Indian Institute of Technology Guwahati
 Statistical Inference (MA682)
 Problem Set 01

1. Suppose that the random variable X can take on any of the values $1,2, \ldots, 10$ with respective probabilities $0.06,0.06,0.06,0.06,0.06,0.15,0.13,0.14,0.15,0.13$. Give an algorithm that generates the values from the distribution of X.
2. Present a method to generate the value of X, where

$$
P(X=j)=\left(\frac{1}{2}\right)^{j+1}+\frac{1}{4}\left(\frac{2}{3}\right)^{j} \quad \text { for } \quad j=1,2,3, \ldots
$$

[Hint: Look for generation from mixture distribution.]
3. Give a method for generating random numbers form the PDF

$$
f(x)=\frac{e^{x}}{e-1} \quad \text { for } \quad 0<x<1
$$

4. Give a method for generating random numbers form the PDF

$$
f(x)= \begin{cases}\frac{x-2}{2} & \text { if } 2<x<3 \\ \frac{6-x}{6} & \text { if } 3 \leq x<6\end{cases}
$$

5. Give a method for generating random numbers form the CDF

$$
F(x)=1-e^{-\alpha x^{\beta}} \quad \text { for } \quad x>0
$$

where $\alpha>0$ and $\beta>0$.
6. Give a method for generating random numbers form the PDF

$$
f(x)= \begin{cases}e^{2 x} & \text { if } x<0 \\ e^{-2 x} & \text { if } x \geq 0\end{cases}
$$

7. Give a method to generate a random number having CDF

$$
F(x)=\int_{0}^{\infty} x^{y} e^{-y} d y \quad \text { for } \quad 0<x<1 .
$$

[Hint: Consider the conditional CDF of X given $Y=y$ as $P(X \leq x \mid Y=y)=x^{y}, 0<x<1$ and the marginal distribution of Y as exponential with mean 1.]
8. Suppose that it is easy to generate random numbers from the CDFs $F_{1}, F_{2}, \ldots, F_{n}$. How can we generate from the following CDFs?
(a) $F(x)=\prod_{i=1}^{n} F_{i}(x)$.
(b) $F(x)=1-\prod_{i=1}^{n}\left(1-F_{i}(x)\right)$.
9. Let G be a CDF with PDF g and suppose that for constants $a<b$, we want to generate from the CDF

$$
F(x)=\frac{G(x)-G(a)}{G(b)-G(a)} \quad \text { for } \quad a \leq x \leq b
$$

(a) If X has CDF G, then F is the conditional CDF of X given what information?
(b) Show that the acceptance-rejection method reduces in this case to generate a random variable X having distribution G and the accepting it if it lies between a and b.
10. Let X be an exponential random variable with mean 1. Give an efficeint algorithm for simulating random number from the conditional distribution of X given $X<0.05$. [Hint: Find the CDF corresponding to the conditional distribution]
11. Give three methods (inverse transform method, acceptance-rejection method, and method based on Problem 8) to generate random number form the CDF

$$
F(x)=x^{n} \quad \text { for } \quad 0<x<1
$$

Implement these methods and discuss the efficiency of these three approaches.

