Statistical Inference (MA862) Lecture Slides

Topic 0: Introduction

Website

https://ayonganguly.github.io/ma682.html

Syllabus

- Review of probability theory
- Monte Carlo Simulation
- Point estimation
- Interval estimation
- Testing of hypotheses
- Linear regression
- Basic non-parametric tests.
- Bayesian Analysis
- Markov chain Monte Carlo

Reading Materials

- For Monte Carlo Methods:
- https://artowen.su.domains/mc/
- For Parametric Inference:
- V. K. Rohatgi and A. K. Md. E. Saleh, An Introduction to Probability and Statistics, Wiley
- G. Casella and R. L. Berger, Statistical Inference, Duxbury Press
- B. L. S. Prakasa Rao, A First Course in Probability and Statistics, World Scientific/Cambridge University Press India

Class Times

- In general:
- Monday 3 pm to $3: 55 \mathrm{pm}$
- Tuesday 2 pm to $2: 55$ pm
- Friday 4 pm to $4: 55 \mathrm{pm}$
- Make-up class (if needed):
- Thursday 5 pm to $5: 55 \mathrm{pm}$

Exams and Grading Policy

- Will be informed.

Resource Persons

- Instructor:
- Ayon Ganguly (Email: aganguly@iitg.ac.in)
- Teaching Assistant:
- Aryan Bhambu (Email: a.bhambu@iitg.ac.in)

Probability

- Let Ω be a non-empty set.
- Let \mathcal{F} be a collection of subsets of Ω such that
(1) $\emptyset \in \mathcal{F}$.
(2) If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$.
(3) If $\left\{A_{i}\right\}_{i \geq 1} \subset \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
- A function $P: \mathcal{F} \rightarrow[0, \infty)$ is called a probability if
(1) $P(\Omega)=1$.
(2) If $\left\{A_{i}\right\}_{i \geq 1} \subset \mathcal{F}$ is a sequence of disjoint sets, then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

- The triplet (Ω, \mathcal{F}, P) is called probability space.

Conditional Probability

- Let H be an event with $P(H)>0$. For any arbitrary event A, the conditional probability of A given H is defined by

$$
P(A \mid H)=\frac{P(A \cap H)}{P(H)}
$$

- (Theorem of total probability) Let $\left\{E_{1}, E_{2} \ldots\right\}$ be a collection of mutually exclusive and exhaustive events with $P\left(E_{i}\right)>0, \forall i$.
Then for any event E,

$$
P(E)=\sum_{i} P\left(E \mid E_{i}\right) P\left(E_{i}\right)
$$

- (Bayes rule) Let $\left\{E_{1}, E_{2} \ldots\right\}$ be a collection of mutually exclusive and exhaustive events with $P\left(E_{i}\right)>0, \forall i$. Then for any event E with $P(E)>0$,

$$
P\left(E_{j} \mid E\right)=\frac{P\left(E \mid E_{j}\right) P\left(E_{j}\right)}{\sum_{i} P\left(E \mid E_{i}\right) P\left(E_{i}\right)} \quad j=1,2, \ldots
$$

Random Variable

- A function $X: \Omega \rightarrow \mathbb{R}$ is called a random variable if for all $x \in \mathbb{R}$,

$$
X^{-1}(-\infty, x]=\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}
$$

- The function $F: \mathbb{R} \rightarrow[0,1]$ defined by $F(x)=P(X \leq x)$ is called the cumulative distribution function (CDF) of X.
- CDF has following properties.
- F is non-decreasing.
- F is right continuous.
- $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$.
- $F(x-)=F(x)-P(X=x)$.

Discrete Random Variable

- A random variable X is said to have a discrete distribution if there exists an atmost countable set $S \subset \mathbb{R}$ such that $P(X \in S)=1$.
- Let X be a discrete random variable. The function $f: \mathbb{R} \rightarrow[0,1]$ defined by $f(x)=P(X=x)$ is called probability mass function (PMF).
- For a discrete random variable X,

$$
F(x)=\sum_{u \leq x, u \in S} f(u)
$$

Continuous Random Variable

- A random variable X is said to have a continuous distribution if there exists a non-negative function f on \mathbb{R} such that

$$
F(x)=\int_{-\infty}^{x} f(u) d u \quad \text { for all } \quad x \in \mathbb{R}
$$

- f is called probability density function (PDF) of X.
- CDF is continuous.
- $P(X=x)=0$ for all $x \in \mathbb{R}$.

Expectation

- Let X be a discrete random variable with PMF f. The expectation of X is defined by

$$
E(X)=\sum_{x \in S} x f(x),
$$

provided $\sum_{x \in S}|x| f(x)<\infty$.

- Let X be a continuous random variable with PDF f. The expectation of X is defined by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

provided $\int_{-\infty}^{\infty}|x| f(x) d x<\infty$.

Jointly Distributed Random Variables

- A function $X: \Omega \rightarrow \mathbb{R}^{n}$ is called a random vector if for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$,

$$
\boldsymbol{X}^{-1}\left(-\infty, x_{1}\right] \times\left(-\infty, x_{2}\right] \times \ldots \times\left(-\infty, x_{n}\right] \in \mathcal{F} .
$$

- For any random vector $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, the joint cumulative distribution function (JCDF) is defined by

$$
F_{X}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right),
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

Discrete Random Vector (DRV)

- A random vector (X, Y) is said to have a discrete distribution if there exists an atmost countable set $S_{X, Y} \subset \mathbb{R}^{2}$ such that $P((X, Y)=(x, y))>0$ for all $(x, y) \in S_{X, Y}$ and $P\left((X, Y) \in S_{X, Y}\right)=1$. $S_{X, Y}$ is called the support of (X, Y).
- Define a function $f_{X, Y}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f_{X, Y}(x, y)= \begin{cases}P(X=x, Y=y) & \text { if }(x, y) \in S_{X, Y} \\ 0 & \text { otherwise }\end{cases}
$$

The function $f_{X, Y}$ is called joint probability mass function (JPMF) of the DRV (X, Y).

Expectation of Function of DRV

- Let (X, Y) be a DRV with JPMF $f_{X, Y}$ and support $S_{X, Y}$. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then the expectation of $h(X, Y)$ is defined by

$$
E(h(X, Y))=\sum_{(x, y) \in S_{X, Y}} h(x, y) f_{X, Y}(x, y)
$$

provided $\sum_{(x, y) \in S_{X, Y}}|h(x, y)| f_{X, Y}(x, y)<\infty$.

Continuous Random Vector (CRV)

- A random vector (X, Y) is said to have a continuous distribution if there exists a non-negative integrable function $f_{X, Y}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t
$$

for all $(x, y) \in \mathbb{R}^{2}$.

- The function $f_{X, Y}$ is called the joint probability density function (JPDF) of (X, Y).

Expectation of Function of CRV

- Let (X, Y) be a CRV with JPDF $f_{X, Y}$. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then the expectation of $h(X, Y)$ is defined by

$$
E(h(X, Y))=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f_{X, Y}(x, y) d x d y
$$

provided $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|h(x, y)| f_{X, Y}(x, y) d x d y<\infty$.

Independent Random Variables

- The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to be independent if

$$
F_{X_{1}, X_{2}, \ldots, x_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} F_{X_{i}}\left(x_{i}\right)
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

- For DRV/CRV (X, Y), the condition of independence is equivalent to

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \text { for all }(x, y) \in \mathbb{R}^{2}
$$

- If X and Y are independent, then

$$
E(g(X) h(Y))=E(g(X)) E(h(Y))
$$

provided all the expectations exist.

Conditional Distribution for DRV

- Let (X, Y) be a DRV with JPMF $f_{X, Y}(\cdot, \cdot)$. Suppose the marginal PMF of Y is $f_{Y}(\cdot)$. The conditional PMF of X, given $Y=y$ is defined by

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

provided $f_{Y}(y)>0$.

- The conditional CDF of X given $Y=y$ is defined by

$$
F_{X \mid Y}(x \mid y)=P(X \leq x \mid Y=y)=\sum_{\left\{u \leq x:(u, y) \in S_{X, Y}\right\}} f_{X \mid Y}(u \mid y)
$$

provided $f_{Y}(y)>0$.

Conditional Expectation for DRV

- The conditional expectation of $h(X)$ given $Y=y$ is defined by

$$
E(h(X) \mid Y=y)=\sum_{x:(x, y) \in S_{X, Y}} h(x) f_{X \mid Y}(x \mid y)
$$

provided it is absolutely summable.

Conditional Distribution for CRV

- Let $f_{X, Y}$ be the JPDF of (X, Y) and let f_{Y} be the marginal PDF of Y. If $f_{Y}(y)>0$, then the conditional PDF of X given $Y=y$ is given by

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} .
$$

- The conditional expectation of $h(X)$ given $Y=y$ is defined for all values of y such that $f_{Y}(y)>0$ and given by

$$
E(h(X) \mid Y=y)=\int_{-\infty}^{\infty} h(x) f_{X \mid Y}(x \mid y) d x,
$$

provided it is absolutely integrable.

Computing Expectation by Conditioning

$$
E(X)=E E(X \mid Y)= \begin{cases}\sum_{y} E(X \mid Y=y) P(Y=y) & \text { for } Y \text { discrete } \\ \int_{-\infty}^{\infty} E(X \mid Y=y) f_{Y}(y) d y & \text { for } Y \text { continuous. }\end{cases}
$$

Computing Probability by Conditioning

$$
P(E)= \begin{cases}\sum_{y} P(E \mid Y=y) P(Y=y) & \text { for } Y \text { discrete } \\ \int_{-\infty}^{\infty} P(E \mid Y=y) f_{Y}(y) d y & \text { for } Y \text { continuous. }\end{cases}
$$

Transformation for DRV

Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a discrete random vector with JPMF $f_{\boldsymbol{X}}$ and support $S_{\boldsymbol{X}}$. Let $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $i=1,2, \ldots, k$. Let $Y_{i}=g_{i}(\boldsymbol{X})$ for $i=1,2, \ldots, k$. Then $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{k}\right)$ is a discrete random vector with JPMF

$$
f_{Y}\left(y_{1}, \ldots, y_{k}\right)= \begin{cases}\sum_{x \in A_{Y}} f_{X}(x) & \text { if }\left(y_{1}, \ldots, y_{k}\right) \in S_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

where $A_{y}=\left\{x \in S_{x}: g_{i}(x)=y_{i}, i=1, \ldots, k\right\}$ and $S_{Y}=\left\{\left(g_{1}(x), \ldots, g_{k}(x)\right): x \in S_{X}\right\}$.

Transformation for CRV

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a continuous random vector with JPDF $f_{\boldsymbol{X}}$.
(1) Let $y_{i}=g_{i}(x), i=1,2, \ldots, n$ be $\mathbb{R}^{n} \rightarrow \mathbb{R}$ functions such that

$$
y=g(x)=\left(g_{1}(x), \ldots, g_{n}(x)\right)
$$

is one-to-one. That means that there exists the inverse transformation $x_{i}=h_{i}(\boldsymbol{y}), i=1,2, \ldots, n$ defined on the range of the transformation.
(2) Assume that both the mapping and its' inverse are continuous. Assume that partial derivatives $\frac{\partial x_{i}}{\partial y_{j}}, i=1,2, \ldots, n$, $j=1,2, \ldots, n$, exist and are continuous. Assume that the Jacobian of the inverse transformation $J \doteq \operatorname{det}\left(\frac{\partial x_{i}}{\partial y_{j}}\right)_{i, j=1,2, \ldots, n} \neq 0$ on the range of the transformation.
Then $\boldsymbol{Y}=\left(g_{1}(\boldsymbol{X}), \ldots, g_{n}(\boldsymbol{X})\right)$ is a continuous random vector with JPDF $f_{\boldsymbol{Y}}(\boldsymbol{y})=f_{\boldsymbol{X}}\left(h_{1}(\boldsymbol{y}), \ldots, h_{n}(\boldsymbol{y})\right)|J|$.

Moment Generating Function

- Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random vector. The MGF of \boldsymbol{X} at $\boldsymbol{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is defined by

$$
M_{\boldsymbol{x}}(\boldsymbol{t})=E\left(\exp \left(\sum_{i=1}^{n} t_{i} X_{i}\right)\right)
$$

provided the expectation exists in a neighborhood of origin $\mathbf{0}=(0,0, \ldots, 0)$.

- Let \boldsymbol{X} and \boldsymbol{Y} be two n-dimensional random vectors. Let $M_{X}(t)=M_{Y}(t)$ for all t in a neighborhood around $\mathbf{0}$, then $X \stackrel{d}{=} Y$.

Modes of Convergence

- Almost sure convergence
- Convergence in probability
- Convergence in r-th mean
- Convergence in distribution

Almost Sure Convergence

- Let $\left\{X_{n}\right\}$ be a sequence of random variables defined on a probability space (Ω, \mathcal{F}, P). Let X be a random variable defined on the same probability space (Ω, \mathcal{F}, P). We say that X_{n} converges almost surely or with probability (w.p.) 1 to a random variable X if

$$
P\left(\left\{\omega \in \Omega: X_{n}(\omega) \rightarrow X(\omega)\right\}\right)=1 .
$$

Convergence in Probability

- Let $\left\{X_{n}\right\}$ be a sequence of random variables defined on a probability space (Ω, \mathcal{F}, P). Let X be a random variable defined on the same probability space (Ω, \mathcal{F}, P). We say that X_{n} converges in probability to a random variable X if for any $\epsilon>0$,

$$
P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Convergence in r-th Mean

- Let $\left\{X_{n}\right\}$ be a sequence of random variables defined on a probability space (Ω, \mathcal{F}, P). Let X be a random variable defined on the same probability space (Ω, \mathcal{F}, P). For $r=1,2,3, \ldots$, we say that X_{n} converges in $r^{t h}$ mean to a random variable X if

$$
E\left|X_{n}-X\right|^{r} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Convergence in Distribution

- Let $\left\{X_{n}\right\}$ be a sequence of RVs and X be a RV. Let $F_{n}(\cdot)$ and $F(\cdot)$ denote the CDF of X_{n} and X, respectively. We say that X_{n} converges in distribution to a random variable X if

$$
F_{n}(x) \rightarrow F(x) \text { as } n \rightarrow \infty
$$

for all x where F is continuous.

Relationship among Modes

Dist

Strong Law of Large Numbers

- Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. RVs with finite mean μ. Define $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then $\left\{\bar{X}_{n}\right\}$ converges to μ almost surely.

Central Limit Theorem

- Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. RVs with mean μ and variance $\sigma^{2}<\infty$. Then, $\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}$ converges to a standard normal random variable in distribution, i.e., as $n \rightarrow \infty$,

$$
P\left(\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \leq a\right) \rightarrow \Phi(a)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

Sampling Distribution Based on Normal

- A CRV X is said to have a Normal distribution or Gaussian distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$ if the PDF of X is given by

$$
f(x)=\left\{\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\} \quad \text { for all } x \in \mathbb{R}\right.
$$

- A CRV X is said to have a Gamma distribution with shape parameter $\alpha>0$ and rate parameter $\lambda>0$ if the PDF of X is given by

$$
f(x)= \begin{cases}\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

- For any positive integer n, a gamma distribution with $\alpha=\frac{n}{2}$ and $\lambda=\frac{1}{2}$ is also known as χ^{2}-distribution with n degrees of freedom.

Sampling Distribution Based on Normal

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. $N(0,1)$ random variables. Then

$$
\sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}
$$

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. $N\left(\mu, \sigma^{2}\right)$ random variables. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Then \bar{X} and S^{2} are independently distributed and

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \text { and } \quad \frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

Sampling Distribution Based on Normal

- A CRV X is said to have a Student's t-distribution (or simply, t-distribution) with n degrees of freedom if the PDF of X is given by

$$
f(t)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n \pi} \Gamma\left(\frac{n}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}} \quad \text { for } t \in \mathbb{R}
$$

- We will use the notation $X \sim t_{n}$ to denote that the RV X has a t-distribution with n degrees of freedom.

Sampling Distribution Based on Normal

- Let $X \sim N(0,1)$ and $Y \sim \chi_{n}^{2}$ be two independent RV . Then the RV $T=\frac{X}{\sqrt{Y / n}} \sim t_{n}$.
- Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. $N\left(\mu, \sigma^{2}\right)$ random variables. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Then

$$
\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}
$$

Sampling Distribution Based on Normal

- A CRV X is said to have a F-distribution with n and m degrees of freedom if the PDF of X is given by

$$
f(x)=\frac{1}{B\left(\frac{n}{2}, \frac{m}{2}\right)}\left(\frac{n}{m}\right)^{\frac{n}{2}} x^{\frac{n}{2}-1}\left(1+\frac{n}{m} x\right)^{-\frac{n+m}{2}} \quad \text { for } x>0
$$

- We will use the notation $X \sim F_{n, m}$ to denote that the RV X has a F-distribution with n and m degrees of freedom.

Sampling Distribution Based on Normal

- Let $X \sim \chi_{n}^{2}$ and $Y \sim \chi_{m}^{2}$ are two independent RVs. Then

$$
F=\frac{X / n}{Y / m}=\frac{m X}{n Y} \sim F_{n, m}
$$

- Let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and
$Y_{1}, Y_{2}, \ldots, Y_{m} \stackrel{i . i . d .}{\sim} N\left(\mu_{2}, \sigma_{2}^{2}\right)$. Also, assume that X_{i} 's and Y_{j}^{\prime} 's are independent. Let

$$
\begin{aligned}
& \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, S_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, \bar{Y}=\frac{1}{m} \sum_{i=1}^{m} Y_{i}, \text { and } \\
& S_{Y}^{2}=\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2} . \text { Then }
\end{aligned}
$$

$$
\frac{\sigma_{2}^{2} S_{X}^{2}}{\sigma_{1}^{2} S_{Y}^{2}} \sim F_{n-1, m-1}
$$

