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Non-parametric Inference

▶ X has a CDF F with known functional form except perhaps
some parameters. In this case, we need to find value of the
unknown parameters based on a sample. This is known as
parametric inference.

▶ X has a CDF F who’s functional form is unknown. In this case,
we need to estimate a parametric function or test a statistical
hypothesis without known functional form of the CDF. This is
known as non-parametric inference.

In this course, we will mainly talk about non-parametric tests
some practically meaningful statistical hypotheses.



Order Statistics

Let X1, X2, . . . , Xn denote a random sample from a population
with continuous CDF F .

The probability of any two or more of these random variables
have equal magnitude is zero.

Let us define

X(1): smallest of X1, X2, . . . , Xn.
X(2): second smallest of X1, X2, . . . , Xn.
...
X(n): largest of X1, X2, . . . , Xn.

Then X(1) < X(2) < . . . < X(n) denotes the original random
sample after arrangement in increasing order of magnitude.

These random variables are collectively termed the order
statistics corresponding to the random sample X1, X2, . . . , Xn.



Order Statistics

For r = 1, 2, . . . , n, the r -th smallest X(r) is called r -th order
statistic.

For odd n, the sample median is defined by X( n+1
2 ). For even n,

it is any number between X( n
2
) and X( n

2
+1). The sample median

is a measure of central tendency.

The sample midrange is defined by
X(1)+X(n)

2
. It is also a measure

of central tendency.

The sample range is defined by X(n) − X(1). This is a measure of
dispersion.



Joint Distribution of Order Statistics

Theorem 6.1: Let X(1), X(2), . . . , X(n) be the order statistics
corresponding to a random sample of size n from a population having
PDF fX (·). Then the joint PDF of the order statistics is

fX(1),X(2), ...,X(n)
(x1, x2, . . . , xn) = n!

n∏
i=1

fX (xi) if x1 < x2 < . . . < xn.



Distribution of X(r)

Theorem 6.2: Let X(r) be the r -th order statistic corresponding to a
random sample of size n from a continuous CDF FX (·). Then, the
CDF of X(r) is

FX(r)
(t) =

n∑
i=r

(
n

i

)
[FX (t)]

i [1− FX (t)]
n−i for t ∈ R.

Theorem 6.3: Let X(r) be the r -th order statistic corresponding to a
random sample of size n from a continuous CDF FX (·) with
corresponding PDF fX (·). Then, the PDF of X(r) is

fX(r)
(t) =

n!

(r − 1)!(n − r)!
[FX (t)]

r−1 [1− FX (t)]
n−r fX (t) for t ∈ R.



Distribution of X(r)

Corollary 6.1: For a random sample of size n from U(0, 1)
distribution, the CDF of the r -th order statistic is

FX(r)
(x) =

n∑
i=r

(
n

i

)
x i (1− x)n−i for 0 < x < 1.

Corollary 6.2: For a random sample of size n from U(0, 1)
distribution, the r -th order statistic follows a beta(r , n − r + 1)
distribution with PDF

f (x) =
n!

(r − 1)!(n − r)!
x r−1(1− x)n−r for 0 < x < 1.



Joint Distribution of Subset of Order Statistics

Theorem 6.4: Let X(1), X(2), . . . , X(n) be the order statistics
corresponding to a random sample of size n from a population having
PDF fX (·) and CDF FX (·). Then, for 1 ≤ r1 < r2 < . . . < rk ≤ n and
1 ≤ k ≤ n, the joint PDF of X(r1), X(r2), . . . , X(rk ) is

fX(r1)
,X(r2)

, ...,X(rk )
(x1, x2, . . . , xk)

=
n!

(r1 − 1)!(r2 − r1 − 1)! . . . (n − rk)!

× [FX (x1)]
r1−1 [FX (x2)− FX (x1)]

r2−r1−1 . . . [1− FX (xk)]
n−rk

× fX (x1)fX (x2) . . . fX (xk),

for x1 < x2 < . . . < xk .



Probability-Integral Transform

Theorem 6.5: Let X be a random variable with CDF FX (·). If FX (·)
is continuous, then FX (X ) ∼ U(0, 1).

Corollary 6.3: If X1, X2, . . . , Xn be a random sample from a
continuous CDF FX (·), then FX (X1), FX (X2), . . . , FX (Xn) is a
random sample from U(0, 1) distribution.

Corollary 6.4: Let X(1) < X(2) < . . . < X(n) be the order statistics
corresponding to a random sample of size n from a population having
continuous CDF FX (·). Then, the distribution of

FX (X(1)) < FX

(
X(2)

)
< . . . < FX (X(n))

is same as that of the order statistics corresponding to a random
sample of size n from U(0, 1) distribution. a random sample of



Quantile Function

Definition 6.1: Let X be a random variable with CDF FX (·). The
function QX : (0, 1) → R, defined by

QX (p) = F−1(p) = inf {x ∈ R : FX (x) ≥ p}

is known as quantile function (QF) of the random variable X . For
0 < p < 1, QX (p) is known as p-th quantile of X .

Remark 6.1:

The 0.5-th quantile is known as population median.

The first quartile is 0.25-th quantile, the second quartile is
0.50-th quantile, and the third quartile is 0.75-th quantile.

The CDF and QF provide similar information regarding the
distribution of the random variable.

Different moments can be expressed in terms of QF.



Empirical Distribution Function

Definition 6.2: For a random sample of size n from the distribution
with CDF FX (·), the empirical distribution function (EDF) ,
Sn : R → [0, 1], is defined by

Sn(x) =
number of sample values ≤ x

n
.

Remark 6.2: The EDF is most conveniently defined in terms of the
order statistics as

Sn(x) =


0 if x < X(1)

i
n

if X(i) ≤ x < X(i+1), i = 1, 2, . . . , n − 1

1 if x ≥ X(n).



Some Properties of EDF

Theorem 6.6: For fixed x ∈ R, Tn(x) ∼ Bin(n, FX (x)), where
Tn(x) = nSn(x).

Corollary 6.5: For any fixed x ∈ R, E (Sn(x)) = FX (x) and

Var(Sn(x)) =
FX (x)(1−FX (x))

n
.

Corollary 6.6: For any fixed x ∈ R, Sn(x) is consistent estimator of
FX (x).

Theorem 6.7: For any fixed x ∈ R,
√
n [Sn(x)− FX (x)]√
FX (x) [1− FX (x)]

D→ Z ∼ N(0, 1).

Theorem 6.8: (Glivenko-Cantelli Theorem) Sn(·) converges
uniformly to FX (·) with probability 1, i.e.,

P

[
lim
n→∞

sup
x∈R

|Sn(x)− FX (x)| = 0

]
= 1.



Test for Randomness

10 persons (M-5, F-5) waiting in a queue for movie tickets.

The arrangement is M, F, M, F, M, F, M, F, M, F.

Would it be considered as a random arrangement of genders?

F, F, F, F, F, M, M, M, M, M.

M, M, M, M, M, F, F, F, F, F.

M, M, F, F, F, M, F, M, M, F.
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Would it be considered as a random arrangement of genders?

F, F, F, F, F, M, M, M, M, M.
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Test for Randomness

A ordered sequence of two types of symbols (or objects).

Length of the sequence is n.

n1 : number of Type-I symbol

n2 : number of Type-II symbol

n = n1 + n2

We want to test

H0 : the arrangement of the n symbols is random

against

H1 : the arrangement of the n symbols is not random.



Run

Definition 6.3: Given an ordered sequence of two type of symbols, a
run is defined to be a succession of one type of symbols that are
followed or preceded by a different symbol or no symbol at all.

Example 6.1:

M, F, M, F, M, F, M, F, M, F — 10 runs (5 of M, 5 of F)

F, F, F, F, F, M, M, M, M, M — 2 runs (1 of M, 1 of F)

M, M, M, M, M, F, F, F, F, F — 2 runs (1 of M, 1 of F)

M, M, F, F, F, M, F, F, M, M — 5 runs (3 of M, 2 of F)



Test based on Total Number of Runs

A ordered sequence of two types of symbols (or objects).

Length of the sequence is n.

n1 : number of Type-I symbol

n2 : number of Type-II symbol

n = n1 + n2

R1 : Number of runs of Type-I symbol

R2 : Number of runs of Type-II symbol

R = R1 + R2 : Number of total runs

H0 is rejected if and only if R is too small or too large

Need the null distribution of R



Exact Null Distribution of R

Lemma 6.1: The number of distinguishable ways of distributing
n-like objects into r distinguishable cells with no cell empty is

(
n−1
r−1

)
,

n ≥ r ≥ 1.

Theorem 6.9: Under H0, the joint probability mass function of R1

and R2 is

fR1,R2 (r1, r2) =
c
(
n1−1
r1−1

)(
n2−1
r2−1

)(
n1+n2
n1

) ,

for (r1, r2) ∈ {(a, b) ∈ N : a = b or a = b ± 1}, where
N = {1, 2, . . . , n1} × {1, 2, . . . , n2}, c = 2 if r1 = r2 and c = 1 if
r1 = r2 ± 1.



Exact Null Distribution of R

Corollary 6.7: Under H0, the marginal probability mass function of
R1 is

fR1(r1) =

(
n1−1
r1−1

)(
n2+1
r1

)(
n1+n2
n1

) for r1 = 1, 2, . . . , n1.

Corollary 6.8: Under H0, the marginal probability mass function of
R2 is

fR2(r2) =

(
n2−1
r2−1

)(
n1+1
r1

)(
n1+n2
n2

) for r2 = 1, 2, . . . , n2.



Exact Null Distribution of R

Theorem 6.10: The probability mass function of R in a random
sample is

fR(r) =



2

(
n1 − 1
r
2
− 1

)(
n2 − 1
r
2
− 1

)
(
n1 + n2

n1

) if r is even

(
n1 − 1

r−1
2

)(
n2 − 1

r−3
2

)
+

(
n1 − 1

r−3
2

)(
n2 − 1

r−1
2

)
(
n1 + n2

n1

) if r is odd,

for r = 2, 3, . . . , n.



Exact Null Distribution of R

Example 6.2: If n1 = 5 and n2 = 4, then under H0

fR(9) =

(
4
4

)(
3
3

)(
9
4

) =
1

126
≈ 0.008,

fR(8) =
2
(
4
3

)(
3
3

)(
9
4

) =
8

126
≈ 0.063,

fR(3) =

(
4
1

)(
3
0

)
+
(
4
0

)(
3
1

)(
9
4

) =
7

126
≈ 0.056,

fR(2) =
2
(
4
0

)(
3
0

)(
9
4

) =
2

126
≈ 0.016.

For a two-sided test that rejects the null hypothesis for R ≤ 2 or
R ≥ 9, the exact significance level α is 3

126
≈ 0.024.



Moments of R under H0

Theorem 6.11: The first two central moment of R under H0 is

E (R) = 1 +
2n1n2
n

,

Var(R) =
2n1n2 (2n1n2 − n1 − n2)

n2 (n − 1)
.



Asymptotic Test

Theorem 6.12: Suppose that the total sample size n increases to ∞
such a way that n1

n
→ λ, where 0 < λ < 1 is a fixed number. Then

under H0,

R − 2nλ(1− λ)

2
√
nλ(1− λ)

D→ N(0, 1).

Using the normal approximation, the null hypothesis of
randomness would be rejected at level α if and only if∣∣∣∣R − 2nλ(1− λ)

2
√
nλ(1− λ)

∣∣∣∣ > zα
2
.



Tests of Goodness-of-Fit

Want to know if the given sample compatible to a particular
distribution or not.

The null hypothesis is about the form the CDF of the parent
distribution.

Let X1, . . . , Xn be a random sample from unknown CDF F (·).
H0 : F (x) = F0(x) for all x ∈ R against H1 : F (x) ̸= F0(x) for
some x ∈ R.
Ideally, null hypothesis completely specifies the distribution.

We hope to accept the null hypothesis.

Rejection of null hypothesis does not provide much specific
information.

Two types of tests will be discussed:

Graphical test — Q-Q plot
Formal Statistical tests — χ2 Goodness-of-Fit, KS test



The Chi-square Goodness-of-Fit Test

The sample data must be grouped according to some scheme in
order to form a frequency distribution.

k : Number of categories.

fi : Frequency of the i -th category.

ei = n × PH0(a random observation belongs to i -th category) :
Expected frequency of the i -th category.

The test statistic is

Q =
k∑

i=1

(fi − ei)
2

ei
.

For large sample, the distribution of Q under H0 can be
approximated by χ2-distribution with d.f. k − 1.

Reject H0 at level α if and only if Q > χ2
k−1,α.



The Chi-square Goodness-of-Fit Test

Information: In the context of LRT, −2 ln Λ converges to
χ2
k1−k2

distribution as n → ∞, where k1 and k2 are, respectively,
the dimension of the spaces Θ0 ∪Θ1 and Θ0, k1 > k2.

Using the above fact, the use of Chi-square test can be justified.

If F0(·) does not specify the distribution completely, one can use
MLE of the unknown parameters (based on grouped data). In
this case, H0 is rejected at level α if and only if Q > χ2

k−1−s,α,
where s is the number of unknown parameters.



Kolmogorov-Smirnov Test

H0 : F (x) = F0(x) for all x ag. H1 : F (x) ̸= F0(x) for some x .

It is assumed that F0(·) is continuous.
The test statistic is

Dn = sup
x

|Sn(x)− F0(x)| .

Large value of Dn implies disagreement with H0.

Thus, rejection region is of the form Dn > k .



Kolmogorov-Smirnov Test

Theorem 6.13: The statistic Dn is distribution-free for any specified
continuous CDF F0(·).
Theorem 6.14: (Exact null distribution of Dn) Let F0(·) be
continuous. Then under H0, we have for 0 < v < 2n−1

n

P

(
Dn <

1

2n
+ v

)
=

∫ 1
2n
+v

1
2n
−v

∫ 3
2n
+v

3
2n
−v

. . .

∫ 2n−1
2n

+v

2n−1
2n

−v

f (u1, u2, . . . un) dundun−1 . . . du1,

where

f (u1, u2, . . . , un) =

{
n! for 0 < u1 < u2 < . . . < un < 1

0 otherwise.

The above probability is zero and one for v ≤ 0 and v ≥ 2n−1
n

,
respectively.



Kolmogorov-Smirnov Test

Theorem 6.15: (Large sample null distribution of Dn) If F0(·) is
continuous, then under H0 for every d > 0,

lim
n→∞

P

(
Dn ≤

d√
n

)
= 1− 2

∞∑
i=1

(−1)i−1 e−2i2d2

.



CI for Population Quantile

Let the underlying CDF is F (·).
Assume that F (·) is continuous and strictly increasing.

κp = Q(p) : The p-th quantile.

We are interested to find confidence interval for κp based on X(r)

and X(s) for r < s.

To find 100(1− α)% CI for κp, we need to find two integers r
and s with 1 ≤ r < s ≤ n such that

P
(
X(r) ≤ κp ≤ X(s)

)
= 1− α.

Note that

P
(
X(r) < κp < X(s)

)
= P

(
X(r) < κp

)
− P

(
X(s) < κp

)
.



CI for Population Quantile

P
(
X(r) < κp

)
= P

(
U(r) < p

)
=

∫ p

0

n

(
n − 1

r − 1

)
x r−1(1−x)n−rdx .

Thus, we need to find two integers r and s such that∫ p

0

n

(
n − 1

r − 1

)
x r−1(1− x)n−rdx

−
∫ p

0

n

(
n − 1

s − 1

)
x s−1(1− x)n−sdx = 1− α.

In general, two unknowns (r and s) cannot be uniquely found
from one equation. We need to impose some other restrictions.
For example, we may consider equal tail CI.



CI for Population Quantile

Note that

P
(
X(r) < κp

)
= P

(
U(r) < p

)
=

n∑
i=r

(
n

i

)
pi(1− p)n−i .

Thus,

P
(
X(r) < κp < X(s)

)
=

s−1∑
i=r

(
n

i

)
pi(1− p)n−i .

Thus, alternatively, we need to find r and s such that

s−1∑
i=r

(
n

i

)
pi(1− p)n−i = 1− α.



CI for Population Quantile

For n > 20, it is difficult to use the previous method.
In this case, one can use normal approximation to the binomial
distribution with a continuity correction.
Let K ∼ Bin(n, p).
Then, for k in the support of K ,

P (K ≤ k) ≈ Φ

(
k + 1

2
− np√

np(1− p)

)
.

Thus, for asymptotic equal tail CI of κp, we can take

r =

⌊
np +

1

2
− zα

2

√
np(1− p)

⌋
and

s =

⌈
np +

1

2
+ zα

2

√
np(1− p)

⌉
.



Hypothesis Testing for Population Quantile

Let X1, X2, . . . , Xn be a random sample from a population with
CDF F (·), a continuous distribution function.
We want to test H0 : κp = κ0 against H1 : κp ̸= κ0.
Let K be the number of observations greater than κ0.
Too big or too small observed value of K indicate evidence
against H0.
Thus, H0 is rejected if and only if K ≤ r or K ≥ s,
0 ≤ r < s ≤ n.
For a level α test, r and s satisfy

r∑
i=0

(
n

i

)
(1− p)ipn−i ≤ α

2

and
n∑

i=s

(
n

i

)
(1− p)ipn−i ≤ α

2
.



Hypothesis Testing for Population Quantile

For large sample size (n > 20), one can use normal
approximation.

The critical region for a level α test is given by

K ≤ n(1− p) +
1

2
− zα

2

√
np(1− p)

or

K ≥ n(1− p) +
1

2
+ zα

2

√
np(1− p).

Problem of zeros.


