Indian Institute of Technology Guwahati Statistical Inference (MA682) Problem Set 07

1. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, with usual assumptions on ε . Show that

$$Cov\left(\widehat{\beta}_{0}, \,\widehat{\beta}_{1}\right) = -\frac{\overline{x}\sigma^{2}}{S_{xx}} \quad \text{and} \quad Cov\left(\overline{y}, \,\widehat{\beta}_{0}\right) = \frac{\sigma^{2}}{n}.$$

2. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$ with usual assumptions on ε . Show that

$$E(MS_R) = \sigma^2 + \beta_1^2 S_{xx}$$
 and $E(MS_{Res}) = \sigma^2$.

- 3. Suppose that we have fit a simple linear regression model $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$, but the response is affected by a second variable x_2 such that the true regression is $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$. Is the least square estimator $\hat{\beta}_1$ in the simple linear regression model unbiased?
- 4. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, where ε 's are independent and identicall $N(0, \sigma^2)$ random variables. Find the MLEs of β_0, β_1 , and σ^2 . Is the MLE of σ^2 UE?
- 5. Suppose that we are fitting a straight line and wish to make standard error of the slope as small as possible. Suppose that the region of interest for x is $-1 \le x \le 1$. Where should the observations x_1, x_2, \ldots, x_n be taken?
- 6. Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, with usual assumptions on ε . Also assume that β_0 is known. Find the LSE of β_1 and its' variance.
- 7. Consider the multiple linear regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon.$$

Using the procedure for testing a general linear hypothesis, show how to test

- (a) $H_0: \beta_1 = \beta_2, \beta_3 = \beta_4.$
- (b) $H_0: \beta_1 2\beta_2 = 4\beta_3, \beta_1 + 2\beta_2 = 0.$
- 8. Show that $Var(\widehat{\boldsymbol{y}}) = \sigma^2 H$.
- 9. Consider the multiple linear regression model $\boldsymbol{y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$. Show that LSE of $\boldsymbol{\beta}$ can be written as $\hat{\boldsymbol{\beta}} = \boldsymbol{\beta} + R\boldsymbol{\varepsilon}$, where $R = (X'X)^{-1}X'$.
- 10. Prove that R^2 is the square of the correlation between \boldsymbol{y} and $\hat{\boldsymbol{y}}$.
- 11. Consider the linear regression $y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \epsilon$, with usual assumptions on ϵ . Assuming that X is a full column rank matrix, show that

$$\sum_{i=1}^{n} Var(\widehat{y}_i) = (p+1)\sigma^2.$$