Indian Institute of Technology Guwahati Statistical Inference (MA682) Problem Set 02

1. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} Geo(p)$ with common PMF

$$f(x; p) = \begin{cases} p(1-p)^x & \text{if } x - 0, 1, 2, \dots \\ 0 & \text{otherwise,} \end{cases}$$

where $p \in (0, 1)$ is an unknown parameter. Find a sufficient statistic for p.

- 2. Let $X_1, X_2, \ldots, X_m \stackrel{i.i.d.}{\sim} Poi(\lambda), Y_1, Y_2, \ldots, Y_n \stackrel{i.i.d.}{\sim} Poi(2\lambda)$, where $\lambda > 0$ is unknown parameter. Also, assume that X's and Y's are independent. Show that $\sum_{i=1}^m X_i + \sum_{i=1}^n Y_i$ is a sufficient statistic for λ .
- 3. Let $X_1, X_2, X_3, X_4 \stackrel{i.i.d.}{\sim} Bernoulli(p)$, where 0 is unknown parameter. Denote

$$U = X_1(X_3 + X_4) + X_2.$$

Show that U is not a sufficient statistic for p.

4. Suppose that X_1, X_2, \ldots, X_n are *i.i.d.* RVs with common PDF

$$f(x, \sigma, \mu) = \begin{cases} \frac{1}{\sigma} e^{-\frac{x-\mu}{\sigma}} & \text{if } x > \mu \\ 0 & \text{otherwise,} \end{cases}$$

where $\mu \in \mathbb{R}$ and $\sigma > 0$. Show that

- (a) $X_{(1)} = \min \{X_1, X_2, \dots, X_n\}$ is sufficient for μ if σ is known.
- (b) $\frac{1}{n} \sum_{i=1}^{n} (X_i \mu)$ is sufficient statistic for σ if μ is known.
- (c) $(X_{(1)}, \sum_{i=1}^{n} (X_i X_{(1)}))$ is sufficient statistic for (μ, σ) if both parameters are unknown.
- 5. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\theta, \theta)$, where $\theta > 0$ is unknown parameter. Derive a sufficient statistic for θ .
- 6. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} U(-\theta, \theta)$, where $\theta > 0$ is unknown parameter. Derive a sufficient statistic for θ .
- 7. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} Bernoilli(p)$, where $p \in (0, 1)$ is an unknown parameter. Evaluate $\mathcal{I}_{\mathbf{X}}(p)$, $\mathcal{I}_{\overline{X}}(p)$, and compare. Can we use these Fisher information to claim the sufficiency of \overline{X} ?
- 8. Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, where $\sigma > 0$ is unknown, but $\mu \in \mathbb{R}$ is known parameter. Assume that $n \geq 2$. Let

$$U^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$$
$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Evaluate $\mathcal{I}_{U^2}(\sigma^2)$ and $\mathcal{I}_{S^2}(\sigma^2)$. Show that $\mathcal{I}_{U^2}(\sigma^2) > \mathcal{I}_{S^2}(\sigma^2)$.

9. Suppose that X_1, X_2, \ldots, X_n are *i.i.d.* RVs with common Rayleigh PDF

$$f(x, \sigma) = \begin{cases} \frac{2}{\sigma} x e^{-\frac{x^2}{\sigma}} & \text{if } x > 0\\ 0 & \text{otherwise,} \end{cases}$$

where $\sigma > 0$ is unknown parameter. Denote a statistic $T = \sum_{i=1}^{n} X_{i}^{2}$. Evaluate $\mathcal{I}_{\mathbf{X}}(\sigma)$ and $\mathcal{I}_{T}(\sigma)$. Are they same? If so, what conclusion can one draw from this?