Statistical Inference (MA862) Lecture Slides

Topic 6: Non-parametric Tests

Non-parametric Inference

- X has a CDF F with known functional form except perhaps some parameters. In this case, we need to find value of the unknown parameters based on a sample. This is known as parametric inference.
- X has a CDF F who's functional form is unknown. In this case, we need to estimate a parametric function or test a statistical hypothesis without known functional form of the CDF. This is known as non-parametric inference.
- In this course, we will mainly talk about non-parametric tests some practically meaningful statistical hypotheses.

Order Statistics

- Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a population with continuous CDF F.
- The probability of any two or more of these random variables have equal magnitude is zero.
- Let us define
- $X_{(1)}$: smallest of $X_{1}, X_{2}, \ldots, X_{n}$.
- $X_{(2)}$: second smallest of $X_{1}, X_{2}, \ldots, X_{n}$.
- $X_{(n)}$: largest of $X_{1}, X_{2}, \ldots, X_{n}$.
- Then $X_{(1)}<X_{(2)}<\ldots<X_{(n)}$ denotes the original random sample after arrangement in increasing order of magnitude.
- These random variables are collectively termed the order statistics corresponding to the random sample $X_{1}, X_{2}, \ldots, X_{n}$.

Order Statistics

- For $r=1,2, \ldots, n$, the r-th smallest $X_{(r)}$ is called r-th order statistic.
- For odd n, the sample median is defined by $X_{\left(\frac{n+1}{2}\right)}$. For even n, it is any number between $X_{\left(\frac{n}{2}\right)}$ and $X_{\left(\frac{n}{2}+1\right)}$. The sample median is a measure of central tendency.
- The sample midrange is defined by $\frac{X_{(1)}+X_{(n)}}{2}$. It is also a measure of central tendency.
- The sample range is defined by $X_{(n)}-X_{(1)}$. This is a measure of dispersion.

Joint Distribution of Order Statistics

Theorem 6.1: Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistics corresponding to a random sample of size n from a population having PDF $f_{X}(\cdot)$. Then the joint PDF of the order statistics is

$$
f_{X_{(1)}, x_{(2)}, \ldots, x_{(n)}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=n!\prod_{i=1}^{n} f_{X}\left(x_{i}\right) \text { if } x_{1}<x_{2}<\ldots<x_{n} .
$$

Distribution of $X_{(r)}$

Theorem 6.2: Let $X_{(r)}$ be the r-th order statistic corresponding to a random sample of size n from a continuous CDF $F_{X}(\cdot)$. Then, the CDF of $X_{(r)}$ is

$$
F_{X_{(r)}}(t)=\sum_{i=r}^{n}\binom{n}{i}\left[F_{X}(t)\right]^{i}\left[1-F_{X}(t)\right]^{n-i} \text { for } t \in \mathbb{R} .
$$

Theorem 6.3: Let $X_{(r)}$ be the r-th order statistic corresponding to a random sample of size n from a continuous CDF $F_{X}(\cdot)$ with corresponding PDF $f_{X}(\cdot)$. Then, the PDF of $X_{(r)}$ is

$$
f_{X_{(r)}}(t)=\frac{n!}{(r-1)!(n-r)!}\left[F_{X}(t)\right]^{r-1}\left[1-F_{X}(t)\right]^{n-r} f_{X}(t) \text { for } t \in \mathbb{R} .
$$

Distribution of $X_{(r)}$

Corollary 6.1: For a random sample of size n from $U(0,1)$ distribution, the CDF of the r-th order statistic is

$$
F_{X_{(r)}}(x)=\sum_{i=r}^{n}\binom{n}{i} x^{i}(1-x)^{n-i} \text { for } 0<x<1
$$

Corollary 6.2: For a random sample of size n from $U(0,1)$ distribution, the r-th order statistic follows a beta($r, n-r+1$) distribution with PDF

$$
f(x)=\frac{n!}{(r-1)!(n-r)!} x^{r-1}(1-x)^{n-r} \text { for } 0<x<1
$$

Joint Distribution of Subset of Order Statistics

Theorem 6.4: Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ be the order statistics corresponding to a random sample of size n from a population having PDF $f_{X}(\cdot)$ and CDF $F_{X}(\cdot)$. Then, for $1 \leq r_{1}<r_{2}<\ldots<r_{k} \leq n$ and $1 \leq k \leq n$, the joint PDF of $X_{\left(r_{1}\right)}, X_{\left(r_{2}\right)}, \ldots, X_{\left(r_{k}\right)}$ is

$$
\begin{aligned}
& f_{X_{\left(r_{1}\right)}, X_{\left(r_{2}\right)}, \ldots, x_{\left(r_{k}\right)}}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \\
& =\frac{n!}{\left(r_{1}-1\right)!\left(r_{2}-r_{1}-1\right)!\ldots\left(n-r_{k}\right)!} \\
& \quad \times\left[F_{X}\left(x_{1}\right)\right]_{1}^{r_{1}-1}\left[F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)\right]^{r_{2}-r_{1}-1} \ldots\left[1-F_{X}\left(x_{k}\right)\right]^{n-r_{k}} \\
& \quad \times f_{X}\left(x_{1}\right) f_{X}\left(x_{2}\right) \ldots f_{X}\left(x_{k}\right),
\end{aligned}
$$

for $x_{1}<x_{2}<\ldots<x_{k}$.

Probability-Integral Transform

Theorem 6.5: Let X be a random variable with $\operatorname{CDF} F_{X}(\cdot)$. If $F_{X}(\cdot)$ is continuous, then $F_{X}(X) \sim U(0,1)$.
Corollary 6.3: If $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a continuous CDF $F_{X}(\cdot)$, then $F_{X}\left(X_{1}\right), F_{X}\left(X_{2}\right), \ldots, F_{X}\left(X_{n}\right)$ is a random sample from $U(0,1)$ distribution.
Corollary 6.4: Let $X_{(1)}<X_{(2)}<\ldots<X_{(n)}$ be the order statistics corresponding to a random sample of size n from a population having continuous CDF $F_{X}(\cdot)$. Then, the distribution of

$$
F_{X}\left(X_{(1)}\right)<F_{X}\left(X_{(2)}\right)<\ldots<F_{X}\left(X_{(n)}\right)
$$

is same as that of the order statistics corresponding to a random sample of size n from $U(0,1)$ distribution. a random sample of

Quantile Function

Definition 6.1: Let X be a random variable with $\operatorname{CDF} F_{X}(\cdot)$. The function $Q_{X}:(0,1) \rightarrow \mathbb{R}$, defined by

$$
Q_{X}(p)=F^{-1}(p)=\inf \left\{x \in \mathbb{R}: F_{X}(x) \geq p\right\}
$$

is known as quantile function (QF) of the random variable X. For $0<p<1, Q_{X}(p)$ is known as p-th quantile of X.
Remark 6.1:

- The 0.5 -th quantile is known as population median.
- The first quartile is 0.25 -th quantile, the second quartile is 0.50 -th quantile, and the third quartile is 0.75 -th quantile.
- The CDF and QF provide similar information regarding the distribution of the random variable.
- Different moments can be expressed in terms of QF.

Empirical Distribution Function

Definition 6.2: For a random sample of size n from the distribution with CDF $F_{X}(\cdot)$, the empirical distribution function (EDF), $S_{n}: \mathbb{R} \rightarrow[0,1]$, is defined by

$$
S_{n}(x)=\frac{\text { number of sample values } \leq x}{n}
$$

Remark 6.2: The EDF is most conveniently defined in terms of the order statistics as

$$
S_{n}(x)= \begin{cases}0 & \text { if } x<X_{(1)} \\ \frac{i}{n} & \text { if } X_{(i)} \leq x<X_{(i+1)}, i=1,2, \ldots, n-1 \\ 1 & \text { if } x \geq X_{(n)}\end{cases}
$$

Some Properties of EDF

Theorem 6.6: For fixed $x \in \mathbb{R}, T_{n}(x) \sim \operatorname{Bin}\left(n, F_{X}(x)\right)$, where $T_{n}(x)=n S_{n}(x)$.
Corollary 6.5: For any fixed $x \in \mathbb{R}, E\left(S_{n}(x)\right)=F_{X}(x)$ and $\operatorname{Var}\left(S_{n}(x)\right)=\frac{F_{x}(x)\left(1-F_{x}(x)\right)}{n}$.
Corollary 6.6: For any fixed $x \in \mathbb{R}, S_{n}(x)$ is consistent estimator of $F_{X}(x)$.
Theorem 6.7: For any fixed $x \in \mathbb{R}$,

$$
\frac{\sqrt{n}\left[S_{n}(x)-F_{X}(x)\right]}{\sqrt{F_{X}(x)\left[1-F_{X}(x)\right]}} \xrightarrow{\mathcal{D}} Z \sim N(0,1) .
$$

Theorem 6.8: (Glivenko-Cantelli Theorem) $S_{n}(\cdot)$ converges uniformly to $F_{X}(\cdot)$ with probability 1, i.e.,

$$
P\left[\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{R}}\left|S_{n}(x)-F_{X}(x)\right|=0\right]=1
$$

Test for Randomness

- 10 persons ($\mathrm{M}-5, \mathrm{~F}-5$) waiting in a queue for movie tickets.
- The arrangement is M, F, M, F, M, F, M, F, M, F.
- Would it be considered as a random arrangement of genders?

Test for Randomness

- 10 persons ($\mathrm{M}-5, \mathrm{~F}-5$) waiting in a queue for movie tickets.
- The arrangement is M, F, M, F, M, F, M, F, M, F.
- Would it be considered as a random arrangement of genders?
- F, F, F, F, F, M, M, M, M, M.
- $M, M, M, M, M, F, F, F, F, F$.
- $M, M, F, F, F, M, F, M, M, F$.

Test for Randomness

- A ordered sequence of two types of symbols (or objects).
- Length of the sequence is n.
- n_{1} : number of Type-I symbol
- n_{2} : number of Type-Il symbol
- $n=n_{1}+n_{2}$
- We want to test
H_{0} : the arrangement of the n symbols is random against
H_{1} : the arrangement of the n symbols is not random.

Run

Definition 6.3: Given an ordered sequence of two type of symbols, a run is defined to be a succession of one type of symbols that are followed or preceded by a different symbol or no symbol at all.

Example 6.1:

- M, F, M, F, M, F, M, F, M, F - 10 runs (5 of M, 5 of F)
- $F, F, F, F, F, M, M, M, M, M-2$ runs (1 of $M, 1$ of F)
- $M, M, M, M, M, F, F, F, F, F-2$ runs (1 of $M, 1$ of F)
- M, M, F, F, F, M, F, F, M, M - 5 runs (3 of $M, 2$ of F)

Test based on Total Number of Runs

- A ordered sequence of two types of symbols (or objects).
- Length of the sequence is n.
- n_{1} : number of Type-I symbol
- n_{2} : number of Type-II symbol
- $n=n_{1}+n_{2}$
- R_{1} : Number of runs of Type-I symbol
- R_{2} : Number of runs of Type-II symbol
- $R=R_{1}+R_{2}$: Number of total runs
- H_{0} is rejected if and only if R is too small or too large
- Need the null distribution of R

Exact Null Distribution of R

Lemma 6.1: The number of distinguishable ways of distributing n-like objects into r distinguishable cells with no cell empty is $\binom{n-1}{r-1}$, $n \geq r \geq 1$.

Theorem 6.9: Under H_{0}, the joint probability mass function of R_{1} and R_{2} is

$$
f_{R_{1}, R_{2}}\left(r_{1}, r_{2}\right)=\frac{c\binom{n_{1}-1}{r_{1}-1}\binom{n_{2}-1}{r_{2}-1}}{\binom{n_{1}+n_{2}}{n_{1}}},
$$

for $\left(r_{1}, r_{2}\right) \in\{(a, b) \in N: a=b$ or $a=b \pm 1\}$, where $N=\left\{1,2, \ldots, n_{1}\right\} \times\left\{1,2, \ldots, n_{2}\right\}, c=2$ if $r_{1}=r_{2}$ and $c=1$ if $r_{1}=r_{2} \pm 1$.

Exact Null Distribution of R

Corollary 6.7: Under H_{0}, the marginal probability mass function of R_{1} is

$$
f_{R_{1}}\left(r_{1}\right)=\frac{\binom{n_{1}-1}{r_{1}-1}\binom{n_{2}+1}{r_{1}}}{\binom{n_{1}+n_{2}}{n_{1}}} \text { for } r_{1}=1,2, \ldots, n_{1} \text {. }
$$

Corollary 6.8: Under H_{0}, the marginal probability mass function of R_{2} is

$$
f_{R_{2}}\left(r_{2}\right)=\frac{\binom{n_{2}-1}{r_{2}-1}\binom{n_{1}+1}{r_{1}}}{\binom{n_{1}+n_{2}}{n_{2}}} \text { for } r_{2}=1,2, \ldots, n_{2} .
$$

Exact Null Distribution of R

Theorem 6.10: The probability mass function of R in a random sample is

$$
f_{R}(r)= \begin{cases}\frac{2\binom{n_{1}-1}{\frac{r}{2}-1}\binom{n_{2}-1}{\frac{r}{2}-1}}{\binom{n_{1}+n_{2}}{n_{1}}} & \text { if } r \text { is even } \\ \frac{\binom{n_{1}-1}{\frac{r-1}{2}}\binom{n_{2}-1}{\frac{r-3}{2}}+\binom{n_{1}-1}{\frac{r-3}{2}}\binom{n_{2}-1}{\frac{r-1}{2}}}{\binom{n_{1}+n_{2}}{n_{1}}} & \text { if } r \text { is odd, }\end{cases}
$$

for $r=2,3, \ldots, n$.

Exact Null Distribution of R

Example 6.2: If $n_{1}=5$ and $n_{2}=4$, then under H_{0}

$$
\begin{aligned}
& f_{R}(9)=\frac{\binom{4}{4}\binom{3}{3}}{\binom{9}{4}}=\frac{1}{126} \approx 0.008, \\
& f_{R}(8)=\frac{2\binom{4}{3}\binom{3}{3}}{\binom{9}{4}}=\frac{8}{126} \approx 0.063, \\
& f_{R}(3)=\frac{\binom{4}{1}\binom{3}{0}+\binom{4}{0}\binom{3}{1}}{\binom{9}{4}}=\frac{7}{126} \approx 0.056, \\
& f_{R}(2)=\frac{2\binom{4}{0}\binom{3}{0}}{\binom{9}{4}}=\frac{2}{126} \approx 0.016 .
\end{aligned}
$$

For a two-sided test that rejects the null hypothesis for $R \leq 2$ or $R \geq 9$, the exact significance level α is $\frac{3}{126} \approx 0.024$.

Moments of R under H_{0}

Theorem 6.11: The first two central moment of R under H_{0} is

$$
\begin{aligned}
E(R) & =1+\frac{2 n_{1} n_{2}}{n} \\
\operatorname{Var}(R) & =\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{n^{2}(n-1)}
\end{aligned}
$$

Asymptotic Test

Theorem 6.12: Suppose that the total sample size n increases to ∞ such a way that $\frac{n_{1}}{n} \rightarrow \lambda$, where $0<\lambda<1$ is a fixed number. Then under H_{0},

$$
\frac{R-2 n \lambda(1-\lambda)}{2 \sqrt{n} \lambda(1-\lambda)} \xrightarrow{\mathcal{D}} N(0,1) .
$$

- Using the normal approximation, the null hypothesis of randomness would be rejected at level α if and only if

$$
\left|\frac{R-2 n \lambda(1-\lambda)}{2 \sqrt{n} \lambda(1-\lambda)}\right|>z_{\frac{\alpha}{2}}
$$

Tests of Goodness-of-Fit

- Want to know if the given sample compatible to a particular distribution or not.
- The null hypothesis is about the form the CDF of the parent distribution.
- Let X_{1}, \ldots, X_{n} be a random sample from unknown CDF $F(\cdot)$.
- $H_{0}: F(x)=F_{0}(x)$ for all $x \in \mathbb{R}$ against $H_{1}: F(x) \neq F_{0}(x)$ for some $x \in \mathbb{R}$.
- Ideally, null hypothesis completely specifies the distribution.
- We hope to accept the null hypothesis.
- Rejection of null hypothesis does not provide much specific information.
- Two types of tests will be discussed:
- Graphical test - Q-Q plot
- Formal Statistical tests - χ^{2} Goodness-of-Fit, KS test

The Chi-square Goodness-of-Fit Test

- The sample data must be grouped according to some scheme in order to form a frequency distribution.
- k : Number of categories.
- f_{i} : Frequency of the i-th category.
- $e_{i}=n \times P_{H_{0}}$ (a random observation belongs to i-th category) : Expected frequency of the i-th category.
- The test statistic is

$$
Q=\sum_{i=1}^{k} \frac{\left(f_{i}-e_{i}\right)^{2}}{e_{i}}
$$

- For large sample, the distribution of Q under H_{0} can be approximated by χ^{2}-distribution with d.f. $k-1$.
- Reject H_{0} at level α if and only if $Q>\chi_{k-1, \alpha}^{2}$.

The Chi-square Goodness-of-Fit Test

- Information: In the context of LRT, $-2 \ln \Lambda$ converges to $\chi_{k_{1}-k_{2}}^{2}$ distribution as $n \rightarrow \infty$, where k_{1} and k_{2} are, respectively, the dimension of the spaces $\Theta_{0} \cup \Theta_{1}$ and $\Theta_{0}, k_{1}>k_{2}$.
- Using the above fact, the use of Chi-square test can be justified.
- If $F_{0}(\cdot)$ does not specify the distribution completely, one can use MLE of the unknown parameters (based on grouped data). In this case, H_{0} is rejected at level α if and only if $Q>\chi_{k-1-s, \alpha}^{2}$, where s is the number of unknown parameters.

Kolmogorov-Smirnov Test

- $H_{0}: F(x)=F_{0}(x)$ for all x ag. $H_{1}: F(x) \neq F_{0}(x)$ for some x.
- It is assumed that $F_{0}(\cdot)$ is continuous.
- The test statistic is

$$
D_{n}=\sup _{x}\left|S_{n}(x)-F_{0}(x)\right| .
$$

- Large value of D_{n} implies disagreement with H_{0}.
- Thus, rejection region is of the form $D_{n}>k$.

Kolmogorov-Smirnov Test

Theorem 6.13: The statistic D_{n} is distribution-free for any specified continuous CDF $F_{0}(\cdot)$.

Theorem 6.14: (Exact null distribution of D_{n}) Let $F_{0}(\cdot)$ be continuous. Then under H_{0}, we have for $0<v<\frac{2 n-1}{n}$

$$
\begin{aligned}
& P\left(D_{n}<\frac{1}{2 n}+v\right) \\
& =\int_{\frac{1}{2 n}-v}^{\frac{1}{2 n}+v} \int_{\frac{3}{2 n}-v}^{\frac{3}{2 n}+v} \cdots \int_{\frac{2 n-1}{2 n}-v}^{\frac{2 n-1}{2 n}+v} f\left(u_{1}, u_{2}, \ldots u_{n}\right) d u_{n} d u_{n-1} \ldots d u_{1},
\end{aligned}
$$

where

$$
f\left(u_{1}, u_{2}, \ldots, u_{n}\right)= \begin{cases}n! & \text { for } 0<u_{1}<u_{2}<\ldots<u_{n}<1 \\ 0 & \text { otherwise } .\end{cases}
$$

The above probability is zero and one for $v \leq 0$ and $v \geq \frac{2 n-1}{n}$, respectively.

Kolmogorov-Smirnov Test

Theorem 6.15: (Large sample null distribution of D_{n}) If $F_{0}(\cdot)$ is continuous, then under H_{0} for every $d>0$,

$$
\lim _{n \rightarrow \infty} P\left(D_{n} \leq \frac{d}{\sqrt{n}}\right)=1-2 \sum_{i=1}^{\infty}(-1)^{i-1} e^{-2 i^{2} d^{2}}
$$

Cl for Population Quantile

- Let the underlying CDF is $F(\cdot)$.
- Assume that $F(\cdot)$ is continuous and strictly increasing.
- $\kappa_{p}=Q(p)$: The p-th quantile.
- We are interested to find confidence interval for κ_{p} based on $X_{(r)}$ and $X_{(s)}$ for $r<s$.
- To find $100(1-\alpha) \% \mathrm{Cl}$ for κ_{p}, we need to find two integers r and s with $1 \leq r<s \leq n$ such that

$$
P\left(X_{(r)} \leq \kappa_{p} \leq X_{(s)}\right)=1-\alpha
$$

- Note that

$$
P\left(X_{(r)}<\kappa_{p}<X_{(s)}\right)=P\left(X_{(r)}<\kappa_{p}\right)-P\left(X_{(s)}<\kappa_{p}\right)
$$

Cl for Population Quantile

- $P\left(X_{(r)}<\kappa_{p}\right)=P\left(U_{(r)}<p\right)=\int_{0}^{p} n\binom{n-1}{r-1} x^{r-1}(1-x)^{n-r} d x$.
- Thus, we need to find two integers r and s such that

$$
\begin{aligned}
\int_{0}^{p} n\binom{n-1}{r-1} & x^{r-1}(1-x)^{n-r} d x \\
& \quad-\int_{0}^{p} n\binom{n-1}{s-1} x^{s-1}(1-x)^{n-s} d x=1-\alpha
\end{aligned}
$$

- In general, two unknowns (r and s) cannot be uniquely found from one equation. We need to impose some other restrictions. For example, we may consider equal tail Cl .

Cl for Population Quantile

- Note that

$$
P\left(X_{(r)}<\kappa_{p}\right)=P\left(U_{(r)}<p\right)=\sum_{i=r}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

- Thus,

$$
P\left(X_{(r)}<\kappa_{p}<X_{(s)}\right)=\sum_{i=r}^{s-1}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

- Thus, alternatively, we need to find r and s such that

$$
\sum_{i=r}^{s-1}\binom{n}{i} p^{i}(1-p)^{n-i}=1-\alpha
$$

Cl for Population Quantile

- For $n>20$, it is difficult to use the previous method.
- In this case, one can use normal approximation to the binomial distribution with a continuity correction.
- Let $K \sim \operatorname{Bin}(n, p)$.
- Then, for k in the support of K,

$$
P(K \leq k) \approx \Phi\left(\frac{k+\frac{1}{2}-n p}{\sqrt{n p(1-p)}}\right)
$$

- Thus, for asymptotic equal tail Cl of κ_{p}, we can take

$$
r=\left\lfloor n p+\frac{1}{2}-z_{\frac{\alpha}{2}} \sqrt{n p(1-p)}\right\rfloor
$$

and

$$
s=\left\lceil n p+\frac{1}{2}+z_{\frac{\alpha}{2}} \sqrt{n p(1-p)}\right\rceil
$$

Hypothesis Testing for Population Quantile

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population with CDF $F(\cdot)$, a continuous distribution function.
- We want to test $H_{0}: \kappa_{p}=\kappa^{0}$ against $H_{1}: \kappa_{p} \neq \kappa^{0}$.
- Let K be the number of observations greater than κ^{0}.
- Too big or too small observed value of K indicate evidence against H_{0}.
- Thus, H_{0} is rejected if and only if $K \leq r$ or $K \geq s$, $0 \leq r<s \leq n$.
- For a level α test, r and s satisfy

$$
\sum_{i=0}^{r}\binom{n}{i}(1-p)^{i} p^{n-i} \leq \frac{\alpha}{2}
$$

and

$$
\sum_{i=s}^{n}\binom{n}{i}(1-p)^{i} p^{n-i} \leq \frac{\alpha}{2}
$$

Hypothesis Testing for Population Quantile

- For large sample size $(n>20)$, one can use normal approximation.
- The critical region for a level α test is given by

$$
K \leq n(1-p)+\frac{1}{2}-z_{\frac{\alpha}{2}} \sqrt{n p(1-p)}
$$

or

$$
K \geq n(1-p)+\frac{1}{2}+z_{\frac{\alpha}{2}} \sqrt{n p(1-p)}
$$

- Problem of zeros.

