STATISTICAL INFERENCE (MA862) Lecture Slides Topic 0: Introduction

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Website

https://ayonganguly.github.io/ma682.html

Syllabus

- Review of probability theory
- Monte Carlo Simulation
- Point estimation
- Interval estimation
- Testing of hypotheses
- Linear regression
- Basic non-parametric tests.
- Bayesian Analysis
- Markov chain Monte Carlo

Reading Materials

- For Monte Carlo Methods:
 - o https://artowen.su.domains/mc/
- For Parametric Inference:
 - V. K. Rohatgi and A. K. Md. E. Saleh, An Introduction to Probability and Statistics, Wiley
 - G. Casella and R. L. Berger, Statistical Inference, Duxbury Press

 B. L. S. Prakasa Rao, A First Course in Probability and Statistics, World Scientific/Cambridge University Press India

Class Times

- In general:
 - Monday 3 pm to 3:55 pm
 - Tuesday 2 pm to 2:55 pm
 - Friday 4 pm to 4:55 pm
- Make-up class (if needed):
 - Thursday 5 pm to 5:55 pm

Exams and Grading Policy

• Will be informed.

Resource Persons

- Instructor:
 - Ayon Ganguly (Email: aganguly@iitg.ac.in)
- Teaching Assistant:
 - Aryan Bhambu (Email: a.bhambu@iitg.ac.in)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Probability

- Let Ω be a non-empty set.
- Let \mathcal{F} be a collection of subsets of Ω such that

 - 2 If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
 - 3 If $\{A_i\}_{i\geq 1} \subset \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.
- A function $P: \mathcal{F} \to [0, \infty)$ is called a probability if
 - P(Ω) = 1.
 If {A_i}_{i>1} ⊂ F is a sequence of disjoint sets, then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i).$$

• The triplet (Ω, \mathcal{F}, P) is called probability space.

Conditional Probability

• Let *H* be an event with *P*(*H*) > 0. For any arbitrary event *A*, the conditional probability of *A* given *H* is defined by

$$P(A|H) = \frac{P(A \cap H)}{P(H)}.$$

(Theorem of total probability) Let {E₁, E₂...} be a collection of mutually exclusive and exhaustive events with P(E_i) > 0, ∀i. Then for any event E,

$$P(E) = \sum_{i} P(E|E_i)P(E_i).$$

(Bayes rule) Let {E₁, E₂...} be a collection of mutually exclusive and exhaustive events with P(E_i) > 0, ∀i. Then for any event E with P(E) > 0,

$$P(E_j|E) = \frac{P(E|E_j)P(E_j)}{\sum_i P(E|E_i)P(E_i)} \quad j = 1, 2, \dots$$

Random Variable

A function X : Ω → ℝ is called a random variable if for all x ∈ ℝ,

$$X^{-1}(-\infty, x] = \{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.$$

- The function F : ℝ → [0, 1] defined by F(x) = P(X ≤ x) is called the cumulative distribution function (CDF) of X.
- CDF has following properties.
 - F is non-decreasing.
 - F is right continuous.

•
$$\lim_{x \to -\infty} F(x) = 0$$
 and $\lim_{x \to \infty} F(x) = 1$.

•
$$F(x-) = F(x) - P(X = x)$$
.

Discrete Random Variable

- A random variable X is said to have a discrete distribution if there exists an atmost countable set S ⊂ R such that P(X ∈ S) = 1.
- Let X be a discrete random variable. The function
 f : ℝ → [0, 1] defined by f(x) = P(X = x) is called probability mass function (PMF).
- For a discrete random variable X,

$$F(x) = \sum_{u \leq x, u \in S} f(u).$$

Continuous Random Variable

 A random variable X is said to have a continuous distribution if there exists a non-negative function f on ℝ such that

$${\sf F}(x)=\int_{-\infty}^x f(u)du$$
 for all $x\in{\mathbb R}.$

- f is called probability density function (PDF) of X.
- CDF is continuous.

•
$$P(X = x) = 0$$
 for all $x \in \mathbb{R}$.

Expectation

• Let X be a discrete random variable with PMF f. The expectation of X is defined by

$$E(X)=\sum_{x\in S}xf(x),$$

provided
$$\sum_{x\in \mathcal{S}} |x| f(x) < \infty.$$

• Let X be a continuous random variable with PDF f. The expectation of X is defined by

$$E(X)=\int_{-\infty}^{\infty}xf(x)dx,$$

provided $\int_{-\infty}^{\infty} |x| f(x) dx < \infty$.

Jointly Distributed Random Variables

• A function $X : \Omega \to \mathbb{R}^n$ is called a random vector if for all $x_1, x_2, \ldots, x_n \in \mathbb{R}$,

$$\mathbf{X}^{-1}(-\infty, x_1] \times (-\infty, x_2] \times \ldots \times (-\infty, x_n] \in \mathcal{F}.$$

• For any random vector $\mathbf{X} = (X_1, X_2, \dots, X_n)$, the joint cumulative distribution function (JCDF) is defined by

$$F_{\boldsymbol{X}}(x_1, \ldots, x_n) = P(X_1 \leq x_1, \ldots, X_n \leq x_n),$$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�?

Discrete Random Vector (DRV)

A random vector (X, Y) is said to have a discrete distribution if there exists an atmost countable set S_{X,Y} ⊂ ℝ² such that P((X, Y) = (x, y)) > 0 for all (x, y) ∈ S_{X,Y} and P((X, Y) ∈ S_{X,Y}) = 1. S_{X,Y} is called the support of (X, Y).

• Define a function $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}$ by

$$f_{X,Y}(x, y) = \begin{cases} P(X = x, Y = y) & \text{if } (x, y) \in S_{X,Y} \\ 0 & \text{otherwise.} \end{cases}$$

The function $f_{X,Y}$ is called joint probability mass function (JPMF) of the DRV (X, Y).

Expectation of Function of DRV

• Let (X, Y) be a DRV with JPMF $f_{X,Y}$ and support $S_{X,Y}$. Let $h : \mathbb{R}^2 \to \mathbb{R}$. Then the expectation of h(X, Y) is defined by

$$E(h(X, Y)) = \sum_{(x, y) \in S_{X, Y}} h(x, y) f_{X, Y}(x, y),$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

provided $\sum_{(x, y) \in S_{X, Y}} |h(x, y)| f_{X, Y}(x, y) < \infty.$

Continuous Random Vector (CRV)

A random vector (X, Y) is said to have a continuous distribution if there exists a non-negative integrable function f_{X,Y} : ℝ² → ℝ such that

$$F_{X,Y}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t, s) ds dt$$

for all $(x, y) \in \mathbb{R}^2$.

• The function $f_{X,Y}$ is called the joint probability density function (JPDF) of (X, Y).

Expectation of Function of CRV

• Let (X, Y) be a CRV with JPDF $f_{X,Y}$. Let $h : \mathbb{R}^2 \to \mathbb{R}$. Then the expectation of h(X, Y) is defined by

$$E(h(X, Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f_{X,Y}(x, y) dx dy,$$

provided
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |h(x, y)| f_{X, Y}(x, y) dx dy < \infty.$$

Independent Random Variables

• The random variables $X_1, X_2, ..., X_n$ are said to be independent if

$$F_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n) = \prod_{i=1}^n F_{X_i}(x_i),$$

for all $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$.

• For DRV/CRV (X, Y), the condition of independence is equivalent to

$$f_{X,Y}(x, y) = f_X(x)f_Y(y)$$
 for all $(x, y) \in \mathbb{R}^2$.

• If X and Y are independent, then

$$E(g(X)h(Y)) = E(g(X)) E(h(Y)),$$

provided all the expectations exist.

Conditional Distribution for DRV

Let (X, Y) be a DRV with JPMF f_{X,Y}(·, ·). Suppose the marginal PMF of Y is f_Y(·). The conditional PMF of X, given Y = y is defined by

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)},$$

provided $f_Y(y) > 0$.

• The conditional CDF of X given Y = y is defined by

$$F_{X|Y}(x|y) = P(X \le x|Y = y) = \sum_{\{u \le x: (u,y) \in S_{X,Y}\}} f_{X|Y}(u|y).$$

provided $f_Y(y) > 0$.

Conditional Expectation for DRV

• The conditional expectation of h(X) given Y = y is defined by

$$E(h(X)|Y = y) = \sum_{x:(x,y)\in S_{X,Y}} h(x)f_{X|Y}(x|y)$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

provided it is absolutely summable.

Conditional Distribution for CRV

Let f_{X,Y} be the JPDF of (X, Y) and let f_Y be the marginal PDF of Y. If f_Y(y) > 0, then the conditional PDF of X given Y = y is given by

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• The conditional expectation of h(X) given Y = y is defined for all values of y such that $f_Y(y) > 0$ and given by

$$E(h(X)|Y=y) = \int_{-\infty}^{\infty} h(x) f_{X|Y}(x|y) dx,$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

provided it is absolutely integrable.

Computing Expectation by Conditioning

$$E(X) = EE(X|Y) = \begin{cases} \sum_{y} E(X|Y=y)P(Y=y) & \text{for } Y \text{ discrete} \\ \int_{-\infty}^{\infty} E(X|Y=y)f_Y(y)dy & \text{for } Y \text{ continuous.} \end{cases}$$

▲□▶▲□▶▲三▶▲三▶ 三 りへぐ

Computing Probability by Conditioning

$$P(E) = \begin{cases} \sum_{y} P(E|Y = y) P(Y = y) & \text{for } Y \text{ discrete} \\ \int_{-\infty}^{\infty} P(E|Y = y) f_Y(y) dy & \text{for } Y \text{ continuous.} \end{cases}$$

Transformation for DRV

Let $\mathbf{X} = (X_1, X_2, ..., X_n)$ be a discrete random vector with JPMF $f_{\mathbf{X}}$ and support $S_{\mathbf{X}}$. Let $g_i : \mathbb{R}^n \to \mathbb{R}$ for all i = 1, 2, ..., k. Let $Y_i = g_i(\mathbf{X})$ for i = 1, 2, ..., k. Then $\mathbf{Y} = (Y_1, ..., Y_k)$ is a discrete random vector with JPMF

$$f_{\mathbf{Y}}(y_1, \ldots, y_k) = \begin{cases} \sum_{\mathbf{x} \in A_{\mathbf{y}}} f_{\mathbf{X}}(\mathbf{x}) & \text{if } (y_1, \ldots, y_k) \in S_{\mathbf{Y}} \\ 0 & \text{otherwise,} \end{cases}$$

where $A_{\mathbf{y}} = \{ \mathbf{x} \in S_{\mathbf{X}} : g_i(\mathbf{x}) = y_i, i = 1, ..., k \}$ and $S_{\mathbf{Y}} = \{ (g_1(\mathbf{x}), ..., g_k(\mathbf{x})) : \mathbf{x} \in S_{\mathbf{X}} \}.$

(日) (四) (日) (日) (日) (日) (日) (日)

Transformation for CRV

Let $X = (X_1, ..., X_n)$ be a continuous random vector with JPDF f_X . 1 Let $y_i = g_i(x)$, i = 1, 2, ..., n be $\mathbb{R}^n \to \mathbb{R}$ functions such that

$$\mathbf{y} = g(\mathbf{x}) = (g_1(\mathbf{x}), \ldots, g_n(\mathbf{x}))$$

is one-to-one. That means that there exists the inverse transformation $x_i = h_i(\mathbf{y})$, i = 1, 2, ..., n defined on the range of the transformation.

② Assume that both the mapping and its' inverse are continuous. Assume that partial derivatives ∂x_i/∂y_j, i = 1, 2, ..., n, j = 1, 2, ..., n, exist and are continuous. Assume that the Jacobian of the inverse transformation J = det (∂x_i/∂y_j)_{i,j=1,2,...,n} ≠ 0 on the range of the transformation.
Then Y = (g₁(X), ..., g_n(X)) is a continuous random vector with JPDF f_Y(y) = f_X(h₁(y), ..., h_n(y))|J|.

Moment Generating Function

• Let $X = (X_1, X_2, ..., X_n)$ be a random vector. The MGF of X at $t = (t_1, t_2, ..., t_n)$ is defined by

$$M_{\boldsymbol{X}}(\boldsymbol{t}) = E\left(\exp\left(\sum_{i=1}^{n} t_i X_i\right)\right)$$

provided the expectation exists in a neighborhood of origin $\mathbf{0} = (0, 0, \dots, 0).$

• Let X and Y be two *n*-dimensional random vectors. Let $M_X(t) = M_Y(t)$ for all t in a neighborhood around **0**, then $X \stackrel{d}{=} Y$.

Modes of Convergence

- Almost sure convergence
- Convergence in probability
- Convergence in *r*-th mean
- Convergence in distribution

Almost Sure Convergence

Let {X_n} be a sequence of random variables defined on a probability space (Ω, F, P). Let X be a random variable defined on the same probability space (Ω, F, P). We say that X_n converges almost surely or with probability (w.p.) 1 to a random variable X if

$$P(\{\omega \in \Omega : X_n(\omega) \to X(\omega)\}) = 1.$$

Convergence in Probability

Let {X_n} be a sequence of random variables defined on a probability space (Ω, F, P). Let X be a random variable defined on the same probability space (Ω, F, P). We say that X_n converges in probability to a random variable X if for any ε > 0,

$$P(|X_n - X| > \epsilon) o 0$$
 as $n o \infty$.

Convergence in *r*-th Mean

Let {X_n} be a sequence of random variables defined on a probability space (Ω, F, P). Let X be a random variable defined on the same probability space (Ω, F, P). For r = 1, 2, 3, ..., we say that X_n converges in rth mean to a random variable X if

$$E|X_n-X|^r o 0$$
 as $n \to \infty$.

Convergence in Distribution

Let {X_n} be a sequence of RVs and X be a RV. Let F_n(·) and F(·) denote the CDF of X_n and X, respectively. We say that X_n converges in distribution to a random variable X if

$$F_n(x) o F(x)$$
 as $n o \infty$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

for all x where F is continuous.

Relationship among Modes

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Strong Law of Large Numbers

• Let $\{X_n\}$ be a sequence of i.i.d. RVs with finite mean μ . Define $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then $\{\overline{X}_n\}$ converges to μ almost surely.

Central Limit Theorem

• Let $\{X_n\}$ be a sequence of i.i.d. RVs with mean μ and variance $\sigma^2 < \infty$. Then, $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$ converges to a standard normal random variable in distribution, *i.e.*, as $n \to \infty$,

$$P\left(\frac{\sqrt{n}(\overline{X}_n-\mu)}{\sigma}\leq a\right) \rightarrow \Phi(a) = \int_{-\infty}^a \frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A CRV X is said to have a Normal distribution or Gaussian distribution with mean μ ∈ ℝ and variance σ² > 0 if the PDF of X is given by

$$f(x) = \left\{ \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{ -\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right\} \text{ for all } x \in \mathbb{R}.$$

 A CRV X is said to have a Gamma distribution with shape parameter α > 0 and rate parameter λ > 0 if the PDF of X is given by

$$f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise.} \end{cases}$$

• For any positive integer *n*, a gamma distribution with $\alpha = \frac{n}{2}$ and $\lambda = \frac{1}{2}$ is also known as χ^2 -distribution with *n* degrees of freedom.

• Let X_1, X_2, \ldots, X_n be i.i.d. N(0, 1) random variables. Then

$$\sum_{i=1}^n X_i^2 \sim \chi_n^2$$

• Let X_1, X_2, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ random variables. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$. Then \overline{X} and S^2 are independently distributed and

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 and $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• A CRV X is said to have a Student's *t*-distribution (or simply, *t*-distribution) with *n* degrees of freedom if the PDF of X is given by

$$f(t) = rac{\Gamma(rac{n+1}{2})}{\sqrt{n\pi}\Gamma(rac{n}{2})} \left(1+rac{t^2}{n}
ight)^{-rac{n+1}{2}} \quad ext{for } t \in \mathbb{R}$$

• We will use the notation $X \sim t_n$ to denote that the RV X has a *t*-distribution with *n* degrees of freedom.

- Let $X \sim N(0, 1)$ and $Y \sim \chi_n^2$ be two independent RVs. Then the RV $T = \frac{X}{\sqrt{Y/n}} \sim t_n$.
- Let X_1, X_2, \ldots, X_n be i.i.d. $N(\mu, \sigma^2)$ random variables. Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$. Then

$$\frac{\sqrt{n}\left(\overline{X}-\mu\right)}{S} \sim t_{n-1}$$

A D > 4 日 > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4

 A CRV X is said to have a F-distribution with n and m degrees of freedom if the PDF of X is given by

$$f(x) = \frac{1}{B\left(\frac{n}{2}, \frac{m}{2}\right)} \left(\frac{n}{m}\right)^{\frac{n}{2}} x^{\frac{n}{2}-1} \left(1 + \frac{n}{m}x\right)^{-\frac{n+m}{2}} \quad \text{for } x > 0.$$

 We will use the notation X ~ F_{n,m} to denote that the RV X has a F-distribution with n and m degrees of freedom.

• Let $X \sim \chi^2_n$ and $Y \sim \chi^2_m$ are two independent RVs. Then

$$F=\frac{X/n}{Y/m}=\frac{mX}{nY}\sim F_{n,m}.$$

• Let
$$X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu_1, \sigma_1^2)$$
 and
 $Y_1, Y_2, \ldots, Y_m \stackrel{i.i.d.}{\sim} N(\mu_2, \sigma_2^2)$. Also, assume that X_i 's and Y_j 's
are independent. Let
 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \overline{Y} = \frac{1}{m} \sum_{i=1}^m Y_i$, and
 $S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y})^2$. Then
 $\frac{\sigma_2^2 S_X^2}{-2C^2} \sim F_{n-1,m-1}$.

 $\sigma_1^2 S_v^2$

・ロト < 団ト < 三ト < 三ト < 回 < つ < つ