STATISTICAL INFERENCE (MA862)

Lecture Slides

Topic 5: Linear Regression



Regression
o Question: What is the impact of attending classes on students’

final marks?
o Let's start with a real data from IITG which you can feel about

it!!
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Linear Regressions

o We have one particular variable that we are interested in
understanding or modeling, such as sales of a particular product,
sale price of a home, or voting preference of a particular voter.
This variable is called the target, response, or dependent
variable, and is usually represented by y.

o We have a set of p other variables that we think might be useful
in predicting or modeling the target variable (for e.g. the price of
the product, the competitor’s price, and so on; or the lot size,
number of bedrooms, number of bathrooms of the home, and so
on; or the gender, age, income, party membership of the voter,
and so on). These are called the predicting, independent
variables, or features and are usually represented by
X1y, X2, ..., Xp.



Linear Regressions

o Thus, we have

y =f(x; B)+e,

for some real valued function f, where x is vector of predictors,
3 is the vector of parameters, and ¢ is error.

o If f is linear in the parameters vector 3, then the regression is
called linear regression.



Examples and Role of Transformations

o y = o+ Pixi+ Poxo + ...+ Bpx, is a linear model.
o y = By + B1x + Box? is a linear model, because it is linear in 3
(even though not in x).

o y = B + Pf1x™ is a non-linear model, as it is not linear in /3.

o y = Box™ is not a linear model, but Iny = In 3y + 51 Inx is.

°oy= 1iixﬂx' where y € (0,1)

-1
ey = Bo+PB1x1+P2x2



Main use of Linear Regressions

Typically, a regression analysis is used for one (or more) of three
purposes:

@ modeling the relationship between x and y;
@ prediction of the target variable (forecasting);
@ testing of hypotheses.



Simple Linear Regression

o Just one predictor x, i.e. p=1.

o The model for the simple linear regression is given by

y:60+ﬁlx+€7

where y is the outcome variable (random), x is the
independent/predictor variable (non-random) and ¢ is the
random error term. [, (intercept) and f; (slope) are model
parameters (unknown constants).

o Equivalently, the model can be written for i =1,2,--- | n
number of observations (x1, 1), , (Xa, ¥n) as

Yi= o+ fixi+e,i=1,...,n.

o How do you interpret 5y (intercept) and (; (slope)?



Least Squares Estimation

o Goal: To estimate [y, 51 by minimizing error in some sense
(e.g. squared error)

o One reasonable way is to use the principle of Least Squares, i.e.
minimize the objective function

ﬁo,ﬁl ZE = Z - Bo — 51Xi)2

with respect to (g, 31.

o Differentiate Q(5o, 51) with respect to (o, /1 and equate the
partial derivatives to zero to get the estimates Sy, 4.

o The resulting equations are called normal equations:

n

> (i—Bo—Px)=0and Y x(y — fo— Fix) =0
i=1

i=1



Least Squares Estimation

o The solution is given by
Bo=y—Fix and P =S, /S«

where

n n

S = Z(X’ —%)? and S,, = Z(Xi = X)(vi —¥)-

i=1 i=1

o By and B are called the least squares estimator (LSE) of By and
(1, respectively.



Importance of graphing data before analyzing it
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Which one of the above do you think has highest value of absolute
correlation and ideal for linear regression?



Importance of graphing data before analyzing it

o In all the four graphs: mean of x = 9 (with variance 11); mean
of y = 7.50 (with variance 4.1) ; correlation between x and y =

0.816
o Fitted linear regression in each cases: y = 3 + 0.5x

o In 1973, Anscombe demonstrated the importance of graphing
data before analyzing it and the effect of outliers on statistical
properties



Assumptions

@ The errors are uncorrelated with each other, i.e.,
Cov(ej, €;) = 0 for i # j.
@ The expected value of the errors is zero, i.e.,
E(e;) = 0 for all .
@ The errors are homoscedastic (constant variance), i.e.,

Var(y;) = o for all i



Properties of (3, and 34

o Bo and Bl are linear combination of y;'s.
o Bo and 31 are unbiased for By and (31, respectively.

o Variances of BAO and ﬁAl:
Var(@ ) = 02<1 4= —)
0 n

Var(B) = —



Gauss-Markov Theorem

Definition 5.1: An estimator 6 of @ is called linear estimator of 0 if
@ is a linear combination of random observations.

Definition 5.2: An estimator 0 of 6 is called the best linear unbiased
estimator (BLUE) of 6 if § is linear and unbiased estimator of ¢ and ¢
has minimum variance among all linear unbiased estimator of 6.

Theorem 5.1: Under the above assumptions of linear regression, the
LSEs 5y and [3; are BLUE of 3y and (31, respectively.



A Few Definitions

o Fitted values: y; = Bo + le,-, i=1,...,n

o Residuals: e, =y;—y;, i=1,...,n

o The objective function evaluated at the LSEs is called the
residual sum of squares (SSges).

SSkes = Q(Bo, B1) =D (vi — Bo— Buxi)* =D _ (vi = %)*.
i=1 i=1
o The following quantity is called total sum of squares (S57):

SSr=> (vi—¥).
i=1
o The following quantity is called regression sum of squares
(SSreg):

n

SSF\’eg Z ()//\I — )_/)2 :

i=1



Properties of Least Squares Fit

o i e = 0.
i=1

o an)/i = anf/i-

o ix,-e,- = 0.
i=1

o if/,-e,- =0.
i=1

Q SST = SSReg + SSRes-



Estimation of Error Variance

o It can be shown that
E(SSges) = (n — 2)02.

o Hence, 2 = 2%Bs — MSg.. is an unbiased estimator of o2. Here

n—2
MSges is the residual mean square.
o Observed value of 62 = SSTRz is called Residual variance. It's

square root is called the residual standard error.

o A convenient computing formula for SSges is

SSkes = SST — 15,



Another Assumption

o Errors (¢€;) are normally distributed

This assumption is needed for further analysis — Hypothesis testing,
construction of confidence intervals.



Hypothesis Testing: (3;

o Want to test the hypothesis that the slope parameter (3;)
equals to a constant (a value, say (10):

Ho : 1 = P10 ag. Hi: B1 # Bo

Note that, y; ~ N(5By + B1x;,02) and y;'s are independent.
By ~ N(Bi, _g—i) = z=Ob N(0,1). But o is unknown.

v/ 02/S«

(%)

©

(n=2)MSges
2

o - ~ x%_,. Also MSges and 61 are independent.
o Therefore, the test statistic is
po BB inder Ho.

V MSRes/Sxx

Reject Hp iff [t| > to_5a/2; (at level ).

©



F-Test for Regression

o To test
HO 5 E(Y|X) = 60 ag. H]_ : E(Y|X :X) = BO —|—51X

o Test statistics is a ratio, defined as F :

 SSkeg/1  SSkeg/1
T 8% SSre/(n—2)

where SSgeg = > (Vi — 7)?

F

~ Fl,n727



Hypothesis Testing: [

o Want to test the hypothesis that the intercept parameter (/3p)
equals to a constant (a value, say [go):

Ho : Bo = Poo ag. Hi : Bo # Boo

Bo ~ N(Bo, o*(2 + £)) — bobo _ , N(0,1). But o

= z= -
o2+

~ X2_,. Also MSges and $; are independent.

©

is unknown.
Q %

0'

Therefore, the test statistic is

Bo — Boo

t = =— ~ t,_», under Hy.
\/MSRes(% a g_xx)

Reject Hy iff |t| > t,_24/2; (at level a).

©

©



Interval Estimation: 3y and (1

o To get the CI for 5y and (31, the pivots are

Bo — Bo and B — B
\/MSRes(% -+ é—i) V MSRes/Sxx

o A 100(1 — «)% Cl for 5y is

Bo F tn2,a/2\/M5Res(% + ;;)i)] .

o A 100(1 — «)% Cl for By is

respectively.

31 F th—2,a/2

M S Res
Sxx '



Interval Estimation: Cl for o2

o To get the Cl for o2, the pivots is

(n — 2)MSges 5

0_2 Xn—2

o A 100(1 — )% Cl for o2 is

(n — 2)M5Res (n — 2)M5Res

)

X121—2;Oc/2 X%—Q;l—a/2



Interval Estimation: Cl for mean response

o A regression model can be used to estimate the mean response
E(y) for a particular value of the regressor variable x. Let x be
a value of the regressor variable. Then E(y|xp) = Bo + S1%0.

Then, o = E(y|x0) = fo + f1xo
And, yp ~ N(ﬂo +,31X0,02<% + %))

Pivot: Yo—(Bo+B1x0)

xg—X)2
\/MSRes <%+( OSXX) )

A 100(1 — @)% Cl for Gy + P1xo is

- 1 Xp — X )2
Yo + tn—2;a/2\/MSRes<; G (05—)>] .

(%)

o

©

~ th_o

©




Prediction Interval for New Observation:

Let xo be a value of the regressor variable.

The true value of the response is yp (corresponding to xp).
We want to provide an interval / such that P(yp € 1) =1—«
Note that the point estimate of y is yg = BAO + leo.
Consider ¥ = yo — V.

Then, E(y) =0, Var(y) = 02(1+ 1 + =)

1 (x —)'()2
P~ N<0,02<1+;+°57>)
Pivot: Yo— Yo

5 ~ tho
\/ MSkes <1+ 1y lo %" >

A 100(1 — «)% prediction interval is

Vi 1 Xy — X)2
Yo F tn2;a/2\/M5Res <1 1 - + (05—)>] ‘

© © 06 06 0 o

©

©

©




Coefficient of determination: R?

o Coefficient of determination is given by
RQ _ SSReg —1_ SSRes —1_ Z,‘(yi _)/}i)2
SST 557‘ Zi(y,- — )_/)2 ’
o It is a bounded quantity: 0 < R? < 1.
o R?is interpreted as the proportion of variation explained by the
model.

Higher values of R? are desirable (R? close to 1 indicates a good
fit).
But “how high is high?": depends on the context.

©

©



Simple Linear Regression in Heights Data

o Data on heights of n = 1375 mothers in the UK under the age
of 65 and one of their adult daughters over the age of 18
(collected and organized during the period 1893-1898 by the
famous statistician Karl Pearson).

o A historical use of regression to study inheritance of height from
generation to generation.

o Let's fit linear regression with this data set using R.



Multiple Linear Regression

o Data (of sample size n) looks like a matrix:

yi X1 X2 -0 Xip
Y2 Xo1 X2 0 Xop

Yn Xnp1 Xp2 an



Multiple Linear Regression

Q

In general, the response (y) may be related to p regressors
(input variables/predictors).

The model
Yi=PBo+Bixa+...+Bpxpt+e,i=1,...,n

is called multiple linear regression. A regression model with p
regressors.

The parameters 3;,j = 0,1,2,--- , p are called regression
coefficients.

Bj,j =0,1,2,---, p represents the change in the average value
of the response for a unit change in j regressor keeping other
regressors fixed.

As before, ¢;'s are i.i.d. with E(¢;) = 0 and Var(e;) = o2 for
i=1,...,n



Multiple Linear Regression

o Then we can write the model in a more compact form:

Yox1 Xn><(p+1)§(p+1)><1 T &nxa
where
n Bo €1
y=1+t1|,8= ¢ |, e=| :
Yn 5p €n
1 X11 - Xip
X=1": ;
1 Xp1 ... Xpp

o X is called the design matrix



Multiple Linear Regression

o Multiple Linear Regression Model:
y=XB+e

o ¢ is a random vector.

o Assumptions: E(e) = 0 and Var(e) = o2/ and all the
assumptions stated in simple linear regression.



Estimation of Model Parameters

o The LSEs of o, 81, -+, B, are

argmin Q(Bo, B1, -+, Bp)

Bo,B1,,Bp
n 2
= argmin Z (}/i —fo—Pixn—...— 5px,-p>
,BOaﬁla"'aﬁp i=1
= e (7= XB)"(y — XB)

= argmin(y"y — 28" X"y + BTXTX})
L = yrp 2



Estimation of Model Parameters

o Differentiating Q(3) with respect to 3 and setting the derivative
to zero gives the following normal equations:

X™Xp=X"y

o Now, if the matrix X7 X is invertible (i.e. if X is of full rank),
then the LSE of j3 is given by

EI (XTX)ile)_/



Fitted Value

o The fitted value of response corresponding to regressor values
x=(1,x1, - ,Xp) is

y:B\O‘l_Ble“r‘...‘f'B\po

o Then 2: (5}175}% U 7.}1}n)T - Xé\: X(XTX)ile_Z: HX:
where, H = X(X7X)™1XT is called hat-matrix.

o The residuals are

€1 yi—hn



Properties of LSE of 8

o @Ais a linear function of y
° é is unbiased estimator of 3. That is, E(é)
o Var(f) = oc2(XTX) 1

o (3 is the BLUE of §.

I
=



Estimation of Error Variance (0?)

o It can be shown that
E(SSges) = (n—p—1)0?

o Hence, 52 = % = MSges is an unbiased estimator of o2.

©

Observed value of 52 = 2E=_ s called residual variance. It's
n—p—1
positive square root is called residual standard error.

©

Computationally efficient formula:

SSres=» & =y y—B{ X"y,

i=1



Hypothesis Testing: Test for Significance of
Regression

o Assumptions: ¢;'s are i.i.d N(0,02) Rvs. Then € ~ N,(0, o?/,)
o Want to test the hypothesis if there is a linear relationship
between the response y and any of the regressor x, - - - , X,,.
Ho:p1=pPr=--=pB,=0ag. Hi: B #0 for atleast one j

o Therefore, the test statistic is

_ SSReg/p _ SSReg/p

Fo 62 SSges/(n—p—1)

~ Fp.n—p—1, under Hp.

o Reject Hy iff Fo > Fpnp_1.0 (at level a).



Hypothesis Testing for individual regression
coefficients: [3;

o Want to test:
Ho:ﬁj:Oag. H]_:BJ‘#O
o Therefore, the test statistic is
th = L ~ tn,pfl, under Ho,
V MSRestj
where C; is the diagonal element of (X7 X)™*
o Reject Hy iff |to| > th_p_1,4/2; (at level ).



Test of contribution of a subset of the regressors

©

Let us partition the problem as follows:

Want to test:

©

Ho: 32 =0ag. Hi:[2#0

Based on the full model (y = X3 +¢), 3= (X7X)"'XTy and
SSReg(ﬁ) has p degrees of freedom.

o

(]

To find the contribution of (3, fit the model assuming 3, = 0.

The reduced model is y = X181 +¢, & = (X X1)"'X{"y and
SSReg(ﬁ) has p — r degrees of freedom. Where r denotes the
number of components in [,

©



Test of contribution of a subset of the regressors

O SSreg(2]81) = SSreg(3) — SSreg(/1) can be used as a measure
of contribution of f3,.

o Note that if 3, has significant contribution then SSgeg(52|51) is
large.

o Therefore, the test statistic is

_ SSreg(Ba|1)/1r - SSreg(B2|Bh)/r

= NFrn——a der Hp.
52 SSres/(n —p — 1) rnmpmty URCETTO

Fo

o Reject Hy iff Fp > F, n_p_1.0 (at level a).



Testing of general linear hypothesis

o Want to test:
Ho - T@ang. Hl:Tg;éO,

where T is a m x (p + 1) matrix of constants.
o Examples: y = By + fix1 + Baxo + [B3x3 + €
Qo H0251:B3 ag. H12517$63. Take, T = [0 10 —]_]
o Ho:B1=03,8=0ag. Hi:p1# [B30rB#0. Take,

010 -1
T[oo1 0}

o The full model (FM) is y = X3 + .

o Under FM, 3 = (X"X)*XTy and SSges(FM) = yTy — 37X Ty
has n — p — 1 degrees of freedom.



Testing of general linear hypothesis

o Now assume that T has r (< m) independent rows.

© Then T3 =0 can be solved and r of the 3;'s in FM can be
written in terms of other (p+1 —r) f;'s.

o This lead to the reduced model (RM)
y=4y+¢

where Z is n x p+ 1 — r matrix.

o Under RM, 4 = (Z7Z)'ZTy and SSges(RM) = yTy —7TZTy
has n — p — 1 + r degrees of freedom.

0 SSges(FM) < SSges(RM).



Testing of general linear hypothesis

0 SSi = SSges(RM) — SSges(FM) with degrees of freedom
(n—p—=1+r)—(n—p—-1)=r.
o Therefore, the test statistic is

SSH/r

Fo= SSres(FM)/(n— p — 1)

~ Frpn_p—1, under Hj.

o Reject Hy iff Fp > F, pp_1.0 (at level a).



Confidence Intervals (Cls)

o Confidence Interval of individual regression coefficient BJ-

o Pivot is

B -5
MSRestj
where Cj is the diagonal element of (X7 X)™! matrix.

o A 100(1 — «)% Cl for 5, is

~ tn—p—l’

Bj + tnfpfl,a/2 V MSRestj .



Cl for mean response

o

Xo1
Let xo = | . be a value of the regressor vector.

XOp

(%)

The mean response at xg is xp ' 5.

0B~ N(x78, o (XTX) ).

©

Yo—x'B

Pivot is
\/MSRes &T(XTX)71&

©

~ tn—p—l-

o

A 100(1 — )% CI for mean response at xp is

Yo £ t,,_,,_l,a/g\/ MSges x0T (XT X)X | -




Prediction Interval

Consider a level of regressor xg.

Let yo be the corresponding value of the response.

We want a prediction interval for yj.

Let W =y — o =yo — %" B ~ N(0,0%(1 + %7 (X'X) 'x0)).

© © o o

. . w
o A pivot is Mo X)) th—p-1-
o A 100(1 — «)% prediction interval of y, is

[0 F tr-p-1g 4/ MSres(L + 207 (X' X)~x0)]



Standardized Regression Coefficients

o Difficult to compare regression coefficients. The magnitude of j3;
reflects the unit of measurement of regressor x;.

o For example, y =5+ x; + 1000x,, where y is measured in liters,
x; in milliliters, and x, in liters. Here, 8, >> [(3;. But the effects
of both regressor on y are identical.

o Way-out is to standardized the regressors and response so that
they become unit free.



Standardized Regression Coefficients

o A popular approach is as follows:

o Define Wj; = X\U/—S%J i=1,2,...,nmj=12..p.
yi = \/’S—, i=1,2,.
Here 5; = Z,-:l(ﬁ— j) L j=1,2,....p

o Clearly the mean W; =0 and

VI Wy~ W2 =[S w2 =1
y*=0and (311, (y)? )2 =1
o In terms of y*, Wy, ..., Wp, the regression model becomes,

y”< = b1W1—|-b2W2—|—...+prp—|-6

o In matrix notation, X* = Wb+e
o LSE, b=(W W)Wy



Standardized Regression Coefficients

I no np ry
o1 ap ray
! ’

rp]_ rp2 . . o 1 p><p rpy

where, r; = ZZ:l(Xui_)_(i)(Xuj—ij) _ S

vy \/Sﬂsu \/Sjjsii'
r., = ZZ:I(XUi_)_(i)(YU_y) — Sj
v VSiSt N

px1



Adjusted R?

o Coefficient of determination is given by

SSRes
SSt

R*=1-

o In multiple linear regression, adding a variable to a model can
increase the value of R2.

o To overcome this problem, we have adjusted R? defined by

2 _q_ SSres/(n— p — 1)
adj SS57/(n—1)




Model Adequacy Checking

o Major assumptions
o linear relationship
o Error mean zero
o Error variance is constant
o Error are uncorrelated
o Error are normally distributed and independent

o Gross violation of the assumptions may lead to a totally different
model with opposite conclusions.

o We perform the checking using residuals.



Different Residuals

o We now define 3 types of residuals.
o Residual: ¢ =y; —y; foralli = e= (I —H)y.

o Standardized residual:

di = = forall i — g:\/ﬁ(/—H)X.

o Studentized residual: r; =




Residual Plots : Q-Q Plot

Qo

Qo

Test for normality.

The residuals can be
assessed for normality
using a Q—-Q plot.
This compares the
residuals to “ideal”
normal observations.

We plot the quantiles
corresponding to
sorted residuals (¢;)
against ®~1(-15) for
i=1,---n

Normal Residuals

Cauchy Residuals
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Source : Linear Models with R by Julian

J. Faraway




Residual Plots : Q—Q Plot

Figure 4.3 Normal probability plots: (a) ideal; (b) light-tailed
distribution; (c) heavy-tailed distribution; (d) positive skew, (e,
negative skew.
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Source: Introduction to Linear Regression Analysis, by Montgomery, Peck,
Vining; 2006.



Residual Plots: Plot of residual against Fitted
values

o Test of constant variance and non-linear relation

o Plot y; vs ei(or d; or r;)
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Residual Plots : Plot of residual against Regressors

o Plot xj; vs e; for all j

o In previous plot, replace ‘fitted’ by x;; to find similar
interpretation.

o Repeat it for all the regressors.



Partial Regression Plot

o Complete/correct marginal effect

o Let we want to study the marginal effect of x; on y

o y is regressed on Xxi, ..., Xx except X;.

o x; is regressed on X, ..., Xx except x;.

o Plot y residual, e;(y|x1, ..., Xi—1, Xj+1, ..., Xk) against x; residual,
i (Xj| X1, vy Xj—15 Xjt1s o5 Xk)

o For ideal scenario, the partial regression plot should show a
linear relationship (straight line with non-zero slop).

o Curvilinear band: indicates higher order terms in x; or it's
transformation.

o Horizontal band: indicates no additional useful information in x;



The PRESS Statistic

o PRESS: Prediction Error Sum of Squares

o Delete i*" observation. Fit the model on remaining (n — 1)
observations and predict y;.

o The corresponding predicted value is denoted by y(_j).

o The corresponding prediction error is e_jy = y; — y(—j). It'is
called PRESS residual.

o It can be shown that ¢_; =

€

1=hji
o Large values of e_j) implies potential influential observations.

o Large difference between e; and e_;) indicates an observation
where model fit is quite well but a model built without that
predicts poorly.



The PRESS Statistic

0.2
o Var(e-i) = 1%

o Standardized PRESS residual is
1-— h,',' (S

€(—i = / )
& MSRes \/ MSRes(]- — h,',')

which is same as the Studentized residual.

n n 2
prss -3 32 %)
i—1 il

1=

©

©

PRESS is a measure of how well a regression model perform in
predicting new observations.

R? for prediction : R3 jision = 1 — P52 It gives indication of

the prediction capability of the regression model.

©

(%)

Using PRESS, we may compare model.



Variable Selection

o Techniques:
o All possible Regression.
o Step-wise Type Procedures :
o Forward Selection
o Backward elimination
o Step-wise Regression



Multicollinearity

o Near linear relationship among regressors.

o Effect of Multicollinearity — | :

o Consider scaled response and regressor (length unit).
° Consider y = Pi1x1 + Boxo + e
r12r2y — nary
————>—=, and e Ty
= 1—r12 = 1-rf
5 o’ —r120°
o Var(B) = . Cov(Pu, B) =

1-— L=

Strong muItlcollmearlty between x; and i<22 indicates the ri> will
be large.

If |r12] — 1, Var(j;) — oo, and |Cov(f1, B2)| — oo.

The above large variances and covariances means different
sample taken at the same x level could lead to widely different
estimates of the model parameters.



Multicollinearity

o Effect of Multicollinearity — II:

o Li=(8- ﬁ) (B—=1).

o E(L2) = Var(ﬁj) =02 Tr(X'X)™ ! = 52 p - )\ where
Aj's are elgenvalues of (X'X).

o If (X'X) is ill-conditioned then at least one \; will be small
= E(L?) is big.

o Therefore, we have E(BTE) = §/§+ o?Tr(X'X)~1, implies
magnitude ofg are large.



Multicollinearity Diagnostics

o Examination of correlation matrix (X' X):
o If x; and x; are nearly linearly dependent, then |r;;| should be
close to 1.
o However, this procedure is helpful to detect near linear
dependence between a pair of regressors only.



Multicollinearity Diagnostics

o Variance Inflation Factors (VIFs):

o Var(f) = O'2CJJ, = (X'X)~L. It can be shown that

cp=(1- R2) =7 1R2 where R2 is the coefficient of

determination obtained when xj is regressed on remaining
(k—1) regressors
o VIFj == This measures the factor by which the variance of

R2
ﬁAj inflated due to the near linear dependence.

o Rule of thumb : If any of VIF > 5, the associated coefficient is
estimated poorly due to multicollinearity.



Multicollinearity Diagnostics

o Eigen System Analysis of (X'X):
o The eigen values, A1, A2, ..., Ap, can be used to see the extent of
multicollinearity.
o Small eigen values (one or more) = multicollinearity.
o Condition number, kK = %
o Rule of thumb : "

o k <100 — No serious problem with multicollinearity.
o 100 < k < 1000 — moderate to strong multicollinearity.
o k > 1000 — severe multicollinearity.

= 20D

The number of j's such that, k; > 1000 — provide useful
information on the number of near linear dependence.

o Condition indices : k; =



Method for dealing with multicollinearity

o Source of multicollinearity:

o Data collection method (ex: biased sample) — collecting more
data.

o Constraints in model or population (ex: family income (x;) and
household size (x2)) — Model respecification

o Model specification (ex: range of x is small, then adding x? in
the model) — Model respecification

o An overdefined model (ex: adding more regressors) — Model
respecification, and other method of estimate like Ridge
regression.



Considerations in the use of Regression

o Regression models are intended as interpolation equations over
the range of the regressor variables used to fit the model.
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Source: Introduction to Linear Regression Analysis, by Montgomery, Peck, Vining; 2006.



Considerations in the use of Regression

o The deposition of the x-values plays an important role in the LS
fit.

eB

X X

Source: Introduction to Linear Regression Analysis, by Montgomery, Peck, Vining; 2006.



Considerations in the use of Regression

o Outliers or bad values can seriously disturb the LS fit.

af '

Source: Introduction to Linear Regression Analysis, by Montgomery, Peck, Vining; 2006.



Considerations in the use of Regression

o A regression analysis can only address the issues on correlation.

o It does not imply that the variables are relate in any causal sense.

Nul.nbcrof&mtiud Mﬂ.][.ll Number of Radio First Name of Q The f|tted regression

Defectives per 10000 of Estimated ~ Receiver Licenses Issued  President of . .
Year Population in the UK (y) (Millions) in the UK (x;)  the US (x) €q uation relatlng _y to
1924 8 1.350 Calvin 1
1925 8 1.960 Calvin 1B
1926 9 2270 Calvin
1927 10 248 Calvin -~
1928 1 2730 Cabvin y = 4.58 +2.20x;.
1929 11 3001 Calvin
1930 12 37 Herbert 2
1931 16 460 Herbert o R<=0.9842.
1632 18 5497 Herbert
1933 19 6260 Herbert o For testing H, : =0
1034 bl 7012 Franklin g . 0: b '
1935 2 7618 Frankln the p-value is
1936 2 8131 Franklin

—12

1937 3 859 Fnklin 3.58 x 107,

Source: Kendall and Yule [1930] and Tafte [1974]



How to attack the data analysis/model fitting:

o Understand the research question(s). Understand the data you
have.

@
Q

@

©e 66

How the data was collected?

What type of the study design used: Randomized or
Observational; Prospective or Retrospective etc.

Can you make connection with the primary research question
and the data? Is the research question feasible based on the
data you have?

Are there secondary research questions?

What are the potential source of bias? Sample (data) may not
be a representative of the target (source) population.

Are there any confounders?

Are the number of observations/individuals in the data
sufficient?



How to attack the data analysis/model fitting:

©

Do the scatter plot(s): response vs. input variable(s).

©

Fit the regression model(s) (or other type of model(s)).

o Interpret the output from the fitted models:
@ Are all the results expected? Whether the results go well with
existing domain (basic science) knowledge?
@ If not, what are the reasons behind the aberration from the
expected results.
o Check the diagnostics for model assumptions. If you find

problem, go back and correct (if you can) the chosen model; or,
take decision about the outliers/influential points.



