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Topic 4: Hypothesis Testing



Testing of Hypothesis

We have discussed point and interval estimation, where we try
to find meaningful guess for unknown parameters.

In testing of hypothesis, we do not guess the value. We try to
check if some statement is true or not.



Example: Cherry Blossom Race

Example 4.1:

The Cherry Blossom Run is a 10 mile race that takes place every
year in D.C.

In 2009, there were 14974 participants and average running time
of all the participants was 103.5 minutes.

Question is: Were runners faster in 2012? Of course answer
should be yes or no.

We assume that it is not possible to have the running times of
all the participants in 2012.

How can we proceed?

Take a random sample of size n from the 2012 runners, and
denote the running time by X1, X2, . . . , Xn.



Example: Cherry Blossom Race

Let us also assume that the distribution of the running time is a
normal.

Let us also assume that the variance of the normal distribution is
373 (a value found by analysing the original data).

We are given i.i.d. random variables X1, X2, . . . , Xn and we
want to know if X1 ∼ N(103.5, 373).

This is a problem of testing of hypothesis.

There are many ways this hypothesis could be false:

E (X1) ̸= 103.5
Var(X1) ̸= 373
X1 is not normal.



Example: Cherry Blossom Race

From the analysis of the past data, it is found that the last two
assumptions are reasonable and hence we put them as model
assumptions.

The only thing that is not fixed is µ = E (X1).

We want to test: Is µ = 103.5 or µ < 103.5?

By modeling assumptions we have reduced the number of ways
the hypothesis X1 ∼ N(103.5, 373) may be rejected.

The only way it can be rejected is if X1 ∼ N(µ, 373) for some
µ < 103.5.

We compare an expected value to a fixed reference number
(here 103.5).



Example: Cherry Blossom Race

Simple heuristic would be: If X < 103.5 then µ < 103.5.

It is easy to understand that it can go wrong if we select, by
chance, the fast runners in the sample.

Better heuristic could be: If X < 103.5− a then µ < 103.5 for
some a.

We will try to make this intuitions more precise as we proceed.
Of course to do that we need to take into account the size of
fluctuations of X .



Example: Clinical Trail

Example 4.2:

Pharmaceutical companies use hypothesis testing to test if a
new drug is efficient.

To do so, they administer a drug to a group of patients (test
group) and placebo to another group (control group).

Assume that the drug is a cough syrup.

Let µ1 denotes the expected number of expectorations per hour
after a patient has used placebo.

Let µ2 denotes the expected number of expectorations per hour
after a patient has used the syrup.

We want to know if µ2 < µ1.

Two expectations are compared. No reference number.



Example: Clinical Trail

Let X1, X2, . . . , Xn1 denote n1 i.i.d. RVs with distribution P(µ1).

Let Y1, . . . , Yn2 denote n2 i.i.d. RVs with distribution P(µ2).

We want to test if µ2 = µ1 or µ2 < µ1.

Heuristic: We should compare X and Y .



Example: Coin Toss

Example 4.3: A coin is tossed 80 times, and head are obtained 55
times. Can we conclude that the coin is significantly fair?

Here n = 80, X1, X2, . . . , Xn
i .i .d .∼ Bernoulli(p).

We want to test p = 0.5 or p ̸= 0.5.

X = 55/80 = 0.6875.

If p is actually equal to 0.5, using CLT we have

Tn =

√
n
(
X n − 0.5

)√
0.5× (1− 0.5)

≈ N(0, 1).

The observed value of Tn = 3.3541.

Conclusion: It seems quite reasonable to reject the hypothesis
p = 0.5, as the observed value of Tn is too extreme with respect
to a standard normal distribution.



Example: Coin Toss

Example 4.4: A coin is tossed 80 times, and head are obtained 35
times. Can we conclude that the coin is significantly fair?

Here the observed value of Tn = −1.1180.

Conclusion: Data do not suggest to reject the fact that the coin
is fair, as the observed value of Tn is not extreme with respect
to a standard normal distribution.

Note that in the last two examples we have talked about
extreme or not extreme. The question is: Which values are
considered as extreme and which are not?

More precisely, we are rejecting p = 0.5 if the observation belong
to the set

{x : |Tn| > C} .

What value of C should we choose?

This will be considered as we proceed.



Some Definitions

Definition 4.1: A hypothesis is a statement about the unknown
parameter(s).

Definition 4.2: Suppose that one wants to choose between two
reasonable hypotheses H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where
Θ0 ⊂ Θ, Θ1 ⊂ Θ and Θ1 ∩Θ2 = ∅. We call H0 and H1 are null
hypothesis and alternative hypothesis, respectively.

Remark 4.1: The aim here is to choice one hypothesis among null
and alternative hypotheses. As we will see that the roles of these two
hypotheses are asymmetric, we need to careful about these two
hypotheses.

Approach: As illustrated in the examples, we will consider a
reasonable statistic and make the choice based on the statistic.



Some Definitions

Definition 4.3: Let R be a subset of χn (sample space of the
corresponding random sample) such that we reject H0 if x ∈ R .
Then R is called rejection region or critical region. Rc is called
acceptance region.

Definition 4.4: The error committed by rejecting H0 when it is
actually true is called Type-I Error. Error committed by accepting
H0 when it is actually false is called Type-II Error.

H0 true H1 true

Accept H0 ✓ Type-II Error

Reject H0 Type-I Error ✓

Aim: To choose R such that probabilities of errors are as small as
possible.



Example

Example 4.5: Let X1, X2, . . . , X9
i .i .d .∼ N(θ, 1). Suppose that we are

want to test H0 : θ = 5.5 against H1 : θ = 7.5. Let use consider two
critical regions R1 = {x ∈ R9 : x > 6} and R2 = {x ∈ R9 : x > 7}.
Let us compute the probability of errors. For R1,

P (Type-I Error) = Pθ=5.5

(
X > 6

)
= 1− Φ (3(6− 5.5)) = 0.06681.

P (Type-II Error) = Pθ=7.5

(
X ≤ 6

)
= Φ(3(6− 7.5)) ∼ 0.

Similarly the probabilities for R2 can be computed and given in
following table.

R1 R2

P(Type-I) 0.06681 0

P(Type-II) 0 0.06681



Some remarks

Remark 4.2:

Note that in the previous example R2 ⊂ R1.

If we take R = ∅, then P(Type-I error) = 0 and
P (Type-II error) = 1.

If we take R = Rn, then P(Type-I error) = 1 and
P (Type-II error) = 0.

If we try to reduce probability of one error, probability of the
other one increases.

In this type of optimization problem people can use some
combination of two functions and then try to minimize the
combination.

However for hypothesis testing the approach is as follows: Put
a bound on the probability of Type-I error and try to minimize
the probability of Type-II error.



Power Function

Definition 4.5: The power function of a critical region, denoted by
β : Θ1 ∪Θ0 → [0, 1], is the probability of rejecting the null
hypothesis H0 when θ is the true value of the parameter, i.e.,

β(θ) = Pθ(X ∈ R).

Remark 4.3:

For θ ∈ Θ0, β(·) is the probability of Type-I error.

For θ ∈ Θ1, β(·) is one minus probability of Type-II error.

Example 4.6: Let X1, X2, . . . , X9
i .i .d .∼ N(θ, 1). Suppose that we are

want to test H0 : θ = 5.5 against H1 : θ = 7.5. Let us consider the
critical region R2 = {x ∈ R9 : x > 7}. The power function of the
critical region R2 is given by

β(θ) = 1− Φ(21− 3θ) for θ = 5.5, 7.5.



Size and Level

Definition 4.6: Let α ∈ (0, 1) be a fixed real number. A test for
H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 with power function β(·) is called a
size α test if supθ∈Θ β(θ) = α.

Definition 4.7: A test is called level α test if β(θ) ≤ α for all
θ ∈ Θ0.

Remark 4.4:

Size of a test can be considered as worst possible probability of
Type-I error.

If a test is of size α, then it is of level α.



Test Function

Definition 4.8: A function ψ : X n → [0, 1] is called a critical
function or test function, where ψ(x) stands for the porbability of
rejecting H0 when X = x is observed. Here X n is the sample space
of the random sample of size n.

Example 4.7: Let X1, X2, . . . , X9
i .i .d .∼ N(θ, 1). Suppose that we are

want to test H0 : θ = 5.5 against H1 : θ = 7.5. Let use consider two
critical regions R1 = {x ∈ R9 : x > 6} and R2 = {x ∈ R9 : x > 7}.
The critical regions R1 and R2, respectively, can be expressed as the
test functions

ψ1(x) =

{
1 if x > 6

0 if x ≤ 6,
and ψ2(x) =

{
1 if x > 7

0 if x ≤ 7.



Test Function

Remark 4.5:

Last example shows that test function is an alternative way of
writing critical region.

Then what does we gain by defining test function? To discuss
this, first note that if ψ(x) is a probability, then why should we
restrict only 0 and 1? We can consider other values between 0
and 1. And this is the gain we have. To illustrate it consider the
next example.

Definition 4.9: The power function of a test function is defined by
β(θ) = Eθ (ψ(X )) for all θ ∈ Θ0 ∪Θ1.



Randomized Test

Definition 4.10: A test is called randomized test if ψ(x) ∈ (0, 1)
for some x in the sample space. Otherwise, it is called a
non-randomized test.

Remark 4.6:

Any test that is given by a critical region is a non-randomized
test as the test function in this case is indicator function of the
critical region.

Let for a fixed x0, ψ(x0) = 0.6. If X = x0 is observed, how
should we accept or reject H0? We will perform a random
experiment with two outcomes (toss of a coin), with one (say
head) has probability 0.4 and other (say tail) has probability 0.6.
If tail occurs, we reject H0, otherwise we accept it.



Example

Example 4.8: Let X be a sample of size one form a Bin(3, p)
distribution. We want to check if H0 : p = 1/4 against H1 : p = 3/4.
The probabilities of occurring different values of X under H0 is given
in the table below:

x Prob. under H0

0 27/64
1 27/64
2 9/64
3 1/64

Do we have a critical region of size
α1 =

5
32
? The answer is yes, and the

critical region is given by {2, 3} as
P(X = 2 or 3) = 5

32
under H0.

Does a critical region of size α2 =
1
32

exist? It is very easy to see that there is
not critical region of size 1

32
.



Example

However, we have a randomized test of of size 1
32
, and it is given

by

ψ(x) =


1 if x = 3
1
9

if x = 2

0 otherwise,

as Ep=1/4 (ψ(X )) = 1× 1
64

+ 1
9
× 9

64
= 1

32
.

Hence, in this case though a critical region of size 1
32

does not
exist, a randomized test function of the same size exists.

This is the gain of defining a test function over critical region.

Test functions are more general in the sense that all critical
regions can be represented as a test function, but the converse is
not true.



Most Powerful Test

Definition 4.11: Consider the collection C of all level α tests for
H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. A test belonging to C with power
function β(·) is called uniformly most powerful (UMP) level α test
if β(θ) ≥ β∗(θ) for all θ ∈ Θ1, where β

∗(·) is the power function of
any other test in C . If the alternative hypothesis is simple (that
means that Θ1 is singleton), the test is called most powerful (MP)
level α test.

Remark 4.7:
Note that here we are putting a bound on probability of type
one error. The bound is α. Among all the tests whose
probability of Type-I error is bounded by α, we are trying to find
one for which probability of Type-II error is minimum. A test
satisfies this criterion is called a UMP level α test.
When H1 : θ = θ1 for some fixed θ1, i.e., H1 is simple, it boils
down to check if β(θ1) ≥ β∗(θ1). Hence the word ‘uniformly’ is
removed.



Neyman-Pearson Lemma

Theorem 4.1: Let θ0 ̸= θ1 be two fixed numbers in Θ. The MP
level α test for H0 : θ = θ0 against H1 : θ = θ1 is given by

ψ(x) =


1 if L(θ1) > kL(θ0)

γ if L(θ1) = kL(θ0)

0 if L(θ1) < kL(θ0),

where k ≥ 0 and γ ∈ [0, 1] such that β(θ0) = Eθ0 (ψ(X )) = α. Here
L(·) is the likelihood function.

Remark 4.8:

In the theorem, both null and alternative are simple.

L(θ1) > kL(θ0) can be expressed as L(θ1)/L(θ0) > k if
L(θ0) > 0. Hence, the MP test rejects the null hypothesis for
large values of the ratio.



Examples

Example 4.9: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where σ is known.

Let µ0 < µ1 be two real numbers. We are interested to test
H0 : µ = µ0 against H1 : µ = µ1, where µ0 ̸= µ1. Then, the MP level
α test is given by

ψ(x) =

{
1 if

√
n
σ
(x − µ0) > zα

0 otherwise.

Remark 4.9:
The test is quite intuitive in the sense that we reject H0 if
sample mean is large.
The test is based on the sufficient statistic.
Note the way of solving the problem. We try to simplify
L(µ1)/L(µ0) > k so that we can write it as a condition on a
statistic whose distribution under H0 is known or can be found. If
this statistic is a continuous RV, we will have a non-randomized
test. Otherwise we may need to consider a randomized test.



Example

Example 4.10: Let X1, X2, . . . , Xn
i .i .d .∼ Bernoulli(θ). Let

0 < θ1 < θ0 < 1 be two real numbers. We are interested to test
H0 : θ = θ0 against H1 : θ = θ1. Then, the MP level α test is given by

ψ(x) =


1 if t < K
α−Pθ0

(T<K)

Pθ0
(T=K)

if t = K

0 if t > K ,

where K ∈ {1, 2, . . . , n} satisfies

Pθ0

(
T < K̃

)
≤ α < Pθ0

(
T ≤ K̃

)
.

Example 4.11: Let X1, X2, . . . , Xn
i .i .d .∼ U(0, θ). Let θ0 > θ1 > 0 be

two real numbers. The MP level α test for testing H0 : θ = θ0
against H1 : θ = θ1 rejects H0 if and only if X(n) < θ0α

1
n .



Examples

Example 4.12: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where σ is

known. Let µ0 be a real number. We are interested to test
H0 : µ = µ0 against H1 : µ > µ0. The UMP level α test for
H0 : µ = µ0 against H1 : µ > µ0 is

ψ(x) =

{
1 if

√
n
σ
(x − µ0) > zα

0 otherwise.

Example 4.13: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where σ is

known. Let µ0 be a real number. The UMP level α test for testing
H0 : µ = µ0 against H1 : µ ̸= µ0 does not exist for all α ∈ (0, 1).

Remark 4.10: However the problem of hypotheses testing
H0 : µ = µ0 against µ ̸= µ0 is practically quite meaningful. Hence,
we need some alternative.



Likelihood Ratio Test: Algorithm

We want to test H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Consider

Λ(x) =
supθ∈Θ0

L(θ, x)
supθ∈Θ0∪Θ1

L(θ, x)
.

Λ(X ) is called likelihood ratio test statistic.

Likelihood ratio level α test is given by

ψ(x) =


1 if Λ(x) < k

γ if Λ(x) = k

0 if Λ(x) > k ,

where γ and k are such that Eθ (ψ(X )) = α for all θ ∈ Θ0.



Likelihood Ratio Test: Discussion

supθ∈Θ0
L(θ, x) can be considered as the max value of the

likelihood function (probability for DRVs) over Θ0 when X = x
is observed.

Similarly, supθ∈Θ0∪Θ1
L(θ, x) can be considered as the max value

of the likelihood function over Θ0 ∪Θ1 when X = x is observed.

Clearly Λ(x) ∈ [0, 1].

We reject H0 if Λ is small, as in this case the likelihood under Θ0

is small compared to that over Θ0 ∪Θ1. This means that the
observed values are more likely under Θ1 than under Θ0. Hence,
we reject H0.



Example

Example 4.14: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where σ is known.

Let µ0 be a real number. We are interested to test H0 : µ = µ0

against H1 : µ ̸= µ0. The likelihood ratio level α test is given by

ψ (x) =

{
1 if

√
n|x−µ0|

σ
> zα/2

0 otherwise.

Example 4.15: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2). Let µ0 be a real

number. We are interested to test H0 : µ = µ0 against H1 : µ ̸= µ0.
The likelihood ratio level α test is given by

ψ(x) =

{
1 if

√
n|x−µ0|

s
> tn−1;α/2

0 otherwise.



Example

Example 4.16: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2). Let σ0 be a

positive real number. We are interested to test H0 : σ
2 = σ2

0 vs.
H1 : σ

2 ̸= σ2
0. Hence the likelihood ratio level α test is given by

ψ(x) =

{
1 if (n−1)s2

σ2
0

< χ2
n−1;1−α/2 or (n−1)s2

σ2
0

> χ2
n−1;α/2

0 otherwise.



p-value

Definition 4.12: For varying level α, assume that the test is a
non-randomized test with critical region Rα. The test is called nested
if

Rα ⊂ Rα′ for all α < α′.

Definition 4.13: The p-value of a nested test is defined by

p̂ = p̂(X ) = inf {α ∈ [0, 1] : X ∈ Rα} .

Remark 4.11:

The p-value provides an idea of how strong the data contradict
the null hypothesis.

It also enables other to reach a verdict based on the level of
their choice.

If p-value is smaller than α, we reject the null hypothesis.
Otherwise, we accept the null hypothesis.



Example

Example 4.17: Let X1, X2, . . . , Xn be a RS form a population
having normal distribution with unknown mean µ and known variance
σ2. Consider H0 : µ = µ0 against H1 : µ ̸= µ0. The critical region of
likelihood ratio level α test is given by

Rα =

{
x ∈ Rn :

√
n
|x − µ0|

σ
> zα

2

}
.

The test is a nested test, and hence, we can talk about p-value.
Using the fact that Φ(·) is a strictly increasing function, one can
show that the p-value of the test is

p̂ (X ) = 2

[
1− Φ

(√
n
|X − µ0|

σ

)]
.


