . .

∫ T

ti−1

e−( 1
θ

+n−1
i
ω1−ω2)(t1−T )−( 1

θ
−ω1

i )
Pi
j=2(tj−T )dti . . . dt1

=
e−i

T−µ
θ

+Tω2(
1− e−T−µθ

)i i−1∑
j=0

(−1)i−j−1

(
i

j + 1

)
× e(

j+1
θ

+n−j−1
θ

ω1−ω2)(T−µ) − 1(
1− θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 − θ
j+1

ω2

) .

Using the above expression and (10), one will get for i = 2, · · · , n

E[eω1
bθ+ω2 bµ |N = i]× P [N = i |N ≥ 1]

=
e−n

T−µ
θ

+Tω2

1− e−nT−µθ

i−1∑
j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
e(

j+1
θ

+n−j−1
i

ω1−ω2)(T−µ) − 1(
1− θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 − θ
j+1

ω2

) .
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So using the above expression and (12) in (11), we have

E[eω
bθ |N ≥ 1]

= (1− qn)−1

c10
eµ10ω1+µω2(

1 + ω1

λ10
− ω2

ν0

) − d10
eTω2(

1 + ω1

λ10
− ω2

ν0

) +
eµω2 − qneTω2(

1− ω1

λn

)αn (
1− ω2

νn−1

)

+
n−1∑
i=2

i−1∑
j=0

cij eµijω1+µω2(
1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

) − dij eTω2(
1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

)


+
n−2∑
j=0

cnj eµnjω1+µω2(
1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

) − dnj eTω2(
1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

)

 .

where q, αi, λi, µij, λij, cij and dij are as in (6) and (7). Now using Lemmas A.3 and A.4, one will

get (8).

Case-II: r ≥ 2

In this case, the joint MGF of θ̂ and µ̂ can be expressed as

E[eω1
bθ+ω2 bµ] =

n∑
i=0

E[eω1
bθ+ω2 bµ |N = i]× P [N = i] . (13)

Now using (4) and Lemma A.2, for ω1 <
r
θ

and ω2 <
1
θ

+ n−1
r
ω1

E[eω1
bθ+ω2 bµ |N = 0]

=
n!

θr (n− r)!P [N = 0]

×
∫ ∞

max{T,µ}

∫ ∞
t1

. . .

∫ ∞
tr−1

e
ω1
r {

Pr−1
j=2 tj−(n−1)t1+(n−r+1)tr}+ω2 t1−

Pr
j=1

“
tj−µ
θ

”
−(n−r)( tr−µθ )dtr . . . dt1

=
e−n

max{T,µ}−µ
θ

+ω2max{T,µ}

P [N = 0]
(
1− θ

r
ω1

)r−1 (
1− θ

n
ω2

) .

Hence for ω1 <
r
θ

and ω2 <
1
θ

+ n−1
r
ω1

E[eω1
bθ+ω2 bµ |N = 0]× P [N = 0] = e−n

max{T,µ}−µ
θ

+ω2 max{T,µ} × 1(
1− θ

r
ω1

)r−1 (
1− θ

n
ω2

) . (14)
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Now for i = 1, 2, . . . , r − 1 and ω1 <
r
θ
, using (4) and Lemma A.2

E[eω1
bθ+ω2 bµ |N = i]

=
n!

(n− r)!P [N = i]θr

×
∫ T

µ

. . .

∫ T

ti−1

∫ ∞
T

. . .

∫ ∞
tr−1

e
ω1
r {

Pr−1
j=2 tj−(n−1)t1+(n−r+1)tr}+ω2 t1−

Pr
j=1

“
tj−µ
θ

”
−(n−r)( tr−µθ )dtr . . . dt1

=
n! e

nµ
θ
− iT

θ
−n−i

r
Tω1+ω2 T

(n− r)!P [N = i]θr

×
{∫ T

µ

∫ T

t1

. . .

∫ T

ti−1

e−( 1
θ

+n−1
r
ω1−ω2)(t1−T )−( 1

θ
−ω1

r )
Pi
j=2(tj−T )dti . . . dt1

}

×
{∫ ∞

T

∫ ∞
ti+1

. . .

∫ ∞
tr−1

e−( 1
θ
−ω1

r )
Pr−1
j=i+1 tj−(n−r+1)( 1

θ
−ω1

r )trdtr . . . dti+1

}

=
e−n

T−µ
θ

+Tω2

P [N = i]

i−1∑
j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
× e(

j+1
θ

+n−j−1
r

ω1−ω2)(T−µ) − 1(
1− θ

r
ω1

)r−1
(

1 + (n−j−1)θ
r(j+1)

ω1 − θ
j+1

ω2

) .

Hence for i = 1, 2, . . . , r − 1 and ω < r
θ
,

E[eω1
bθ+ω2 bµ |N = i]× P [N = i]

= e−n
T−µ
θ

+Tω2

i−1∑
j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
× e(

j+1
θ

+n−j−1
r

ω1−ω2)(T−µ) − 1(
1− θ

r
ω1

)r−1
(

1 + (n−j−1)θ
r(j+1)

ω1 − θ
j+1

ω2

) . (15)

Now for i = r, r + 1, . . . , n, using (4) and Lemma A.1

E[eω1
bθ+ω2 bµ |N = i]

=
n!

(n− i)!θiP [N = i]

×
∫ T

µ

∫ T

t1

. . .

∫ T

ti−1

e
ω1
i {
Pi
j=2 tj−(n−1)t1+(n−i)T}+ω2 t1−

Pi
j=1

“
tj−µ
θ

”
−(n−i)(T−µθ )dti . . . dt1

=
e−n

T−µ
θ

+Tω2

P [N = i]

i−1∑
j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
e(

j+1
θ

+n−j−1
i

ω1−ω2)(T−µ) − 1(
1− θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 − θ
j+1

ω2

) .

Hence for i = r, r + 1, . . . , n,

E[eω1
bθ+ω2 bµ |N = i]× P [N = i]

= e−n
T−µ
θ

+Tω2

i−1∑
j=0

(−1)i−j−1

(
n

i

)(
i

j + 1

)
e(

j+1
θ

+n−j−1
i

ω1−ω2)(T−µ) − 1(
1− θ

i
ω1

)i−1
(

1 + (n−j−1)θ
i(j+1)

ω1 − θ
j+1

ω2

) .
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So using the above expression, (14) and (15) in (13), we have for ω1 <
r
θ

and ω2 <
n
θ

E[eω1
bθ+ω2 bµ]

=
qn eTω2(

1− ω1

λ1

)α1
(

1− ω2

νn−1

) +
eµω2 − qneTω2(

1− ω1

λn

)αn (
1− ω2

νn−1

)
+

n−1∑
i=1

i−1∑
j=0

cij
eµij ω1+µω2(

1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

) − n−1∑
i=1

i−1∑
j=0

dij
eTω2(

1− ω1

λi

)αi (
1 + ω1

λij
− ω2

νj

)
+

n−2∑
j=0

cnj
eµnj ω1+µω2(

1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

) − n−2∑
j=0

dnj
eTω2(

1− ω1

λn

)αn (
1 + ω1

λnj
− ω2

νj

) ,

where q, µij, αi, λi, λij, cij and dij are as in (6) and (7). Now using Lemmas A.3, A.4, one will get

(9).

Table 1: Lower and upper limits of different confidence intervals for θ

Approx. CI Per Boot. CI BCa Boot. CI
Level LL UL LL UL LL UL
90% 91.75 241.02 75.61 185.33 91.80 221.37
95% 84.97 270.12 70.57 199.49 86.23 263.28
99% 73.57 342.61 60.82 220.36 75.86 274.07

Table 2: Coverage percentage and average length of approximate confidence intervals based on
10000 simulations with µ = 0, n = 20 and r = 16.

90% C.I. 95% C.I. 99% C.I.
T θ Cov. Per. Ave. Len. Cov. Per. Ave. Len. Cov. Per. Ave. Len.

1.50

1.00 89.98 0.93 95.35 1.14 99.27 1.60
2.00 89.87 1.87 95.44 2.29 99.26 3.23
3.00 89.63 2.79 95.38 3.44 99.16 4.85
4.00 89.18 3.69 95.15 4.59 98.96 6.48
5.00 88.51 4.55 94.63 5.77 98.51 8.10

2.50

1.00 89.66 0.87 95.03 1.07 99.20 1.49
2.00 90.13 1.87 95.46 2.29 99.26 3.22
3.00 90.00 2.80 95.43 3.44 99.28 4.84
4.00 90.00 3.73 95.40 4.59 99.16 6.46
5.00 89.60 4.65 95.38 5.73 99.14 8.08

3.50

1.00 89.88 0.83 95.11 1.02 99.02 1.42
2.00 89.85 1.84 95.22 2.25 99.21 3.16
3.00 90.18 2.80 95.51 3.44 99.22 4.84
4.00 90.01 3.74 95.36 4.58 99.27 6.46
5.00 89.83 4.67 95.28 5.73 99.23 8.07
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Table 3: Coverage percentage and average length of bootstrap confidence intervals based on 10000
simulations with µ = 0, n = 20, r = 16 and B = 1000.

90% C.I. 95% C.I. 99% C.I.
T θ Cov. Per. Ave. Len. Cov. Per. Ave. Len. Cov. Per. Ave. Len.

1.50

1.00 81.47 0.72 88.02 0.85 95.00 1.12
2.00 78.28 1.47 84.78 1.74 92.83 2.27
3.00 78.28 2.21 84.78 2.63 92.84 3.43
4.00 78.28 2.94 84.78 3.50 92.84 4.58
5.00 78.28 3.68 84.78 4.38 92.84 5.73

2.50

1.00 81.93 0.71 88.26 0.85 95.04 1.12
2.00 79.68 1.44 86.53 1.71 94.39 2.24
3.00 78.28 2.20 84.78 2.61 92.85 3.40
4.00 78.28 2.94 84.78 3.50 92.84 4.57
5.00 78.28 3.68 84.78 4.38 92.84 5.72

3.50

1.00 80.87 0.70 87.44 0.83 94.56 1.10
2.00 82.47 1.43 88.70 1.71 95.39 2.24
3.00 79.05 2.17 86.02 2.58 94.04 3.36
4.00 78.28 2.92 84.78 3.47 92.96 4.53
5.00 78.28 3.67 84.78 4.36 92.84 5.70

Table 4: Coverage percentage and average length of BCa bootstrap confidence intervals based on
10000 simulations with µ = 0, n = 20, r = 16 and B = 1000.

90% C.I. 95% C.I. 99% C.I.
T θ Cov. Per. Ave. Len. Cov. Per. Ave. Len. Cov. Per. Ave. Len.

1.50

1.00 87.61 0.87 93.67 1.03 97.81 1.23
2.00 85.85 1.77 92.15 2.09 96.56 2.48
3.00 85.70 2.67 92.05 3.15 96.39 3.71
4.00 85.57 3.58 91.92 4.23 96.18 4.92
5.00 85.54 4.50 91.72 5.33 95.73 6.09

2.50

1.00 85.36 0.87 91.70 1.03 97.14 1.23
2.00 87.03 1.76 93.22 2.08 97.47 2.46
3.00 85.72 2.67 92.10 3.15 96.57 3.70
4.00 85.58 3.58 91.93 4.23 96.20 4.92
5.00 85.54 4.50 91.72 5.33 95.73 6.09

3.50

1.00 85.44 0.85 91.60 1.00 96.91 1.21
2.00 87.20 1.76 93.26 2.07 97.69 2.46
3.00 86.74 2.66 93.03 3.14 97.24 3.68
4.00 85.60 3.57 92.06 4.23 96.45 4.91
5.00 85.55 4.50 91.73 5.33 95.76 6.08
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