Indian Institute of Technology Guwahati Statistical Inference (MA682) Problem Set 05

- 1. Let $\phi(\cdot)$ be a most powerful level α test for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$. Then show that $\beta(\theta_0) \leq \beta(\theta_1)$, where $\beta(\cdot)$ is the power function of the most powerful test.
- 2. Let X_1, X_2, \ldots, X_n be a random sample form a $N(\mu, \sigma^2)$ distribution, where σ is known.
 - (a) Find MP level α test for $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1$, where $\mu_1 < \mu_0$.
 - (b) Find UMP level α test for $H_0: \mu = \mu_0$ against $H_1: \mu < \mu_0$.
- 3. Let X_1, X_2, \ldots, X_n be a random sample from the PDF

$$f(x, \,\delta, \,b) = \frac{1}{b\Gamma(\delta)} x^{\delta-1} e^{-\frac{x}{b}} \quad \text{if } x > 0,$$

where both b > 0 and $\delta > 0$ are unknown. Derive MP level α test for $H_0: b = b_0, \delta = \delta^*$ against $H_1: b = b_1, \delta = \delta^*$, where $b_1 > b_0$.

- 4. Let X_1, X_2, \ldots, X_n be a random sample from a $P(\lambda)$, where $\lambda > 0$. Find the most powerful level α test for $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1 (> \lambda_0)$.
- 5. Let X_1 and X_2 be a random sample of size two from a probability density function $f(x), x \in \mathbb{R}$. Consider the following two functions

$$f_0(x) = \frac{3}{64}x^2 I_{(0,4)}(x)$$
 and $f_1(x) = \frac{3}{16}\sqrt{x} I_{(0,4)}(x).$

Determine the most powerful level α test for testing $H_0: f(x) = f_0(x)$ against $H_1: f(x) = f_1(x)$.

6. Let X_1 , X_2 be independent random variables distributed as $N(\mu, \sigma^2)$ and $N(\mu, 4\sigma^2)$, respectively. Suppose that $\mu \in \mathbb{R}$ is unknown, but $\sigma > 0$ is known. Derive MP level α test for $H_0 : \mu = \mu_0$ against $H_1 : \mu = \mu_1 (> \mu_0)$. Note that the random variables are independent but not identically distributed.