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Topic 1: Monte Carlo Simulation



Example

Let we want to estimate the average distance between two
randomly selected points in a region.

Let X = (X1, X2) and Y = (Y1, Y2) be independent and
uniformly distributed two points drawn from a finite rectangle
R = [0, a]× [0, b].

The Euclidean distance between these two points is

Z = d(X , Y ) =
√
(X1 − Y1)2 + (X2 − Y2)2.

We need E (Z ).

E (Z ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

√
(x1 − y1)2 + (x2 − y2)2

×fX1,X2(x1, x2)fY1,Y2(y1, y2)dx1dx2dy1dy2



Example

We can approximate E (Z ) by sampling pair points
(X i , Y i), i = 1, 2, . . . , n, form R and then calculating the
average

1

n

n∑
i=1

d(X i , Y i).



Simple Monte Carlo

In a simple Monte Carlo problem, we express the quantity we
want to know as the expected value of a random variable Y ,
such as µ = E (Y ).

Generate values Y1, . . . , Yn independently from the distribution
of Y .

Take their average

µ̂n =
1

n

n∑
i=1

Yi

as an estimate of µ.



Simple Monte Carlo

In many examples, Y = h(X ).

X has a PMF/PDF p(x) (known).
f is a real-valued function defined over the support of X .



Justification of Simple MC

The strong law of large numbers:

P
(
lim
n→∞
|µ̂n − µ| = 0

)
= 1.

Loosely speaking, the SLLNs says that the error in
approximation will be very small if we increase n.



Random Number Generation

Our aim is to generate random number from appropriate
distribution.

Basic step of a random number generation from a distribution is
to generate random numbers from Uniform distribution U(0, 1).

The PDF of a random variable having U(0, 1) distribution is

f (x) =

{
1 if 0 < x < 1

0 otherwise.



Uniform Random Numbers Generation

To generate random numbers from a process that according to
well established understanding of physics is truly random.

Radioactive particle emission, that are thought to be truly
random.

Such process has it’s own draw back.

Therefore, people use Pseudo-random numbers (computer
generated).

We will not discuss it in detail, as almost all software has a
routine to generate pseudo-random numbers from U(0, 1).

Now-onward, the pseudo-random number will be referred as
random number.



Uniform Random Numbers Generation

A linear congruence generator (LCG):

xi+1 = axi mod m, ui+1 =
xi+1

m
, i = 0, 1, 2, . . . .

The multiplier a and the modulus m are integer constants.

The initial value (seed) x0 is called seed.

x0 is an integer between 1 and m − 1.

LCG is a deterministic recurrence relation.



Uniform Random Numbers Generation

The general linear congruence generator (GLCG):

xi+1 = (axi + c) mod m, ui+1 =
xi+1

m
, i = 0, 1, 2, . . . .

a, m and c are appropriate integers.



Non-uniform Random Number Generation

Method for transforming random numbers from U(0, 1)
distribution to samples from other required distributions.

The two most widely used general techniques are:
1 Inverse Transform Method.
2 Acceptance Rejection Method.



Inverse Transform Method

The inverse transform method is based on the following theorem.

Theorem 1: Let F be a CDF. Define the quasi-inverse of F by

F−1(u) = inf {x ∈ R : F (x) ≥ u} for 0 < u < 1.

Let U ∼ U(0, 1) and X = F−1(U). Then, the CDF of X is F .

{x ∈ R : F (x) ≥ u} is non-empty and has a lower bound for all
u ∈ (0, 1).



Inverse Transform Method

Want a sample from the CDF F (x). That means that we want
to generate a random variable X with the property that
P(X ≤ x) = F (x) for all x ∈ R.
Using above theorem, we have the following algorithm.

Algorithm 1 Inverse Transform Method

1: Generate U from U(0, 1) distribution.
2: Set X = F−1(U).
3: Return X .

In principle, this algorithm can be used to generate random
number from any distribution.

However, there are computational aspects. We generally use this
algorithm if F−1 is in closed form and easy to compute.



Inverse Transform Method

Example 1: (Generation from exponential distribution) The PDF is

f (x) =

{
λe−λx if x > 0

0 otherwise.

Example 2: (Generation from Arc Sin Law) Consider the CDF

F (x) =
2

π
arc sin

√
x , 0 ≤ x ≤ 1.

Example 3: (Generation from Rayleigh Distribution) The CDF is

F (x) = 1− e−2x(x−b) , x ≥ b.



Inverse Transform Method

Lemma 1: F and F−1 both are non-decreasing.
Lemma 2: F F−1(u) ≥ u for all u ∈ (0, 1).
Lemma 3: F−1 F (x) ≤ x for all x ∈ R.
Lemma 4: For x ∈ R and 0 < u < 1, F (x) ≥ u if and only if
F−1(u) ≤ x .



Inverse Transform Method

Example 4: Generation from a Bernoulli distribution with probability
of success p (q = 1− p).

FX (x) =


0 if x < 0

q if 0 ≤ x < 1

1 if x ≥ 1.

and F−1(u) =

{
0 if 0 < u < q

1 if q ≤ u < 1.

Algorithm 2 Generation from Bernoulli(p)

1: generate U from U(0, 1).
2: if U < 1− p then
3: Set X ← 0.
4: else
5: Set X ← 1.
6: end if
7: return X



Inverse Transform Method

Example 5: Generation from a discrete distribution with finite
support.

▶ Consider a DRV X whose support is c1 < c2 < c3 < · · · < cN .

▶ Let pi = P (X = ci) , i = 1, 2, 3 . . . , N .

▶ Set q0 = 0 and qi =
i∑

j=1

pj , i = 1, 2, 3 . . . , N .

Algorithm 3 Inversion Transformation Method for Discrete Random
Variable with Finite Support

1: Generate a uniform U ∼ U(0, 1).
2: Find K ∈ {1, 2, . . . ,N} such that qK−1 < U ≤ qK .
3: Return cK .



Acceptance-Rejection Method

We want to generate random number from a PDF f (target
distribution).
Let g (candidate distribution) be a PDF such that for all x ∈ R
and for some c ≥ 1

f (x) ≤ cg(x).

The technique to generate random number from g is known.
Then we can use the following algorithm to generate random
number from f .

Algorithm 4 Acceptance Rejection Method

1: repeat
2: generate X from distribution g .
3: generate U from U(0, 1).

4: until U ≤ f (X )
cg(X )

5: return X



Generation from Gamma Distribution

Example 6: Generation random number from Gamma(α, β).

▶ The PDF of the distribution is

f (x) =
βα

Γ(α)
xα−1e−βx for x > 0.

We will consider generation from Gamma(α, 1) for α > 0.



Generation from Gamma Distribution

Case I : 0 < α < 1.

▶ Take

g(x) =

{
xα−1

A
if 0 < x < 1

e−x

A
if x ≥ 1,

where A = 1
α
+ 1

e
.

▶ Then, f (x) ≤ cg(x), where c = A
Γ(α)

.

▶ The CDF corresponding to g is

G (x) =

{
xα

αA
if 0 < x < 1

1− e−x

A
if x ≥ 1.

▶ Now,

G−1(u) =

{
(αAu)

1
α if 0 < u < 1

αA

− lnA− ln(1− u) if 1
αA
≤ u < 1.



Generation from Gamma Distribution

Algorithm 5 Generation from Gamma(α, 1) for 0 < α < 1

1: repeat
2: generate U1 from U(0, 1)
3: if U < 1

αA
then

4: Set X ← (αAU)
1
α

5: else
6: Set X ← − lnA− ln (1− U)
7: end if
8: generate U2 from U(0, 1)
9: until cg(X )U2 ≤ f (X )
10: return X



Generation from Gamma Distribution

Case II: α is a positive integer.

▶ Let Xi
i .i .d .∼ Exp(1) for i = 1, 2, . . . , n.

▶ Then
n∑

i=1

Xi ∼ Gamma(n, 1).

Algorithm 6 Generation from Gamma(α, 1), α is a positive integer

1: Set n← α and Y ← 0
2: while n ̸= 0 do
3: generate U from U(0, 1)
4: Set X ← − ln(U)
5: Y ← Y + X
6: n← n − 1
7: end while
8: return Y



Generation from Gamma Distribution

Case III: α > 1 and not an integer.

▶ Let X ∼ Gamma(α1, β) and Y ∼ Gamma(α2, β).

▶ Suppose that X and Y are independent.

▶ Then X + Y ∼ Gamma(α1 + α2, β).

▶ ⌊x⌋: the integer part of the positive real number x .

▶ {x}: the fractional part of the positive real number x .

▶ α = ⌊α⌋+ {α}.

Algorithm 7 Generation from Gamma(α, 1) when α > 1 and α is not
an integer

1: generate Y from Gamma({α}, 1) using Algorithm 5
2: generate X from Gamma(⌊α⌋ , 1) using Algorithm 6
3: Z = X + Y
4: return Z



Acceptance-Rejection Method

Theorem 2: Let f and g be two PDFs such that

f (x) ≤ cg(x) for all x ∈ R and for some c ≥ 1.

Then X generated by Algorithm 4 has PDF f .



Technique based on Transformation

Example 7: Generation of random number from Beta(α, β).

▶ X ∼ Gamma(α1, β)

▶ Y ∼ Gamma(α2, β)

▶ X and Y are independent

▶ Then
X

X + Y
∼ Beta(α1, α2).

Algorithm 8 Generation from Beta(α1, α2) distribution

1: generate X from Gamma(α1, β)
2: generate Y from Gamma(α2, β)

3: Z =
X

X + Y
4: return Z



Technique based on Transformation

Example 8: Generation of random number from N(µ, σ2)

▶ U1, U2
i .i .d .∼ U(0, 1)

▶ Define

Z1 =
√
−2 lnU1 cos (2πU2) and Z2 =

√
−2 lnU1 sin (2πU2) .

▶ Then Z1, Z2
i .i .d .∼ N(0, 1)

▶ This transformation is called Box-Muller transformation.

Algorithm 9 Box-Muller Method to generate from N(0, 1)

1: generate U1 and U2 from U(0, 1)
2: R ←

√
−2 lnU1

3: θ ← 2πU2

4: Z1 ← R cos(θ)
5: Z2 ← R sin(θ)
6: return (Z1, Z2).



Technique based on Transformation

Example 9: Generation from Geometric(p).

▶ The PMF is given by

P(X = i) = p(1− p)i for i = 0, 1, 2, . . . .

▶ Let Y be an exponential random variable with mean 1
λ
.

▶ Take W = ⌊Y ⌋. Then

P(W = i) = e−iλ
(
1− e−λ

)
for i = 0, 1, 2, . . . .

▶ W ∼ Geometric(1− e−λ).

Algorithm 10 Generation from Geometric(p)

1: generate U from U(0, 1)

2: X ←
⌊

lnU
ln(1−p)

⌋
3: return X .



Error in Monte Carlo Integration

Both laws of large numbers tell us that Monte Carlo will
eventually produce an error as small as we like.

They do not tell us how large n has to be for this to happen.

They also do not say for a given sample Y1, . . . , Yn whether the
error is likely to be small.

The situation improves markedly when Y has a finite variance.

Suppose that Var(Y ) = σ2 <∞.

The mean of µ̂n is E(µ̂n) =
1
n

∑n
i=1 E(Yi) = µ.

The variance of µ̂n is Var(µ̂n) = E ((µ̂n − µ)2) = σ2

n
.

The variance of µ̂ may be considered as (average) error in µ̂ for
approximating or estimating µ.

For fixed n, the variance increases as σ increases.

The variance decreases as n increases for fixed σ.

The root mean squared error of µ̂n is
√
Var(µ̂n) =

σ√
n
.


