STATISTICAL INFERENCE (MA862)

Lecture Slides

Topic 1: Monte Carlo Simulation



Example

o Let we want to estimate the average distance between two
randomly selected points in a region.
o Let X = (X1, Xz) and Y = (Y3, Y>) be independent and
uniformly distributed two points drawn from a finite rectangle
= [0, a] x [0, b].
o The Euclidean distance between these two points is

Z=d(X,Y)=+(X - Y1)2+ (X2 — Ya)2.

//// Ve

Xfxl,x2(X1, X2)fY1, Yz(yla )/2)dX1dX2d}/1dY2

o We need E(2)




Example

o We can approximate E(Z) by sampling pair points
(Xi, Yi),i=1,2, ..., n, form R and then calculating the
average

1 n
- Z; d(X;, Y;).



Simple Monte Carlo

o In a simple Monte Carlo problem, we express the quantity we
want to know as the expected value of a random variable Y,
such as u = E(Y).

o Generate values Yi, ..., Y, independently from the distribution
of Y.

o Take their average
1 n
An - - K

as an estimate of p.



Simple Monte Carlo

o In many examples, Y = h(X).
o X has a PMF/PDF p(x) (known).

o f is a real-valued function defined over the support of X.



Justification of Simple MC

o The strong law of large numbers:
IP’(Iim i — 4l :0) ~1
n—oo

o Loosely speaking, the SLLNs says that the error in
approximation will be very small if we increase n.



Random Number Generation

o Our aim is to generate random number from appropriate
distribution.

o Basic step of a random number generation from a distribution is
to generate random numbers from Uniform distribution U(0, 1).

o The PDF of a random variable having U(0, 1) distribution is

f(x) =

1 fO<x<l1
0 otherwise.



Uniform Random Numbers Generation

o To generate random numbers from a process that according to
well established understanding of physics is truly random.

o Radioactive particle emission, that are thought to be truly
random.

o Such process has it's own draw back.

o Therefore, people use Pseudo-random numbers (computer
generated).

o We will not discuss it in detail, as almost all software has a
routine to generate pseudo-random numbers from U(0, 1).

o Now-onward, the pseudo-random number will be referred as
random number.



Uniform Random Numbers Generation

o A linear congruence generator (LCG):
Xit+1 .
Xigi=ax;mod m, w1 =—, i=0,1,2,....
m

©

The multiplier a and the modulus m are integer constants.

©

The initial value (seed) xo is called seed.

©

Xp is an integer between 1 and m — 1.

LCG is a deterministic recurrence relation.

(]



Uniform Random Numbers Generation

o The general linear congruence generator (GLCG):

Xit+1

Xi+1 = (ax,- = C) mod m, Ujir1 = 7, I = O, 1, 2, 5000

© a, m and c are appropriate integers.



Non-uniform Random Number Generation

o Method for transforming random numbers from U(0, 1)
distribution to samples from other required distributions.
o The two most widely used general techniques are:

@ Inverse Transform Method.
@ Acceptance Rejection Method.



Inverse Transform Method

o The inverse transform method is based on the following theorem.
Theorem 1: Let F be a CDF. Define the quasi-inverse of F by
Flu)=inf{xeR:F(x)>u} forO<u<l.

Let U ~ U(0, 1) and X = F~1(U). Then, the CDF of X is F.

o {x € R: F(x) > u} is non-empty and has a lower bound for all
ue(0,1).



Inverse Transform Method

o Want a sample from the CDF F(x). That means that we want
to generate a random variable X with the property that
P(X < x) = F(x) for all x € R.

o Using above theorem, we have the following algorithm.

Algorithm 1 Inverse Transform Method
1: Generate U from U(0, 1) distribution.
2: Set X = F}(U).

3: Return X.

o In principle, this algorithm can be used to generate random
number from any distribution.

o However, there are computational aspects. We generally use this
algorithm if F~1 is in closed form and easy to compute.



Inverse Transform Method

Example 1: (Generation from exponential distribution) The PDF is

e ™ if 0
f(x) _ e T x > -
0 otherwise.

Example 2: (Generation from Arc Sin Law) Consider the CDF

2
F(x) = = arcsin y/x , 0 < x < 1.
s

Example 3: (Generation from Rayleigh Distribution) The CDF is

F(x)=1—e >0 x>p



Inverse Transform Method

Lemma 1: F and F~! both are non-decreasing.

Lemma 2: F F~Y(u) > ufor all u € (0, 1).

Lemma 3: F1F(x) < x for all x € R.

Lemma 4: For x e Rand 0 < u < 1, F(x) > u if and only if
F~1(u) < x.



Inverse Transform Method

Example 4: Generation from a Bernoulli distribution with probability
of success p(g =1—p).

0 ifx<O 0 0 <u<
. _ i u<g
F = < d Fl =
x(x) q !fO_x<1 an (u) {1 fa<u<l
1 ifx>1.

Algorithm 2 Generation from Bernoulli(p)

generate U from U(0, 1).
if U <1— pthen
Set X + 0.
else
Set X < 1.
end if
return X

N gk e




Inverse Transform Method

Example 5: Generation from a discrete distribution with finite
support.

» Consider a DRV X whose supportis c; < ¢ < i3 < -+ < cp.
> Letpp=P(X=¢),i=1,2,3...,N.

» Setgp=0and g, =) p;, i=1,2,3..., N.
j=1

Algorithm 3 Inversion Transformation Method for Discrete Random
Variable with Finite Support

1: Generate a uniform U ~ U(0, 1).

2: Find K € {1,2,..., N} such that gx_1 < U < gk.

3: Return ck.




Acceptance-Rejection Method

o We want to generate random number from a PDF f (target
distribution).

o Let g (candidate distribution) be a PDF such that for all x € R
and for some ¢ > 1

f(x) < cg(x).
o The technique to generate random number from g is known.

o Then we can use the following algorithm to generate random
number from f.

Algorithm 4 Acceptance Rejection Method

: repeat
generate X from distribution g.

1
2
3: generate U from U(0, 1).
: ; f(X)
4: until U < =0

5. return X




Generation from Gamma Distribution

Example 6: Generation random number from Gamma(c, f3).
» The PDF of the distribution is

f(x) = rfa)xo‘_le_ﬁx for x > 0.

o We will consider generation from Gamma(«, 1) for a > 0.



Generation from Gamma Distribution

Casel : 0 < a < 1.
» Take

A

eT I'FXZ].,

a—1
x if0<x<1
g(X)Z{

where A = é + %
» Then, f(x) < cg(x), where ¢ = %.
» The CDF corresponding to g is

G(x) = x if 0 < x <1
|1 ifx>1
» Now,

61(u) = (04Au)i if0<u<
—InA—-In(l—-u) ifL<u<l



Generation from Gamma Distribution

Algorithm 5 Generation from Gamma(a, 1) for 0 < a <1

1: repeat

2 generate U; from U(0, 1)
3 if U < -5 then

4 Set X + (aAU)>
5 else

6 Set X <~ —InA—In(1—-V)
7 end if

8: generate U, from U(0, 1)

o: until cg(X)Us < £(X)

10: return X




Generation from Gamma Distribution

Case Il: «v is a positive integer.
» Let X; e Exp(1l) fori=1,2,..., n.

» Then ZX,- ~ Gamma(n, 1).

i=1

Algorithm 6 Generation from Gamma(c, 1), « is a positive integer

1: Set n<«aand Y+ 0
2: while n # 0 do
3 generate U from U(0, 1)
4 Set X «+ —In(U)
5: Y+~ Y+ X
6 n<—n-—1
7: end while
8: return Y




Generation from Gamma Distribution

Case lll: @ > 1 and not an integer.
» Let X ~ Gamma(ay, 5) and Y ~ Gamma(ay, f3).
» Suppose that X and Y are independent.
» Then X + Y ~ Gamma(a; + aa, ).
» |x]|: the integer part of the positive real number x.
» {x}: the fractional part of the positive real number x.
> a=|a|+{a}.

Algorithm 7 Generation from Gamma(c, 1) when o« > 1 and « is not
an integer

. generate Y from Gamma({«a}, 1) using Algorithm 5
. generate X from Gamma(|«a], 1) using Algorithm 6
:Z=X+4+Y

return Z

A w0 N =




Acceptance-Rejection Method

Theorem 2: Let f and g be two PDFs such that
f(x) < cg(x) forall x € R and for some ¢ > 1.

Then X generated by Algorithm 4 has PDF f.



Technique based on Transformation

Example 7: Generation of random number from Beta(«, f3).
» X ~ Gamma(a, f)
» Y ~ Gamma(ay, )
» X and Y are independent

X
» Then Xty "~ Beta(a, az).

Algorithm 8 Generation from Beta(a, «) distribution

1: generate X from Gamma(ay, )
2: generate Y from Gamma(ay, )
3 = X

T X+Y

4: return Z




Technique based on Transformation

Example 8: Generation of random number from N(u, 2)

i.i.d.

» U, U, ~ U0, 1)
» Define

Zl = \/ —21In Ul COoSs (27TU2) and Zz = \/ —21n U1 sin (27TU2)

i.i.d.

> Then Zl, 22 ~ N(O, 1)
» This transformation is called Box-Muller transformation.

Algorithm 9 Box-Muller Method to generate from N(0, 1)

© s

generate U; and U, from U(0, 1)
R+ +v-2InU;

0 < 27TU2

Z; < Rcos(0)

Z, < Rsin(0)

return (2, 2).




Technique based on Transformation

Example 9: Generation from Geometric(p).
» The PMF is given by
P(X=i)=p(l—p) fori=0,1,2,....

» Let Y be an exponential random variable with mean %.

A
» Take W = |Y]. Then
PW=i)=e"(1—e?) fori=012,....

» W ~ Geometric(1 — e™?).

Algorithm 10 Generation from Geometric(p)

1: generate U from U(0, 1)

2 X « ||

3: return X.




Error in Monte Carlo Integration

Q

Both laws of large numbers tell us that Monte Carlo will
eventually produce an error as small as we like.

o They do not tell us how large n has to be for this to happen.

o They also do not say for a given sample Yy, ..., Y, whether the

error is likely to be small.
The situation improves markedly when Y has a finite variance.
Suppose that Var(Y) = 02 < co.

The mean of 7, is E(fi,) = 237 E(Y;) = p.
The variance of fi, is Var(fi,) = E ((fi, — p)?) =

foi

.

The variance of i may be considered as (average) error in i for
approximating or estimating /.

For fixed n, the variance increases as o increases.

The variance decreases as n increases for fixed o.
The root mean squared error of i, is v/ Var(ii,) = T



