Indian Institute of Technology Guwahati Statistical Inference (MA682) Problem Set 04

- 1. A sample of size 25 from a normal population with variance 81 produced a sample mean 81.2. Find a 95% confidence interval for the mean.
- 2. A sample of size 25 from a normal population produced a sample mean 81.2 and sample variance 81. Find a 95% confidence interval for the mean.
- 3. Let \overline{X} be the mean of a random sample of size *n* from N(μ , 16). Find the smallest sample size *n* such that $(\overline{X} 1, \overline{X} + 1)$ is a 90% confidence interval for μ .
- 4. Let X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent random samples from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, respectively. Find a $100(1-\alpha)\%$ confidence interval for $\mu_1 \mu_2$ when (a) σ is known, and (b) σ is unknown.
- 5. Two independent samples, each of size 7, from normal populations with common unknown variance σ^2 produced sample means 4.8 and 5.4 and sample variances 8.38 and 7.62, respectively. Find a 95% confidence interval for the difference between the means of samples 1 and 2.
- 6. Let X_1, X_2, \ldots, X_n be identically and independently distributed random variables with common probability density function

$$f(x; \theta) = e^{-(x-\theta)} I_{(\theta, \infty)}(x).$$

Find a pivot and construct $100(1 - \alpha)\%$ lower, upper, and symmetric confidence interval. Also find the smallest length $100(1 - \alpha)\%$ confidence interval for θ based on the pivot.

7. For a sample of size one from the population

$$f(x; \theta) = \frac{2}{\theta^2} (\theta - x) I_{(0, \theta)}(x),$$

Find the $100(1-\alpha)\%$ symmetric confidence interval for $\theta > 0$ using pivotal technique.