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Regression

Question: What is the impact of attending classes on students’
final marks?

Let’s start with a real data from IITG which you can feel about
it!!
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Linear Regressions

We have one particular variable that we are interested in
understanding or modeling, such as sales of a particular product,
sale price of a home, or voting preference of a particular voter.
This variable is called the target, response, or dependent
variable, and is usually represented by y .

We have a set of p other variables that we think might be useful
in predicting or modeling the target variable (for e.g. the price of
the product, the competitor’s price, and so on; or the lot size,
number of bedrooms, number of bathrooms of the home, and so
on; or the gender, age, income, party membership of the voter,
and so on). These are called the predicting, independent
variables, or features and are usually represented by
x1, x2, . . . , xp.



Linear Regressions

Thus, we have

y = f (x ; β) + ε,

for some real valued function f , where x is vector of predictors,
β is the vector of parameters, and ε is error.

If f is linear in the parameters vector β, then the regression is
called linear regression.



Examples and Role of Transformations

y = β0 + β1x1 + β2x2 + . . .+ βpxp is a linear model.

y = β0 + β1x + β2x
2 is a linear model, because it is linear in β

(even though not in x).

y = β0 + β1x
β2 is a non-linear model, as it is not linear in β.

y = β0x
β1 is not a linear model, but ln y = ln β0 + β1 ln x is.

y = eβx

1+eβx
, where y ∈ (0, 1)

y = 1
β0+β1x1+β2x2

·



Main use of Linear Regressions

Typically, a regression analysis is used for one (or more) of three
purposes:

1 modeling the relationship between x and y ;

2 prediction of the target variable (forecasting);

3 testing of hypotheses.



Simple Linear Regression

Just one predictor x , i.e. p = 1.

The model for the simple linear regression is given by

y = β0 + β1x + ϵ,

where y is the outcome variable (random), x is the
independent/predictor variable (non-random) and ϵ is the
random error term. β0 (intercept) and β1 (slope) are model
parameters (unknown constants).

Equivalently, the model can be written for i = 1, 2, · · · , n
number of observations (x1, y1), · · · , (xn, yn) as

yi = β0 + β1xi + ϵi , i = 1, . . . , n.

How do you interpret β0 (intercept) and β1 (slope)?



Least Squares Estimation

Goal: To estimate β0, β1 by minimizing error in some sense
(e.g. squared error)

One reasonable way is to use the principle of Least Squares, i.e.
minimize the objective function

Q(β0, β1) =
n∑

i=1

ϵ2i =
n∑

i=1

(yi − β0 − β1xi)
2

with respect to β0, β1.

Differentiate Q(β0, β1) with respect to β0, β1 and equate the
partial derivatives to zero to get the estimates β̂0, β̂1.

The resulting equations are called normal equations:

n∑
i=1

(yi − β0 − β1xi) = 0 and
n∑

i=1

xi(yi − β0 − β1xi) = 0



Least Squares Estimation

The solution is given by

β̂0 = ȳ − β̂1x̄ and β̂1 = Sxy/Sxx

where

Sxx =
n∑

i=1

(xi − x̄)2 and Sxy =
n∑

i=1

(xi − x̄)(yi − ȳ).

β̂0 and β̂1 are called the least squares estimator (LSE) of β0 and
β1, respectively.



Importance of graphing data before analyzing it

Which one of the above do you think has highest value of absolute
correlation and ideal for linear regression?



Importance of graphing data before analyzing it

In all the four graphs: mean of x = 9 (with variance 11); mean
of y = 7.50 (with variance 4.1) ; correlation between x and y =
0.816

Fitted linear regression in each cases: y = 3 + 0.5x

In 1973, Anscombe demonstrated the importance of graphing
data before analyzing it and the effect of outliers on statistical
properties



Assumptions

1 The errors are uncorrelated with each other, i.e.,

Cov(ϵi , ϵj) = 0 for i ̸= j .

2 The expected value of the errors is zero, i.e.,

E (ϵi) = 0 for all i .

3 The errors are homoscedastic (constant variance), i.e.,

Var(yi) = σ2 for all i

.



Properties of β̂0 and β̂1

β̂0 and β̂1 are linear combination of yi ’s.

β̂0 and β̂1 are unbiased for β0 and β1, respectively.

Variances of β̂0 and β̂1:

Var(β̂0) = σ2
(1
n
+

x̄2

Sxx

)
Var(β̂1) =

σ2

Sxx



Gauss-Markov Theorem

Definition 5.1: An estimator θ̂ of θ is called linear estimator of θ if
θ̂ is a linear combination of random observations.

Definition 5.2: An estimator θ̂ of θ is called the best linear unbiased
estimator (BLUE) of θ if θ̂ is linear and unbiased estimator of θ and θ̂
has minimum variance among all linear unbiased estimator of θ.

Theorem 5.1: Under the above assumptions of linear regression, the
LSEs β̂0 and β̂1 are BLUE of β0 and β1, respectively.



A Few Definitions

Fitted values: ŷi = β̂0 + β̂1xi , i = 1, . . . , n.
Residuals: ei = yi − ŷi , i = 1, . . . , n.
The objective function evaluated at the LSEs is called the
residual sum of squares (SSRes).

SSRes = Q(β̂0, β̂1) =
n∑

i=1

(yi − β̂0 − β̂1xi)
2 =

n∑
i=1

(yi − ŷi)
2 .

The following quantity is called total sum of squares (SST ):

SST =
n∑

i=1

(yi − y)2 .

The following quantity is called regression sum of squares
(SSReg ):

SSReg =
n∑

i=1

(ŷi − y)2 .



Properties of Least Squares Fit

n∑
i=1

ei = 0.

n∑
i=1

yi =
n∑

i=1

ŷi .

n∑
i=1

xiei = 0.

n∑
i=1

ŷiei = 0.

SST = SSReg + SSRes .



Estimation of Error Variance

It can be shown that

E (SSRes) = (n − 2)σ2.

Hence, σ̂2 = SSRes
n−2

= MSRes is an unbiased estimator of σ2. Here
MSRes is the residual mean square.

Observed value of σ̂2 = SSRes
n−2

is called Residual variance. It’s
square root is called the residual standard error.

A convenient computing formula for SSRes is

SSRes = SST − β̂1Sxy .



Another Assumption

Errors (ϵi) are normally distributed

This assumption is needed for further analysis – Hypothesis testing,
construction of confidence intervals.



Hypothesis Testing: β1

Want to test the hypothesis that the slope parameter (β1)
equals to a constant (a value, say β10):

H0 : β1 = β10 ag. H1 : β1 ̸= β10

Note that, yi ∼ N(β0 + β1xi , σ
2) and yi ’s are independent.

β̂1 ∼ N(β1,
σ2

Sxx
) =⇒ z = β̂1−β1√

σ2/Sxx
∼ N(0, 1). But σ is unknown.

(n−2)MSRes
σ2 ∼ χ2

n−2. Also MSRes and β̂1 are independent.

Therefore, the test statistic is

t =
β̂1 − β10√
MSRes/Sxx

∼ tn−2, under H0.

Reject H0 iff |t| > tn−2,α/2; (at level α).



F -Test for Regression

To test

H0 : E (Y |x) = β0 ag. H1 : E (Y |X = x) = β0 + β1x

Test statistics is a ratio, defined as F :

F =
SSReg/1

σ̂2
=

SSReg/1

SSRes/(n − 2)
∼ F1,n−2,

where SSReg =
∑

i(ŷi − ȳ)2



Hypothesis Testing: β0

Want to test the hypothesis that the intercept parameter (β0)
equals to a constant (a value, say β00):

H0 : β0 = β00 ag. H1 : β0 ̸= β00

β̂0 ∼ N(β0, σ
2( 1

n
+ x̄2

Sxx
)) =⇒ z = β̂0−β0√

σ2( 1
n
+ x̄2

Sxx
)
∼ N(0, 1). But σ

is unknown.
(n−2)MSRes

σ2 ∼ χ2
n−2. Also MSRes and β̂1 are independent.

Therefore, the test statistic is

t =
β̂0 − β00√

MSRes(
1
n
+ x̄2

Sxx
)
∼ tn−2, under H0.

Reject H0 iff |t| > tn−2,α/2; (at level α).



Interval Estimation: β0 and β1

To get the CI for β0 and β1, the pivots are

β̂0 − β0√
MSRes(

1
n
+ x̄2

Sxx
)
, and

β̂1 − β1√
MSRes/Sxx

, respectively.

A 100(1− α)% CI for β0 is[
β̂0 ∓ tn−2,α/2

√
MSRes

(1
n
+

x̄2

Sxx

)]
.

A 100(1− α)% CI for β1 is[
β̂1 ∓ tn−2,α/2

√
MSRes

Sxx

]
.



Interval Estimation: CI for σ2

To get the CI for σ2, the pivots is

(n − 2)MSRes

σ2
∼ χ2

n−2

A 100(1− α)% CI for σ2 is[
(n − 2)MSRes

χ2
n−2;α/2

,
(n − 2)MSRes

χ2
n−2;1−α/2

]
.



Interval Estimation: CI for mean response

A regression model can be used to estimate the mean response
E (y) for a particular value of the regressor variable x . Let x0 be
a value of the regressor variable. Then E (y |x0) = β0 + β1x0.

Then, ŷ0 = Ê (y |x0) = β̂0 + β̂1x0

And, ŷ0 ∼ N
(
β0 + β1x0, σ

2
(

1
n
+ (x0−x̄)2

Sxx

))
Pivot: ŷ0−(β0+β1x0)√

MSRes

(
1
n
+

(x0−x̄)2

Sxx

) ∼ tn−2

A 100(1− α)% CI for β0 + β1x0 is[
ŷ0 ∓ tn−2;α/2

√
MSRes

(1
n
+

(x0 − x̄)2

Sxx

)]
.



Prediction Interval for New Observation:

Let x0 be a value of the regressor variable.
The true value of the response is y0 (corresponding to x0).
We want to provide an interval I such that P(y0 ∈ I ) = 1− α
Note that the point estimate of y0 is ŷ0 = β̂0 + β̂1x0.
Consider ψ = y0 − ŷ0.

Then, E (ψ) = 0,Var(ψ) = σ2
(
1 + 1

n
+ (x0−x̄)2

Sxx

)
ψ ∼ N

(
0, σ2

(
1 + 1

n
+ (x0−x̄)2

Sxx

))
Pivot: y0−ŷ0√

MSRes

(
1+ 1

n
+

(x0−x̄)2

Sxx

) ∼ tn−2

A 100(1− α)% prediction interval is[
ŷ0 ∓ tn−2;α/2

√
MSRes

(
1 +

1

n
+

(x0 − x̄)2

Sxx

)]
.



Coefficient of determination: R2

Coefficient of determination is given by

R2 =
SSReg

SST
= 1− SSRes

SST
= 1−

∑
i(yi − ŷi)

2∑
i(yi − ȳ)2

,

It is a bounded quantity: 0 ≤ R2 ≤ 1.

R2 is interpreted as the proportion of variation explained by the
model.

Higher values of R2 are desirable (R2 close to 1 indicates a good
fit).

But “how high is high?”: depends on the context.



Simple Linear Regression in Heights Data

Data on heights of n = 1375 mothers in the UK under the age
of 65 and one of their adult daughters over the age of 18
(collected and organized during the period 1893–1898 by the
famous statistician Karl Pearson).

A historical use of regression to study inheritance of height from
generation to generation.

Let’s fit linear regression with this data set using R.



Multiple Linear Regression

Data (of sample size n) looks like a matrix:
y1 x11 x12 · · · x1p
y2 x21 x22 · · · x2p
...

...
...

...
yn xn1 xn2 · · · xnp





Multiple Linear Regression

In general, the response (y) may be related to p regressors
(input variables/predictors).

The model

yi = β0 + β1xi1 + . . .+ βpxip + ϵi , i = 1, . . . , n

is called multiple linear regression. A regression model with p
regressors.

The parameters βj , j = 0, 1, 2, · · · , p are called regression
coefficients.

βj , j = 0, 1, 2, · · · , p represents the change in the average value
of the response for a unit change in j th regressor keeping other
regressors fixed.

As before, ϵi ’s are i.i.d. with E (ϵi) = 0 and Var(ϵi) = σ2 for
i = 1, . . . , n



Multiple Linear Regression

Then we can write the model in a more compact form:

y
n×1

= Xn×(p+1)β(p+1)×1
+ ϵn×1

where

y =

 y1
...
yn

 , β =

 β0
...
βp

 , ϵ =

 ϵ1
...
ϵn



X =

 1 x11 . . . x1p
...

...
...

1 xn1 . . . xnp

 ,

X is called the design matrix



Multiple Linear Regression

Multiple Linear Regression Model:

y = Xβ + ϵ.

ϵ is a random vector.

Assumptions: E (ϵ) = 0 and Var(ϵ) = σ2I and all the
assumptions stated in simple linear regression.



Estimation of Model Parameters

The LSEs of β0, β1, · · · , βp are

argmin
β0,β1,··· ,βp

Q(β0, β1, · · · , βp)

= argmin
β0,β1,··· ,βp

n∑
i=1

(
yi − β0 − β1xi1 − . . .− βpxip

)2
= argmin

β
(y − Xβ)T (y − Xβ)

= argmin
β

(yTy − 2βTXTy + βTXTXβ)



Estimation of Model Parameters

Differentiating Q(β) with respect to β and setting the derivative
to zero gives the following normal equations:

XTXβ = XTy

Now, if the matrix XTX is invertible (i.e. if X is of full rank),
then the LSE of β is given by

β̂ = (XTX )−1XTy



Fitted Value

The fitted value of response corresponding to regressor values
x = (1, x1, · · · , xp) is

ŷ = β̂0 + β̂1x1 + . . .+ β̂pxp

Then ŷ = (ŷ1, ŷ2, · · · , ŷn)T = X β̂ = X (XTX )−1XTy = Hy ,

where, H = X (XTX )−1XT is called hat-matrix.

The residuals are

e =

e1...
en

 =

y1 − ŷ1
...

yn − ŷn

 = y − ŷ = (I − H)y



Properties of LSE of β

β̂ is a linear function of y

β̂ is unbiased estimator of β. That is, E (β̂) = β

Var(β̂) = σ2(XTX )−1

β̂ is the BLUE of β.



Estimation of Error Variance (σ2)

It can be shown that

E (SSRes) = (n − p − 1)σ2

Hence, σ̂2 = SSRes
n−p−1

= MSRes is an unbiased estimator of σ2.

Observed value of σ̂2 = SSRes
n−p−1

is called residual variance. It’s
positive square root is called residual standard error.

Computationally efficient formula:

SSRes =
n∑

i=1

e2i = yTy − β̂T
1 X

Ty ,



Hypothesis Testing: Test for Significance of

Regression

Assumptions: ϵi ’s are i.i.d N(0, σ2) Rvs. Then ϵ ∼ Nn(0, σ
2In)

Want to test the hypothesis if there is a linear relationship
between the response y and any of the regressor x1, · · · , xn.

H0 : β1 = β2 = · · · = βp = 0 ag. H1 : βj ̸= 0 for atleast one j

Therefore, the test statistic is

F0 =
SSReg/p

σ̂2
=

SSReg/p

SSRes/(n − p − 1)
∼ Fp,n−p−1, under H0.

Reject H0 iff F0 > Fp,n−p−1;α (at level α).



Hypothesis Testing for individual regression

coefficients: βj

Want to test:
H0 : βj = 0 ag. H1 : βj ̸= 0

Therefore, the test statistic is

t0 =
β̂j√

MSResCjj

∼ tn−p−1, under H0,

where Cjj is the diagonal element of (XTX )−1

Reject H0 iff |t0| > tn−p−1,α/2; (at level α).



Test of contribution of a subset of the regressors

Let us partition the problem as follows:

y = Xβ + ϵ =⇒ y = (X1,X2)

(
β1
β2

)
+ ϵ

Want to test:
H0 : β2 = 0 ag. H1 : β2 ̸= 0

Based on the full model (y = Xβ + ϵ), β̂ = (XTX )−1XTy and
SSReg (β) has p degrees of freedom.

To find the contribution of β2, fit the model assuming β2 = 0.

The reduced model is y = X1β1 + ϵ, β̂1 = (XT
1 X1)

−1XT
1 y and

SSReg (β1) has p − r degrees of freedom. Where r denotes the
number of components in β2



Test of contribution of a subset of the regressors

SSReg (β2|β1) = SSReg (β)− SSReg (β1) can be used as a measure
of contribution of β2.

Note that if β2 has significant contribution then SSReg (β2|β1) is
large.

Therefore, the test statistic is

F0 =
SSReg (β2|β1)/r

σ̂2
=

SSReg (β2|β1)/r
SSRes/(n − p − 1)

∼ Fr ,n−p−1, under H0.

Reject H0 iff F0 > Fr ,n−p−1;α (at level α).



Testing of general linear hypothesis

Want to test:

H0 : Tβ = 0 ag. H1 : Tβ ̸= 0,

where T is a m × (p + 1) matrix of constants.

Examples: y = β0 + β1x1 + β2x2 + β3x3 + ϵ

H0 : β1 = β3 ag. H1 : β1 ̸= β3. Take, T =
[
0 1 0 −1

]
.

H0 : β1 = β3, β2 = 0 ag. H1 : β1 ̸= β3 or β2 ̸= 0. Take,

T =

[
0 1 0 −1
0 0 1 0

]
.

The full model (FM) is y = Xβ + ϵ.

Under FM, β̂ = (XTX )−1XTy and SSRes(FM) = yTy − β̂TXTy
has n − p − 1 degrees of freedom.



Testing of general linear hypothesis

Now assume that T has r (≤ m) independent rows.

Then Tβ = 0 can be solved and r of the βj ’s in FM can be
written in terms of other (p + 1− r) βj ’s.

This lead to the reduced model (RM)

y = Zγ + ϵ,

where Z is n × p + 1− r matrix.

Under RM, γ̂ = (ZTZ )−1ZTy and SSRes(RM) = yTy − γ̂TZTy
has n − p − 1 + r degrees of freedom.

SSRes(FM) ≤ SSRes(RM).



Testing of general linear hypothesis

SSH = SSRes(RM)− SSRes(FM) with degrees of freedom
(n − p − 1 + r)− (n − p − 1) = r .

Therefore, the test statistic is

F0 =
SSH/r

SSRes(FM)/(n − p − 1)
∼ Fr ,n−p−1, under H0.

Reject H0 iff F0 > Fr ,n−p−1;α (at level α).



Confidence Intervals (CIs)

Confidence Interval of individual regression coefficient β̂j

Pivot is
β̂j − βj√
MSResCjj

∼ tn−p−1,

where Cjj is the diagonal element of (XTX )−1 matrix.

A 100(1− α)% CI for βj is[
β̂j ± tn−p−1,α/2

√
MSResCjj

]
.



CI for mean response

Let x0 =


1
x01
...
x0p

 be a value of the regressor vector.

The mean response at x0 is x0
Tβ.

x0
T β̂ ∼ N

(
x0

Tβ, σ2x0
T
(
XTX

)−1
x0
)
.

Pivot is
ŷ0−x0Tβ√

MSRes x0T (XTX )−1x0
∼ tn−p−1.

A 100(1− α)% CI for mean response at x0 is[
ŷ0 ± tn−p−1,α/2

√
MSRes x0T (XTX )−1x0

]
.



Prediction Interval

Consider a level of regressor x0.

Let y0 be the corresponding value of the response.

We want a prediction interval for y0.

Let Ψ = y0 − ŷ0 = y0 − x0
T β̂ ∼ N(0, σ2(1 + x0

T (X
′
X )−1x0)).

A pivot is Ψ√
MSRes(1+x0T (X

′X )−1x0)
∼ tn−p−1.

A 100(1− α)% prediction interval of y0 is

[ŷ0 ∓ tn−p−1;α
2

√
MSRes(1 + x0T (X

′X )−1x0)].



Standardized Regression Coefficients

Difficult to compare regression coefficients. The magnitude of βj
reflects the unit of measurement of regressor xj .

For example, y = 5 + x1 + 1000x2, where y is measured in liters,
x1 in milliliters, and x2 in liters. Here, β2 >> β1. But the effects
of both regressor on y are identical.

Way-out is to standardized the regressors and response so that
they become unit free.



Standardized Regression Coefficients

A popular approach is as follows:

Define Wij =
xij−x j√

Sjj
, i = 1, 2, ..., n; j = 1, 2, ..., p.

y∗i = yi−y√
SST

, i = 1, 2, ..., n.

Here Sjj =
∑n

i=1(xij − xj)
2, j = 1, 2, ..., p.

Clearly the mean W j = 0 and√∑n
i=1(Wij −W j)2 =

√∑n
i=1W

2
ij = 1

y∗ = 0 and (
∑n

i=1(y
∗
i )

2)
1
2 = 1

In terms of y∗,W1, ...,Wp, the regression model becomes,

y∗ = b1W1 + b2W2 + ...+ bpWp + ϵ

In matrix notation, y∗ = Wb + ϵ.

LSE, b̂ = (W
′
W )−1W

′
y∗.



Standardized Regression Coefficients

W
′
W =


1 r12 . . . r1p
r21 1 . . . r2p
. . .
. . .
. . .
rp1 rp2 . . . 1


p×p

W
′
y ∗ =


r1y
r2y
.
.
.
rpy


p×1

where, rij =
∑n

u=1(xui−x̄i )(xuj−x̄j )√
SjjSii

=
Sij√
SjjSii

,

riy =
∑n

u=1(xui−x̄i )(yu−ȳ)√
SiiST

=
Sjy√
SiiSST



Adjusted R2

Coefficient of determination is given by

R2 = 1− SSRes

SST
.

In multiple linear regression, adding a variable to a model can
increase the value of R2.

To overcome this problem, we have adjusted R2 defined by

R2
adj = 1− SSRes/(n − p − 1)

SST/(n − 1)
.



Model Adequacy Checking

Major assumptions

linear relationship
Error mean zero
Error variance is constant
Error are uncorrelated
Error are normally distributed and independent

Gross violation of the assumptions may lead to a totally different
model with opposite conclusions.

We perform the checking using residuals.



Different Residuals

We now define 3 types of residuals.

Residual: ei = yi − ŷi for all i =⇒ e = (I − H)y .

Standardized residual:
di =

ei√
MSRes

for all i =⇒ d = 1√
MSRes

(I − H)y .

Studentized residual: ri =
ei√

MSRes(1−hii )
for all i .



Residual Plots : Q–Q Plot

Test for normality.

The residuals can be
assessed for normality
using a Q–Q plot.
This compares the
residuals to “ideal”
normal observations.

We plot the quantiles
corresponding to
sorted residuals (ei)
against Φ−1( i

n+1
) for

i = 1, · · · , n.

Diagnostics  65

> par(mfrow=c(3, 3) ) 

> for (i in 1:9) qqnorm (rnorm (50) ) 

> for (i in 1:9) qqnorm (exp (rnorm (50) ) ) 

> for (i in 1:9) qqnorm (rcauchy (50) ) 

> for (i in 1:9) qqnorm (runif (50) ) 

> par (mfrow=c(1, 1) )

In Figure 4.6, you can see examples of all four cases:
It is not always easy to diagnose the problem in Q–Q plots. Sometimes extreme cases 

may be a sign of a long-tailed error like the Cauchy distribution or they can be just 
outliers.  If  removing  such  observations  just  results  in  other  points  becoming  more 
prominent in the plot, the problem is likely due to a long-tailed error.

When the errors are not normal, least squares estimates may not be optimal. They will 
still be best linear unbiased estimates, but other robust estimators may be more effective. 
Also tests and confidence intervals are not exact. However, only long-tailed distributions 
cause large inaccuracies.  Mild nonnormality can safely be ignored and the larger  the 
sample size the less troublesome the nonnormality.

When nonnormality is found, the resolution depends on the type of problem found. For 
short-tailed distributions, the consequences of nonnormality are not serious and can reasonably

Figure 4.6 Q–Q plots of simulated data.

be ignored. For skewed errors, a transformation of the response may solve the problem. 
For long-tailed errors, we might just accept the nonnormality and base the inference on 
the assumption of another distribution or use resampling methods such as the bootstrap or 
permutation tests. You do not want to do this unless absolutely necessary. Alternatively, 
use robust methods, which give less weight to outlying observations.

Also you may find that other diagnostics suggest changes to the model. In this changed 
model, the problem of nonnormal errors might not occur.

The Shapiro-Wilk test is a formal test for normality:

> shapiro.test (residuals (g))

Here is how to generate nine replicates at a time from each of these test cases:

Source : Linear Models with R by Julian

J. Faraway



Residual Plots : Q–Q Plot

Because samples taken from a normal distribution will not plot
exactly as a straight line, some experience is required to interpret
normal probability plots. Daniel and Wood [1980] present normal
probability plots for sample sizes 8–384. Study of these plots is
helpful in acquiring a feel for how much deviation from the straight
line is acceptable. Small sample sizes (n ≤ 16) often produce normal
probability plots that deviate substantially from linearity. For larger
sample sizes (n ≥ 32) the plots are much better behaved. Usually
about 20 points are required to produce normal probability plots that
are stable enough to be easily interpreted.

Figure 4.3 Normal probability plots: (a) ideal; (b) light-tailed
distribution; (c) heavy-tailed distribution; (d) positive skew; (e)
negative skew.

Andrews [1979] and Gnanadesikan [1977] note that normal
probability plots often exhibit no unusual behavior even if the errors
εi are not normally distributed. This problem occurs because the

Source: Introduction to Linear Regression Analysis, by Montgomery, Peck,

Vining; 2006.



Residual Plots: Plot of residual against Fitted

values

Test of constant variance and non-linear relation

Plot ŷi vs ei(or di or ri)

7.5. RESIDUAL PLOTS 81

you can make. If all is well, you should see constant variance in the vertical (ε̂) direction and the scatter
should be symmetric vertically about 0. Things to look for are heteroscedascity (non-constant variance) and
nonlinearity (which indicates some change in the model is necessary). In Figure 7.5, these three cases are
illustrated.
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Figure 7.5: Residuals vs Fitted plots - the first suggests no change to the current model while the second
shows non-constant variance and the third indicates some nonlinearity which should prompt some change
in the structural form of the model

You should also plot ε̂ against xi (for predictors that are both in and out of the model). Look for the same
things except in the case of plots against predictors not in the model, look for any relationship which might
indicate that this predictor should be included.

We illustrate this using the savings dataset as an example again:

> g <- lm(sr ˜ pop15+pop75+dpi+ddpi,savings)

First the residuals vs. fitted plot and the abs(residuals) vs. fitted plot.

> plot(g$fit,g$res,xlab="Fitted",ylab="Residuals")
> abline(h=0)
> plot(g$fit,abs(g$res),xlab="Fitted",ylab="|Residuals|")

The plots may be seen in the first two panels of Figure 7.5. What do you see? The latter plot is
designed to check for non-constant variance only. It folds over the bottom half of the first plot to increase
the resolution for detecting non-constant variance. The first plot is still needed because non-linearity must
be checked.

A quick way to check non-constant variance is this regression:

> summary(lm(abs(g$res) ˜ g$fit))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.840 1.186 4.08 0.00017
g$fit -0.203 0.119 -1.72 0.09250



Residual Plots : Plot of residual against Regressors

Plot xij vs ei for all j

In previous plot, replace ‘fitted’ by xij to find similar
interpretation.

Repeat it for all the regressors.



Partial Regression Plot

Complete/correct marginal effect

Let we want to study the marginal effect of xj on y

y is regressed on x1, ..., xk except xj .

xj is regressed on x1, ..., xk except xj .

Plot y residual, ei(y |x1, ..., xj−1, xj+1, ..., xk) against xj residual,
ei(xj |x1, ..., xj−1, xj+1, ..., xk)

For ideal scenario, the partial regression plot should show a
linear relationship (straight line with non-zero slop).

Curvilinear band: indicates higher order terms in xj or it’s
transformation.

Horizontal band: indicates no additional useful information in xj



The PRESS Statistic

PRESS: Prediction Error Sum of Squares

Delete i th observation. Fit the model on remaining (n − 1)
observations and predict yi .

The corresponding predicted value is denoted by ŷ(−i).

The corresponding prediction error is e(−i) = yi − ŷ(−i). It is
called PRESS residual.

It can be shown that e(−i) =
ei

1−hii
.

Large values of e(−i) implies potential influential observations.

Large difference between ei and e(−i) indicates an observation
where model fit is quite well but a model built without that
predicts poorly.



The PRESS Statistic

Var(e(−i)) =
σ2

1−hii
.

Standardized PRESS residual is

e(−i)

√
1− hii
MSRes

=
ei√

MSRes(1− hii)
,

which is same as the Studentized residual.

PRESS =
n∑

i=1

e2(−i) =
n∑

i=1

(
ei

1− hii

)2

.

PRESS is a measure of how well a regression model perform in
predicting new observations.

R2 for prediction : R2
prediction = 1− PRESS

SST
. It gives indication of

the prediction capability of the regression model.

Using PRESS, we may compare model.



Variable Selection

Techniques:

All possible Regression.
Step-wise Type Procedures :

Forward Selection
Backward elimination
Step-wise Regression



Multicollinearity

Near linear relationship among regressors.

Effect of Multicollinearity – I :

Consider scaled response and regressor (length unit).
Consider y = β1x1 + β2x2 + ϵ.

β̂1 =
r1y − r12r2y
1− r212

, and β̂2 =
r2y − r12r1y
1− r212

.

Var(β̂j) =
σ2

1− r212
, Cov(β̂1, β̂2) =

−r12σ
2

1− r212
.

Strong multicollinearity between x1 and x2 indicates the r12 will
be large.
If |r12| → 1, Var(β̂j) → ∞, and |Cov(β̂1, β̂2)| → ∞.
The above large variances and covariances means different
sample taken at the same x level could lead to widely different
estimates of the model parameters.



Multicollinearity

Effect of Multicollinearity – II:

L21 = (β̂ − β)T (β̂ − β).

E (L21) =
∑p

j=1 Var(β̂j) = σ2Tr(X
′
X )−1 = σ2

∑p
j=1

1
λj
, where

λj ’s are eigenvalues of (X
′
X ).

If (X
′
X ) is ill-conditioned then at least one λj will be small

⇒ E (L21) is big.

Therefore, we have E (β̂
T
β̂) = β

′
β + σ2Tr(X

′
X )−1, implies

magnitude of β̂ are large.



Multicollinearity Diagnostics

Examination of correlation matrix (X
′
X ):

If xi and xj are nearly linearly dependent, then |rij | should be
close to 1.
However, this procedure is helpful to detect near linear
dependence between a pair of regressors only.



Multicollinearity Diagnostics

Variance Inflation Factors (VIFs):

Var(β̂j) = σ2cjj ,C = (X ′X )−1. It can be shown that
cjj = (1− R2

j )
−1 = 1

1−R2
j
, where R2

j is the coefficient of

determination obtained when xj is regressed on remaining
(k − 1) regressors.
VIFj =

1
1−R2

j
: This measures the factor by which the variance of

β̂j inflated due to the near linear dependence.
Rule of thumb : If any of VIF > 5, the associated coefficient is
estimated poorly due to multicollinearity.



Multicollinearity Diagnostics

Eigen System Analysis of (X
′
X ):

The eigen values, λ1, λ2, ..., λp, can be used to see the extent of
multicollinearity.
Small eigen values (one or more) ⇒ multicollinearity.
Condition number, k = λmax

λmin
.

Rule of thumb :

k < 100 → No serious problem with multicollinearity.
100 ≤ k < 1000 → moderate to strong multicollinearity.
k ≥ 1000 → severe multicollinearity.

Condition indices : kj =
λmax
λj

, j = 1, 2, ..., p

The number of j ’s such that, kj ≥ 1000 → provide useful
information on the number of near linear dependence.



Method for dealing with multicollinearity

Source of multicollinearity:

Data collection method (ex: biased sample) → collecting more
data.
Constraints in model or population (ex: family income (x1) and
household size (x2)) → Model respecification
Model specification (ex: range of x is small, then adding x2 in
the model) → Model respecification
An overdefined model (ex: adding more regressors) → Model
respecification, and other method of estimate like Ridge
regression.



Considerations in the use of Regression

Regression models are intended as interpolation equations over
the range of the regressor variables used to fit the model.Figure 1.5 The danger of extrapolation in regression.

In general, the response variable y may be related to k regressors, x1,
x2,…, xk, so that

(1.3) 

This is called a multiple linear regression model because more than
one regressor is involved. The adjective linear is employed to indicate
that the model is linear in the parameters β0, β1,…, βk, not because y
is a linear function of the x’s. We shall see subsequently that many
models in which y is related to the x’s in a nonlinear fashion can still be
treated as linear regression models as long as the equation is linear in
the β’s.

An important objective of regression analysis is to estimate the

Source: Introduction to Linear Regression Analysis, by Montgomery, Peck, Vining; 2006.



Considerations in the use of Regression

The deposition of the x-values plays an important role in the LS
fit.

Figure 2.9 A point remote in x space.

A somewhat different situation is illustrated in Figure 2.9, wher one
of the 12 observations is very remote in x space. In this example the
slope is largely determined by the extreme point. If this point is
deleted, the slope estimate is probably zero. Because of the gap
between the two clusters of points, we really have only two distinct
information units with which to fit the model. Thus, there are
effectively far fewer than the apparent 10 degrees of freedom for
error.
Situations such as these seem to occur fairly often in practice. In
general we should be aware that in some data sets one point (or a
small cluster of points) may control key model properties.
3. Outliers are observations that differ considerably from the rest of

Figure 2.9 A point remote in x space.

A somewhat different situation is illustrated in Figure 2.9, wher one
of the 12 observations is very remote in x space. In this example the
slope is largely determined by the extreme point. If this point is
deleted, the slope estimate is probably zero. Because of the gap
between the two clusters of points, we really have only two distinct
information units with which to fit the model. Thus, there are
effectively far fewer than the apparent 10 degrees of freedom for
error.
Situations such as these seem to occur fairly often in practice. In
general we should be aware that in some data sets one point (or a
small cluster of points) may control key model properties.
3. Outliers are observations that differ considerably from the rest of

Source: Introduction to Linear Regression Analysis, by Montgomery, Peck, Vining; 2006.



Considerations in the use of Regression

Outliers or bad values can seriously disturb the LS fit.

the data. They can seriously disturb the least-squares fit. For
example, consider the data in Figure 2.10. Observation A seems to
be an outlier because it falls far from the line implied by the rest of
the data. If this point is really an outlier, then the estimate of the
intercept may be incorrect and the residual mean square may be an
inflated estimate of σ2. The outlier may be a “bad value” that has
resulted from a data recording or some other error. On the other
hand, the data point may not be a bad value and may be a highly
useful piece of evidence concerning the process under investigation.
Methods for detecting and dealing with outliers are discussed more
completely in Chapter 4.
4. As mentioned in Chapter 1, just because a regression analysis has
indicated a strong relationship between two variables, this does not
imply that the variables are related in any causal sense. Causality
implies necessary correlation. Regression analysis can only address
the issues on correlation. It cannot address the issue of necessity.
Thus, our expectations of discovering cause-and-effect relationships
from regression should be modest.

Figure 2.10 An outlier.

TABLE 2.9 Data Illustrating Nonsense Relationships between
Variables

Source: Introduction to Linear Regression Analysis, by Montgomery, Peck, Vining; 2006.



Considerations in the use of Regression

A regression analysis can only address the issues on correlation.

It does not imply that the variables are relate in any causal sense.

As an example of a “nonsense” relationship between two variables,
consider the data in Table 2.9. This table presents the number of
certified mental defectives in the United Kingdom per 10,000 of
estimated population (y), the number of radio receiver licenses
issued (x1), and the first name of the President of the United States
(x2) for the years 1924–1937. We can show that the regression
equation relating y to x1 is

The t statistic for testing H0: β1 = 0 for this model is t0 = 27.312 (the
P value is 3.58 × 10− 12), and the coefficient of determination is R2

= 0.9842. That is, 98.42% of the variability in the data is explained
by the number of radio receiver licenses issued. Clearly this is a
nonsense relationship, as it is highly unlikely that the number of
mental defectives in the population is functionally related to the
number of radio receiver licenses issued. The reason for this strong
statistical relationship is that y and x1 are monotonically related

The fitted regression
equation relating y to
x1 is

ŷ = 4.58 + 2.20x1.

R2 = 0.9842.

For testing H0 : β1 = 0,
the p-value is
3.58× 10−12.



How to attack the data analysis/model fitting:

Understand the research question(s). Understand the data you
have.

1 How the data was collected?
2 What type of the study design used: Randomized or

Observational; Prospective or Retrospective etc.
3 Can you make connection with the primary research question

and the data? Is the research question feasible based on the
data you have?

4 Are there secondary research questions?
5 What are the potential source of bias? Sample (data) may not

be a representative of the target (source) population.
6 Are there any confounders?
7 Are the number of observations/individuals in the data

sufficient?



How to attack the data analysis/model fitting:

Do the scatter plot(s): response vs. input variable(s).

Fit the regression model(s) (or other type of model(s)).

Interpret the output from the fitted models:
1 Are all the results expected? Whether the results go well with

existing domain (basic science) knowledge?
2 If not, what are the reasons behind the aberration from the

expected results.

Check the diagnostics for model assumptions. If you find
problem, go back and correct (if you can) the chosen model; or,
take decision about the outliers/influential points.


