Indian Institute of Technology Guwahati
 Statistical Inference (MA682) Problem Set 02

1. Let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} G e o(p)$ with common PMF

$$
f(x ; p)= \begin{cases}p(1-p)^{x} & \text { if } x-0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

where $p \in(0,1)$ is an unknown parameter. Find a sufficient statistic for p.
2. Let $X_{1}, X_{2}, \ldots, X_{m} \stackrel{i . i . d .}{\sim} \operatorname{Poi}(\lambda), Y_{1}, Y_{2}, \ldots, Y_{n} \stackrel{i . i . d .}{\sim} \operatorname{Poi}(2 \lambda)$, where $\lambda>0$ is unknown parameter. Also, assume that X^{\prime} 's and Y 's are independent. Show that $\sum_{i=1}^{m} X_{i}+\sum_{i=1}^{n} Y_{i}$ is a sufficient statistic for λ.
3. Let $X_{1}, X_{2}, X_{3}, X_{4} \stackrel{i . i . d .}{\sim} \operatorname{Bernoulli}(p)$, where $0<p<1$ is unknown parameter. Denote

$$
U=X_{1}\left(X_{3}+X_{4}\right)+X_{2} .
$$

Show that U is not a sufficient statistic for p.
4. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. RVs with common PDF

$$
f(x, \sigma, \mu)= \begin{cases}\frac{1}{\sigma} e^{-\frac{x-\mu}{\sigma}} & \text { if } x>\mu \\ 0 & \text { otherwise }\end{cases}
$$

where $\mu \in \mathbb{R}$ and $\sigma>0$. Show that
(a) $X_{(1)}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is sufficient for μ if σ is known.
(b) $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)$ is sufficient statistic for σ if μ is known.
(c) $\left(X_{(1)}, \sum_{i=1}^{n}\left(X_{i}-X_{(1)}\right)\right)$ is sufficient statistic for (μ, σ) if both parameters are unknown.
5. Let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N(\theta, \theta)$, where $\theta>0$ is unknown parameter. Derive a sufficient statistic for θ.
6. Let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} U(-\theta, \theta)$, where $\theta>0$ is unknown parameter. Derive a sufficient statistic for θ.
7. Let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} \operatorname{Bernoilli}(p)$, where $p \in(0,1)$ is an unknown parameter. Evaluate $\mathcal{I}_{\boldsymbol{X}}(p)$, $\mathcal{I}_{\bar{X}}(p)$, and compare. Can we use these Fisher information to claim the sufficiency of \bar{X} ?
8. Let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right)$, where $\sigma>0$ is unknown, but $\mu \in \mathbb{R}$ is known parameter. Assume that $n \geq 2$. Let

$$
\begin{aligned}
U^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2} \\
S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
\end{aligned}
$$

Evaluate $\mathcal{I}_{U^{2}}\left(\sigma^{2}\right)$ and $\mathcal{I}_{S^{2}}\left(\sigma^{2}\right)$. Show that $\mathcal{I}_{U^{2}}\left(\sigma^{2}\right)>\mathcal{I}_{S^{2}}\left(\sigma^{2}\right)$.
9. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. RVs with common Rayleigh PDF

$$
f(x, \sigma)= \begin{cases}\frac{2}{\sigma} x e^{-\frac{x^{2}}{\sigma}} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

where $\sigma>0$ is unknown parameter. Denote a statistic $T=\sum_{i=1}^{n} X_{i}^{2}$. Evaluate $\mathcal{I}_{\boldsymbol{X}}(\sigma)$ and $\mathcal{I}_{T}(\sigma)$. Are they same? If so, what conclusion can one draw from this?

