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Interval Estimation

Our aim is to find an interval in Θ ⊆ R such that the interval
covers the unknown parameter with a specified high probability.

Note that for a RV X and two real constants a > 0, b > 0,

P (a < X < b) = P (X < b < bX/a) .

Though these two probabilities are same, there is a basic
difference in RHS and LHS statements. For the LHS, we are
taking about probability that a random quantity X belongs to a
fixed interval (a, b). For the RHS, we are taking about
probability that a random interval (X , bX/a) contains a fixed
point b.

For example, let X ∼ U(0, 1), a = 0.5, and b = 1. In this case
P (X < 1 < 2X ) = P(0.5 < X < 1) = 0.5.



Interval Estimation

In interval estimation we will try to find a random interval based
on the RS so that it contains the fixed unknown parameter with
a pre-specified probability.

Interval estimation is quite useful in practice. For example one
may interested to find a upper limit of mean of toxic level of
some drug or food.



Interval Estimation

Definition 3.1: An interval estimate of a real valued parameter θ is
any pair of functions L(x) and U(x) of random sample only (do not
involve any unknown parameters) that satisfy L(x) ≤ U(x) for all x
in the support of RS. The random interval [L(X ), U(X )] is called an
interval estimator of θ.

Remark 3.1:

Though in the definition the closed interval [L(X ), U(X )] is
considered, the interval may be closed, open or semi-open.

If L(x) = −∞, then U(x) provides an upper limit and the
corresponding interval estimator is called lower interval
estimator.

If U(x) = ∞, then L(x) provides a lower limit and the
corresponding interval estimator is called upper interval
estimator.



Example

Example 3.1: Let X1, . . . , Xn
i .i .d .∼ N(µ, 1). Conciser

L1(x) = x1 − 1, U1(x) = x1 + 1, L2(x) = x − 1, and U2(x) = x + 1.
Then both [L1(X ), U1(X )] and [L2(X ), U2(X )] are interval
estimator of µ.
Which one should we use? Note that here the lengths of both
intervals are same, hence one should use that which has more
probability that the random interval includes µ.

P (X1 − 1 ≤ µ ≤ X1 + 1) = P (−1 ≤ X1 − µ ≤ 1) = 2Φ(1)− 1,

P
(
X − 1 ≤ µ ≤ X + 1

)
= P

(
−
√
n ≤

√
n
(
X − µ

)
≤

√
n
)

= 2Φ(
√
n)− 1.

Now as Φ(·) is an increasing function, we should prefer
[L2(X ), U2(X )] over [L1(X ), U1(X )].



Remarks

Remark 3.2:

In the previous example we talk about maximum probability
when the length of the intervals are fixed. Similarly in some
other situations, we can consider minimum length for fixed
probability. Though we will not pursue these concepts further.

Clearly we are loosing precision in interval estimation compared
to point estimation. Do we have any gain? Consider the
previous example. A reasonable point estimator of µ is X .
However, P

(
X = µ

)
= 0 as X is a CRV. On the other hand

P
(
X − 1 ≤ µ ≤ X + 1

)
> 0. Hence in interval estimation we

have some confidence which we gain by reducing precision.



Confidence Interval (CI)

Definition 3.2: Let α ∈ (0, 1). An interval estimator [L(X ), U(X )]
is said to be a confidence interval of level 1− α (or a 100(1− α)%
confidence interval) if Pθ (L(X ) ≤ θ ≤ U(X )) ≥ 1− α for all θ ∈ Θ.

Remark 3.3:

Typical values of α are 0.1, 0.05, 0.01.

If we are able to have large number of realization of a RS, and
calculate a 100(1− α)% CI for each realization, then about
100(1− α)% times the true parameter will be inside the
calculated CI. This is the physical mean of a CI and is called
relative frequency interpretation of CI.



Method of Finding CI

Definition 3.3: A random variable T = T (X ; θ) is called a pivot (or
a pivotal quantity) if the distribution of T does not involve any
unknown parameters.

Example 3.2: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2) and µ and σ both

are unknown. Then X − µ is not a pivot as X − µ ∼ N(0, σ2/n).

However,
√
n
σ

(
X − µ

)
∼ N(0, 1) and

√
n
S

(
X − µ

)
∼ tn−1 and hence

are pivot.

Example 3.3: Let X1, X2, . . . , Xn
i .i .d .∼ Exp(λ). Then

2λ
∑n

i=1 Xi ∼ χ2
2n (why?) and hence is a pivot.

Remark 3.4: Pivot is a function of random sample and unknown
parameters, but its’ distribution is independent of all unknown
parameters. Hence pivot is not a statistic.



Method of Finding CI

Let T be a pivot.

Find two real numbers a and b such that

P (a ≤ T (X ; θ) ≤ b) ≥ 1− α.

Note that a and b are independent of all unknown parameters as
the distribution of T does not involve any unknown parameter.

A 100(1− α)% CI for θ is

C (x) = {θ ∈ Θ : a ≤ T (x ; θ) ≤ b} .

Note that C (x) does not involve any unknown parameters as a
and b are independent of all unknown parameters.

Remark 3.5: If T (x ; θ) is monotone in θ ∈ Θ for each x , then C (x)
is an interval. Otherwise it will be a general set.



Examples

Example 3.4: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where µ ∈ R is

unknown and σ > 0 is known. A 100(1− α)% symmetric CI for µ is

C (X ) =

[
X − σ√

n
zα/2, X +

σ√
n
zα/2

]
,

where zα is a real number such that P (X > zα) = α for
X ∼ N(0, 1).

ϕ(·)

zα

This area is α

z1−α/2

This area is α/2

Orange area is 1− α

zα/2

This area is α/2

ϕ(·)



Remarks

Remark 3.6:

We can have infinite number of choices for a and b. For example
a = z1−α1 and b = zα2 , where α1 > 0, α2 > 0, and α1 + α2 = α.
Of course they will not be symmetric CI.

The CI in the previous example is called symmetric CI.

This is the minimum length CI based on X .

zα is called upper α-point of standard normal distribution.

Note that in the previous example, X is a sufficient statistic for
µ and the CI is constructed using sufficient statistic. Whenever
possible, we try to find pivot that involves sufficient statistic.



Examples

Example 3.5: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where µ ∈ R is

known and σ > 0 is unknown. A 100(1− α)% symmetric CI for σ2 is

c(X ) =

[∑n
i=1(Xi − µ)2

χ2
n,α/2

,

∑n
i=1(Xi − µ)2

χ2
n,1−α/2

]
,

where χ2
n,α is called upper α-point of χ2-distribution with degrees of

freedom n and is a real number such that P
(
X > χ2

n, α

)
= α for a

random variable X ∼ χ2
n.



Examples

Example 3.6: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where µ ∈ R and

σ > 0 are unknown. We are interested in CI of µ. A 100(1− α)%
symmetric CI for µ is

c(X ) =

[
X − S√

n
tn−1,α/2, X +

S√
n
tn−1,α/2

]
,

where tn,α is called upper α-point of t-distribution with degrees of
freedom n.

Example 3.7: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where µ ∈ R and

σ > 0 are unknown. A 100(1− α)% symmetric CI for σ2 is

c(X ) =

[∑n
i=1(Xi − X )2

χ2
n−1,α/2

,

∑n
i=1(Xi − X )2

χ2
n−1,1−α/2

]
.



Asymptotic CI

In many cases it is very difficult to find pivot for a small sample.
For example it is difficult to find a pivot to construct CI for
successes probability of a Bernoulli distribution.

However, we may able to find CI quite easily if the sample size is
sufficiently large. This CI is called asymptotic confidence
interval.

We will use convergence in distribution (mainly CLT or large
sample distribution of MLE) and in probability (consistent
estimator).



Distribution Free Population Mean

Let X1, X2, . . . be i.i.d. random variables with mean µ and finite
variance σ2. Then using CLT

√
n
(
X n − µ

)
σ

L−→ Z ∼ N(0, 1).

Now if n, sample size, is large, we can approximate the

distribution of
√
n(X n−µ)

σ
using a standard normal distribution.

Hence

P

(
−zα/2 ≤

√
n
(
X n − µ

)
σ

≤ zα/2

)
≈ 1− α.

If σ is known and n is sufficiently large, we can use the last
statement to find an asymptotic CI for µ and it is given by[

X n −
σ√
n
zα/2, X n +

σ√
n
zα/2

]
.



Distribution Free Population Mean (Contd.)

If σ is unknown, we can proceed as follows:

We know that Sn
σ

P−→ 1, and hence

√
n
(
X n − µ

)
Sn

L−→ Z ∼ N(0, 1).

Hence P

(
−zα/2 ≤

√
n(X n−µ)

Sn
≤ zα/2

)
≈ 1− α.

An asymptotic CI for µ is given by[
X n −

Sn√
n
zα/2, X n +

Sn√
n
zα/2

]
.

Note that this method can be used for any distribution of the
random sample, as long as the conditions of CLT hold true.
Hence it is called distribution free.



Using MLE

Let θ̂n be a consistent estimator of θ and√
n
(
θ̂n − θ

)
L−→ N(0, b2(θ)), where b(θ) > 0 for all θ ∈ Θ.

Assume that b(·) is a continuous function.

Then b(θ̂n)
b(θ)

P−→ 1 and hence
√
n(θ̂n−θ)
b(θ̂n)

L−→ N(0, 1).

A 100(1− α)% asymptotic CI for θ is given by[
θ̂n −

b(θ̂n)√
n

zα/2, θ̂n +
b(θ̂n)√

n
zα/2

]
.

Under some regularity conditions, we may use MLE of θ in place
of θ̂n.



Examples

Example 3.8: X1, X2, . . . , Xn
i .i .d .∼ Bernaoulli(p), where p ∈ (0, 1).

We are interested to construct asymptotic CI for p.

We know that p̂n = X n
P−→ p and

√
n(X n−p)√
p(1−p)

L−→ N(0, 1).

Here b(p) =
√
p(1− p), which is a continuous function in

p ∈ (0, 1).

Hence
√
n(X n−p)√
X n(1−X n)

L−→ N(0, 1).

A 100(1− α)% asymptotic CI for p isX n −

√
X n(1− X n)

n
zα/2, X n +

√
X n(1− X n)

n
zα/2

 .



δ-method

Example 3.9: Let X1, X2, . . . , Xn be a random sample from a
population having Poisson distribution with mean λ. We need a
100(1− α)% CI for τ(λ) = P(X1 = 0) = e−λ.

Theorem 3.1: (Mann-Wald Theorem) Suppose that {Tn}n≥1 is a
sequence of real valued random variables such that

√
n (Tn − θ)

L→ N(0, σ2) as n → ∞,

where σ > 0 may also depend on θ. Let g(·) be a continuous real
valued function such that g ′(·) is finite and non-zero. Then, we have

√
n (g(Tn)− g(θ))

L→ N
(
0, {σg ′(θ)}2

)
as n → ∞.


