Indian Institute of Technology Guwahati
 Statistical Inference (MA682) Problem Set 04

1. A sample of size 25 from a normal population with variance 81 produced a sample mean 81.2 . Find a 95% confidence interval for the mean.
2. A sample of size 25 from a normal population produced a sample mean 81.2 and sample variance 81 . Find a 95% confidence interval for the mean.
3. Let \bar{X} be the mean of a random sample of size n from $\mathrm{N}(\mu, 16)$. Find the smallest sample size n such that $(\bar{X}-1, \bar{X}+1)$ is a 90% confidence interval for μ.
4. Let $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent random samples from $\mathrm{N}\left(\mu_{1}, \sigma^{2}\right)$ and $\mathrm{N}\left(\mu_{2}, \sigma^{2}\right)$, respectively. Find a $100(1-\alpha) \%$ confidence interval for $\mu_{1}-\mu_{2}$ when (a) σ is known, and (b) σ is unknown.
5. Two independent samples, each of size 7 , from normal populations with common unknown variance σ^{2} produced sample means 4.8 and 5.4 and sample variances 8.38 and 7.62 , respectively. Find a 95% confidence interval for the difference between the means of samples 1 and 2 .
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be identically and independently distributed random variables with common probability density function

$$
f(x ; \theta)=e^{-(x-\theta)} I_{(\theta, \infty)}(x)
$$

Find a pivot and construct $100(1-\alpha) \%$ lower, upper, and symmetric confidence interval. Also find the smallest length $100(1-\alpha) \%$ confidence interval for θ based on the pivot.
7. For a sample of size one from the population

$$
f(x ; \theta)=\frac{2}{\theta^{2}}(\theta-x) I_{(0, \theta)}(x)
$$

Find the $100(1-\alpha) \%$ symmetric confidence interval for $\theta>0$ using pivotal technique.

