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Statistical Inference

In a typical statistical problem, our aim is to find information
regarding numerical characteristic(s) of a collection of
items/persons/products. This collection is called population.

Suppose that we want to know the average height of Indian
citizens.

▶ Measure heights of all citizens
▶ Find the average.

However, it is a very costly (in terms of money and time)
procedure.



Sample

One approach to address these issues is to take a subset of the
population based on which we try to find out the value of the
numerical characteristic.

Obviously, it will not be exact, and hence, it is an estimate.

This subset is called a sample.

The sample must be chosen such that it is a good representative
of the population.

There are different ways of selecting sample from a population.

We will consider one such sample which is called random sample.



Modelling a Statistical Problem

Different elements of a population may have different values of
the numerical characteristic under study.

Therefore, we will model it with a random variable and the
uncertainty using a probability distribution.

Let X be a random variable (either discrete or continuous
random variable), which denotes the numerical characteristic
under consideration.

Our job is to find the probability distribution of X .

Note that once the probability distribution is determined, the
numerical summary (for example, mean, variance, median, etc.)
of the distribution can be found.



Parametric and Non-parametric Inference

There are two possibilities:

▶ X has a CDF F with known functional form except perhaps
some parameters. Here our aim is to (educated) guess value of
the parameters. For example, in some case we may have
X ∼ N(µ, σ2), where the functional form of the PDF is known,
but the parameters µ and/or σ2 may be unknown. In this case,
we need to find value of the unknown parameters based on a
sample. This is known as parametric inference.

▶ X has a CDF F who’s functional form is unknown. This is
known as non-parametric inference.



Random Sample

Definition 2.1: The random variables X1, X2, . . . , Xn is said to be a
random sample (RS) of size n from the population F if
X1, X2, . . . , Xn are i.i.d. random variables with marginal CDF F . If F
has a PMF/PDF f , we will write that X1, . . . , Xn is a RS from the
PMF/PDF f .

The JCDF of a RS X1, . . . , Xn from CDF F is

F (x1, . . . , xn) =
n∏

i=1

F (xi).

The JPMF/JPDF of a RS X1, . . . , Xn from PMF/PDF f is

f (x1, . . . , xn) =
n∏

i=1

f (xi).



Random Sample

In the standard framework of parametric inference, we start with
a data, say (x1, x2, . . . , xn). Each xi is an observation on the
numerical characteristic under study.

There are n observations and n is fixed, pre-assigned, and known
positive integer.

Our job is to identify (based on a data) the CDF (or equivalently
PMF/PDF) of the RV X , which denote the numerical
characteristic in the population.



Random Sample

In practice, we have a data.

How to model a data using RS?

Notice that the first observation in the sample can be one of the
member of the population.

Thus, a particular observation is one of the realizations from the
whole population.

Therefore, it can be seen as a realization of a random variable X .

Let Xi denote the ith observation for i = 1, 2, . . . , n, where n is
the sample size.

Then, a meaningful assumption is that each Xi has same CDF
F , as Xi is a copy of X .

Now, if we can ensure that the observation are taken such a way
that the value of one does not effect the others, then we can
assume that X1, X2, . . . , Xn are independent.



Parametric Inference

The functional form of the CDF/PMF/PDF of RV X is known.

However, the CDF/PMF/PDF involves unknown but fixed real
or vector valued parameter θ = (θ1, θ2, . . . , θm).

If the value of θ is known, the stochastic properties of the
numerical characteristic is completely known.

Therefore, our aim is to find the value of θ or a function of θ.

We assume that the possible values of θ belong to a set Θ,
which is called parametric space.

θ is a subset of Rn.

Here, θ is an indexing or a labelling parameter. We say that θ is
an indexing parameter or a labelling parameter if the
CDF/PMF/PDF is uniquely specified by θ, i.e.,
F (x , θ1) = F (x , θ2) for all x ∈ R implies θ1 = θ2, where
F (·, θ) is the CDF of X .



Some Examples

Example 2.3:

Suppose we want to find the probability of germination of seeds
produced by a particular brand.

100 seeds of a brand were planted one in each pot.
Let Xi equals one or zero according as the seed in the ith pot
germinates or not.
The data consists of (x1, x2, . . . , x100), where each xi is either
one or zero.
The data is regarded as a realization of (X1, X2, . . . , X100),
where the RVs are i.i.d. with P (Xi = 1) = θ = 1− P (Xi = 0).
θ is the probability that a seed germinates.
The natural parametric space is Θ = [0, 1].
θ is an indexing parameter.



Some Examples

Example 2.4:
Consider determination of gravitational constant g .

A standard way to estimate g is to use the pendulum
experiment and use the formula

g =
2π2l

T 2
,

where l is the length of the pendulum and T is the time
required for a fixed number of oscillations.
A variation is observed in the calculated values of g .
Let the repeated experiments are performed and the calculated
values of g are X1, X2, . . . , Xn.
Use the model Xi = g + ϵi , where ϵi is the random error.

Assume ϵi
i .i .d .∼ N(0, σ2).

Then Xi
i .i .d .∼ N(g , σ2), and the parameter is θ =

(
g , σ2

)
with

parametric space Θ = R× R+.
θ is an indexing parameter.



Some Examples

Example 2.5:

Interested in estimating the average height of a large community
of people.

Assume that N(µ, σ2) is a plausible distribution.
As the average of heights of persons is always a positive real
number, it is realistic to assume that µ > 0.
Hence, a better choice of Θ is R+ × R+.
Thus, we may need to choose the parametric space based on
the background of the problem.



Some Examples

Example 2.6:

Consider a series system with two components. A series system
works if all its components work.

Z : lifetimes of the first component.

Y : lifetimes of the second component.

Z ∼ Exp(θ) and Y ∼ Exp(λ) (rates θ and λ)

Y and Z are independent RVs.

Z and Y are not observed.

We observe X = min {Z , Y }.
X ∼ Exp(θ + λ).

α = θ + λ is an indexing parameter.

However, (θ, λ) is not an indexing parameter.



Exams and Grading Policy

Exam Weight Date

Project-I (Group of max. 5) 10% Will be declared
Quiz-I 10% Feb 02, 2024
Mid-semester 25% Feb 26, 2024
Project-II (Group of max. 5) 10% Will be declared
Quiz-II 10% Apr 05, 2024
End-semester 35% May 01, 2024

Below 25% implies a F grade.



Statistic

Definition 2.2: Let X1, . . . , Xn be a RS. Let T (x1, . . . , xn) be a
real-valued function having domain that includes the sample space,
χn, of X1, X2, . . . , Xn. Then, the RV Y = T (X1, . . . , Xn) is called a
statistic if it is not a function of unknown parameters.

Definition 2.3: In the context of estimation, a statistic is called a
point estimator (or simply estimator). A realization of a point
estimator is called an estimate.

Example 2.7: Let X1, . . . , Xn be a RS from a N(µ, σ2) distribution,
where µ ∈ R and σ > 0 are both unknown. Then X = 1

n

∑n
i=1 Xi ,

S2 = 1
n

∑n
i=1(Xi − X )2 are examples of statistics. However, X−µ

σ
is

not a statistic. Note that X ∼ N(µ, σ2

n
).



Finding Point Estimator

There are several methods to find an estimator.

We will mainly consider three of them:

Method of moment estimator
Maximum likelihood estimator
Least square estimator



Sufficient Statistics

Definition 2.4: A statistic T = T (X ) is called a sufficient statistic
for unknown parameter θ if the conditional distribution of X given
T = t does not include θ for all t in the support of T .

Example 2.8: X1, X2, . . . , Xn
i .i .d .∼ Bernoulli(p), p ∈ (0, 1). Then

T =
∑n

i=1 Xi is sufficient statistic for θ.



Neyman-Fisher Factorization Theorem

Theorem 2.3: Let X1, . . . , Xn be RS with JPMF/JPDF fX (x , θ),
θ ∈ Θ. Then T = T (X1, . . . , Xn) is sufficient for θ if and only if

fX (x , θ) = h(x)gθ (T (x)) ,

where h(x) does not involve θ, gθ(·) depends on θ and x only
through T (x).



Examples

Example 2.9: Let X1, X2, . . . , Xn
i .i .d .∼ P(λ), λ > 0. Then X is a

sufficient for λ.

Example 2.10: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), µ ∈ R and

σ > 0. A sufficient statistic for (µ, σ2) is (
∑n

i=1 Xi ,
∑n

i=1 X
2
i ).

Example 2.11: Let X1, X2, . . . , Xn
i .i .d .∼ U(0, θ), θ > 0. Then

X(n) = max {X1, X2, . . . , Xn} is a sufficient for θ.

Example 2.12: Let X1, X2, . . . , Xn
i .i .d .∼ U(θ − 1/2, θ + 1/2),

θ ∈ R. Then, T =
(
X(1), X(n)

)
is a sufficient statistic for θ, where

X(1) = min {X1, X2, . . . , Xn}.

Example 2.13: Let X1, X2
i .i .d .∼ N(µ, 1). Is T = X1 + 2X2 a

sufficient statistics for µ?



Remarks

Note that we will be able to use the definition of sufficient
statistic if we can guess one. However the theorem gives
necessary and sufficient conditions, which can be used to find a
sufficient statistic.

Note that the RS is always sufficient for unknown parameters.
However, most of the cases we will not talk about this trivial
sufficient statistic, as it does not provide any dimension
reduction.



Remarks

If T is sufficient for θ, then for any one-to-one function of T is
also sufficient for θ. (Can be proved easily using Factorization
theorem.) For example

(
X , S2

)
is sufficient for parameters of

N(µ, σ2), where S2 = 1
n−1

∑n
i=1

(
Xi − X

)2
.

Any function of sufficient statistic is not sufficient. (If so, then
any statistic will be sufficient.)

One-dimensional parameter may have multidimensional sufficient
statistic. (Consider the last example.)

T and θ are of same dimension and T is sufficient for θ do not
imply that the jth component of T is sufficient for the jth
component of θ. It only tells that T is jointly sufficient for θ.



Information

X : a RV with PMF or PDF f (·, θ), which depends on a real
valued parameter θ ∈ Θ.

The variation in the PMF or PDF f (x , θ) with respect to θ ∈ Θ
for fixed value of x provides us information about θ.

For example, suppose that X ∼ Bin(10, θ).

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f (2, θ) 0.19 0.30 0.23 0.12 0.04 0.01 ∼0 ∼0 ∼0

We measure the change in a function with respect to a variable
using derivative of the function with respect to the variable.

Consider the variance of the partial derivative, i.e.,
Var

(
∂
∂θ

ln f (X , θ)
)
.



Information: Regularity Conditions

1 Let Sθ = {x ∈ R : f (x , θ) > 0} denote the support of the PMF
or PDF f (·, θ) and S = ∪θ∈ΘSθ. Here, we assume that Sθ does
not depend on θ, i.e., Sθ = S for all θ ∈ Θ.

2 We also assume that the PDF (or PMF) f (·, θ) is such that
differentiation (with respect to θ) and integration (or sum) (with
respect to x) are interchangeable.



Fisher Information

Definition 2.5: The Fisher information (or simply information)
about parameter θ contained in X is defined by

IX (θ) = Eθ

[(
∂ ln f (X , θ)

∂θ

)2
]
.

Note that IX (θ) = 0 if and only if ∂
∂θ

ln f (x , θ) = 0 with
probability one, which means that the PMF or PDF of X does
not involve θ.

An alternative form of Fisher information can be obtained as
follows.

IX (θ) = −Eθ

(
∂2 ln f (X , θ)

∂θ2

)
.



Fisher Information

Example 2.14: Let X ∼ Poi(λ), where λ > 0. Then IX (λ) = 1
λ
.

Example 2.15: Let X ∼ N(µ, σ2), where σ is known and µ ∈ R is
unknown parameters. Then, IX (µ) = 1

σ2 .



Fisher Information

Definition 2.6: The Fisher information contained in a collection of
RVs, say X , is defined by

IX (θ) = Eθ

[(
∂

∂θ
ln fX (X , θ)

)2
]
= −Eθ

[
∂2

∂θ2
ln fX (X , θ)

]
,

where fX (·, θ) is the JPDF of X under θ.

Theorem 2.4: Let X1, X2, . . . , Xn be a RS from a population with
PMF or PDF f (·, θ), where θ ∈ Θ. Let IX (θ) denote the Fisher
information contained in the RS, then

IX (θ) = nIX1 (θ) for all θ ∈ Θ.



Fisher Information

Example 2.16: Let X1, . . . Xn
i .i .d .∼ Poi(λ), where λ > 0. Then

IX (λ) = n
λ
.

Example 2.17: Let X1, . . . , Xn
i .i .d .∼ N(µ, σ2), where σ is known and

µ ∈ R is unknown parameters. Then, IX (µ) = n
σ2 .

Theorem 2.5: Let X be a RS and T be a statistic. Then
IX (θ) ≥ IT (θ) for all θ ∈ Θ. The equality holds for all θ ∈ Θ if and
only if T is a sufficient statistic for θ.

Example 2.18: Let X1, X2, . . . , Xn
i .i .d .∼ Poi(λ) with λ > 0. Then,

Fisher information contained in T =
∑n

i=1 Xi is IT (λ) =
n
λ
. Hence,

Fisher information contained in the RS is same as that contained in
T . Therefore, T is a sufficient statistic for λ.



Method of Moment Estimator (MME)

Introduced by Karl Pearson in the year 1902.

The method is as follows:
1 Suppose that we have a RS of size n form a population with

PMF/PDF f (x ; θ), where θ = (θ1, . . . , θk) is the unknown
parameter.

2 Calculate first k (no. of unknown parameters) moments
µ′
1, . . . , µ

′
k of f (x ;θ).

3 Calculate first k sample moments m′
1, . . . , m

′
k . Here m′

r is
define by m′

r =
1
n

∑n
i=1 X

r
i .

4 Equate µ′
r = m′

r for r = 1, 2, . . . , k .
5 Solve the system of k equations (if they are consistent) for θi ’s.

The solutions are the MMEs of the unknown parameters.



Examples

Example 2.19: Let X1, X2, . . . , Xn
i .i .d .∼ Bernoulli(θ),

θ ∈ [0, 1] = Θ. Then, the MME of θ is θ̂ = X .

Example 2.20: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2),

θ = (µ, σ2) ∈ R×R+ = Θ. Then the MMEs of µ and σ2 are µ̂ = X

and σ̂2 = 1
n

∑n
i=1(Xi − X )2, respectively.

Example 2.21: Let X1, X2, . . . , Xn
i .i .d .∼ N(0, σ2), σ > 0. Then, the

MME of σ2 is σ̂2 = 1
n

∑n
i=1 X

2
i .

Example 2.22: Let X1, X2, . . . , Xn
i .i .d .∼ N(θ, θ2), θ > 0. Then, the

MME of θ is θ̂ = X . However, this may not be a meaningful
estimator as X can be negative with positive probability, while θ > 0.

Previous two examples show that there are some degree of
arbitrariness in this method.



Maximum Likelihood Estimator (MLE)

Proposed by R. A. Fisher in 1912.

One of the most popular method of estimation.

Let us start with an example (next slide).



Example

Example 2.23: Let a box has some red balls and some black balls.
It is known that number of black balls to red balls is in 1:1 or 1:2
ratio. We want to estimate whether it is 1:1 or 1:2. We may proceed
as follows:

Randomly draw two balls with replacement from the box.

Let X be the number of black balls out of two drawn balls.

X ∼ Bin(2, p), where p ∈
{

1
2
, 1

3

}
.

Problem boils down to estimate the value of p.



Example (cont.)

Now consider the following table, where the entries are Pp(X = x)
for each possible values of x and p.

x = 0 x = 1 x = 2

p = 1/2 1/4 1/2 1/4
p = 1/3 4/9 4/9 1/9

From first column, we see that for x = 0, the P(X = 0) is
maximum if p = 1/3. Hence if we observe x = 0 (that is no
black balls in the sample), it is plausible to take p = 1/3 and the
maximum likelihood estimate (MLE) of p is 1/3.

From second column, we see that for x = 1, the P(X = 1) is
maximum if p = 1/2.

From third column, we see that for x = 2, the P(X = 2) is
maximum if p = 1/2.



Example (cont.)

Hence the maximum likelihood estimator of p is

p̂ =

{
1
3

if x = 0
1
2

if x = 1, 2.

If x = 0 occur, it is more likely that there are lesser number of black
balls and hence the estimate turns out to be 1:2. For other values of
x , it is 1:1.



MLE

Definition 2.7: Let X = (X1, . . . , Xn) be a RS from a population
with PMF/PDF f (x ; θ). The function

L(θ, x) = fθ(x) =
n∏

i=1

f (xi , θ)

considered as a function of θ ∈ Θ for any fixed x ∈ X (X is
support of the RS), is called the likelihood function.

Definition 2.8: For a sample point x ∈ X , let θ̂(x) be a value in Θ
at which L(θ, x) attains its maximum as a function of θ, with x held
fixed. Then maximum likelihood estimator of the parameter θ based
on a RS X is θ̂(X ).



MLE

MLE always lies in the parametric space.

Problem of finding MLE boils down to finding maxima of a
function, the likelihood function.

Most of the cases it is easier to work with l(θ, x) = ln L(θ, x)
instead of L(θ, x). Note that ln(·) is a strictly increasing
function on the positive side of R.



Examples

Example 2.24: X1, X2, . . . , Xn
i .i .d .∼ P(λ), λ > 0. Then, the MLE of

λ is λ̂ = X .

Example 2.25: X1, X2, . . . , Xn
i .i .d .∼ N(µ, 1), µ ∈ R. The MLE of µ

is µ̂ = X .

Example 2.26: X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where µ ∈ R and

σ > 0. Then, the MLEs of µ and σ2 are µ̂ = X and

σ̂2 = 1
n

∑n
i=1(Xi − X )2, respectively.

Example 2.27: X1, X2, . . . , Xn
i .i .d .∼ N(0, σ2), where σ > 0. Then,

the MLE of σ2 is σ̂2 = 1
n

∑n
i=1 X

2
i .



Examples

Example 2.28: X1, X2, . . . , Xn
i .i .d .∼ N(µ, 1), µ ≤ 0. The MLE of µ

is

µ̂ =

{
X if X ≤ 0

0 otherwise.

Example 2.29: Let X1 be a sample of size one from Bernoulli( 1
1+eθ

),
where θ ≥ 0. The MLE does not exist for x = 0 as L(θ, 0) is a
increasing function of θ. On the other hand MLE exist for x = 1 and
it is θ̂ = 0.

Example 2.30: X1, X2, . . . , Xn
i .i .d .∼ U(0, θ), θ > 0. The MLE of θ

is θ̂ = X(n).

Example 2.31: X1, X2, . . . , Xn
i .i .d .∼ U

(
θ − 1

2
, θ + 1

2

)
, θ ∈ R. Any

point in the interval
[
X(n) − 1

2
, X(1) +

1
2

]
is a MLE of θ.



Invariance Property of MLE

Theorem 2.6: (Without Proof) If θ̂ is MLE of θ, then for any

function τ(·) defined on Θ, the MLE of τ(θ) is τ(θ̂).

Example 2.32: X1, X2, . . . , Xn
i .i .d .∼ P(λ), λ > 0. The MLE of

P(X1 = 0) is e−X .



MLE and Sufficient Statistics

Theorem 2.7: Let T be a sufficient statistics for θ. If a unique
MLE exists for θ, it is a function of T . If MLE of θ exists but is not
unique, then one can find a MLE that is a function of T .

Example 2.33: Let X1, X2, . . . , Xn
i .i .d .∼ U(0, θ), θ > 0. We know

that the MLE is unique and X(n), which is also sufficient.

Example 2.34: Let X1, X2, . . . , Xn
i .i .d .∼ U(θ− 1/2, θ+1/2), θ ∈ R.

Here a sufficient statistic is T = (X(1), X(n)). Also MLE is not unique
and any point in the interval

[
X(n) − 1

2
, X(1) +

1
2

]
is a MLE of θ.

Hence 1
2

(
X(1) + X(n)

)
is a MLE and it is also a function of T . On

the other hand Q = sinX1

(
X(n) − 1

2

)
+ (1− sinX1)

(
X(1) − 1

2

)
is a

MLE but not a function of T only.



Comparison of Different Estimators

We have considered two different methods of estimation.

One may want to know which method provide a better estimator
in a particular situation.

Can we talk about average error? Can we talk about average
squared error?

There are some desirable properties of an estimator. Some of
them are discussed here.



Unbiased Estimator

Definition 2.9: A statistic T is said to be an unbiased estimator
(UE) of a parametric function τ(θ) if Eθ(T ) = τ(θ) for all θ ∈ Θ, the
parametric space.

Remark 2.1:

Unbiasedness tells us that there is no error on an average taken
over all samples.

Please note that all θ ∈ Θ in the definition.

An estimator which is not unbiased is called a biased estimator.

The bias of T as an estimator of τ(θ) is defined by
Bias(T ) = Eθ(T )− τ(θ) for all θ ∈ Θ.

In general for unbiased estimator invariance property does not
hold true.



Example

Example 2.35: Let X1, . . . , Xn be a RS from a population with
mean µ ∈ R. Then X is an unbiased estimator for µ as Eµ(X ) = µ
for all µ ∈ R.

Example 2.36: X1, . . . , Xn
i .i .d .∼ U(0, θ), θ > 0. We saw that the

MLE of θ is X(n). Now we want to check if X(n) is unbiased or not.

Example 2.37: Let X1, . . . , Xn be a RS from a population with
mean µ ∈ R and finite variance σ2. Define T1 = X1,
T2 =

1
2
(X1 + X2) , . . . , Tn = X . It is easy to verify that E (Ti) = µ

for all µ ∈ R and for all i = 1, 2, . . . , n.

Example 2.38: Let X be distributed as Bin(2, p), where p ∈ (0, 1).
An UE of τ(p) = 1

p
does not exist.



Mean Square Error

Definition 2.10: The mean square error (MSE) of a statistic T as
an estimator of θ is defined by MSE (T ) = E ((T − θ)2).

Remark 2.2:

MSE (T ) = Var(T ) + (Bias(T ))2.

If T is UE for θ, then MSE (T ) = Var(T ).

An estimator with smaller value of MSE is preferred.

Example 2.39: Let X1, . . . , Xn be a RS from a population with
mean µ ∈ R and finite variance σ2. T1, T2, . . . , Tn are UE for µ.
Which one to prefer?

Example 2.40: Let X1, . . . , Xn
i .i .d .∼ N(µ, σ2), n > 1. Then the

MLE of σ2 is a biased estimator. Find an UE for σ2. Find MSE of
both estimators.



Cramer-Rao Lower Bound

Theorem 2.8: Suppose that T is an unbiased estimator of a real
valued parametric function τ (θ). Assume that d

dθ
τ(θ), denoted by

τ ′(θ), is finite for all θ ∈ Θ. Then, for all θ ∈ Θ, under the regularity
assumptions, we have

Varθ (T ) ≥ (τ ′(θ))2

n IX1 (θ)
.

The expression on the right hand side of the inequality is call
Cramer-Rao lower bound (CRLB).



Cramer-Rao Lower Bound

Example 2.41: Let X1, X2, . . . , Xn
i .i .d .∼ Poi(λ), where λ > 0 is

unknown parameter. Let us consider τ(λ) = λ. The Fisher
information is IX1 (λ) =

1
λ
. Thus, CRLB is

(τ ′(θ))2

n IX1 (θ)
=

λ

n
,

which is same as the variance of X .

Example 2.42: Let X1, X2, . . . , Xn
i .i .d .∼ N(µ, σ2), where µ ∈ R is

unknown parameter and σ > 0 is known. Consider τ(µ) = µ. Then,
X is an UE for µ. In this case Fisher information is IX1 (µ) =

1
σ2 .

Therefore, CRLB is σ2

n
, which is same as variance of X .



Consistent Estimator

Definition 2.11: Let Tn be an estimator based on a RS of size n.
The estimator Tn is said to be consistent estimator of θ if the
sequence of random variables {Tn : n ≥ 1} converges to θ in
probability for all θ ∈ Θ.

Example 2.43: Let X1, X2 . . . , Xn be a RS from a population with
mean µ ∈ R. Then using WLLN, X n is a consistent estimator for µ.

Example 2.44: X1, . . . , Xn
i .i .d .∼ U(0, θ), θ > 0. We saw that the

MLE of θ is X(n). Now using the CDF of X(n), it can be shown that
X(n) is a consistent estimator of θ.



Large Sample Properties of MLE

We will discuss some properties of MLE when the sample size is
reasonably large.

These properties are quite useful when it is difficult to find the
exact distribution of MLE or when MLE does not exist in close
form.

We will state two theorems without proof. However there is a
set of assumptions under which the theorems hold. We will first
state these assumptions and then theorems.



Large Sample Properties of MLE (Contd.)

Let X1, X2, . . . be a sequence of i.i.d. RVs from the population
having PMF/PDF f (x ; θ), where θ ∈ Θ ⊆ R. Let the true value of θ
is θ0. Consider the following assumptions.

1 ∂
∂θ

ln f (x ; θ), ∂2

∂θ2
ln f (x ; θ), ∂3

∂θ3
ln f (x ; θ) are finite for all x ∈ R

and for all θ ∈ Θ.

2

∫ +∞

−∞

∂

∂θ
f (x ; θ)dx = 0,

∫ +∞

−∞

∂2

∂θ2
f (x ; θ)dx = 0, and∫ +∞

−∞

{
∂

∂θ
f (x ; θ)

}2

dx > 0 for all θ ∈ Θ.

3 For all θ ∈ Θ,

∣∣∣∣ ∂3

∂θ3
ln f (x ; θ)

∣∣∣∣ < a(x), where E (a(X1)) < b for

a constant b which is independent of θ.



Large Sample Properties of MLE (Contd.)

Theorem 2.9: Under these three assumptions, the likelihood
equation has solution denoted by θ̂n(x), such that θ̂n(X ) is
consistent estimator for θ.

Theorem 2.10: Under these three assumptions,√
IX (θ)

(
θ̂n(X )− θ

)
L→ Z ∼ N(0, 1),

i.e. for all a ∈ R

lim
n→∞

P
(√

IX (θ)
(
θ̂n(X )− θ

)
≤ a

)
→ Φ(a) =

∫ a

−∞

1√
2π

e−t2/2dt,

where IX (θ) is called Fisher information.



Examples

Example 2.45: Let X1, X2, . . .
i .i .d .∼ Bernoulli(p). The MLE of p

based on a sample of size n is p̂n = X n and IX1(p) =
1

p(1−p)
. Using

above theorems p̂n is consistent for p and√
n(p̂n − p)

L→ N(0, p(1− p)).

Example 2.46: Let X1, X2, . . .
i .i .d .∼ P(λ). The MLE of λ based on a

sample of size n is λ̂n = X n and IX1(λ) =
1
λ
. Using above theorems

λ̂n is consistent for λ and
√
n(λ̂n − λ)

L→ N(0, λ).

Remark 2.3: You can check that all the assumptions are hold true
for last two examples.



Examples

Example 2.47: Let X1, X2, . . .
i .i .d .∼ U(0, θ). The MLE of θ based

on a sample of size n is θ̂n = X(n). However, the first condition of
assumption 2 does not hold. Hence we can not use previous theorems
here.
However we have already discussed that X(n) is consistent for θ.

One can show that n
(
θ − X(n)

) L→ Exp(θ). To show it find the CDF
of n

(
θ − X(n)

)
and then use the definition of convergence in

distribution.


