STATISTICAL INFERENCE (MA862)

Lecture Slides

Topic 0: Introduction



Website

https://ayonganguly.github.io/ma682.html


https://ayonganguly.github.io/ma682.html

Syllabus

Review of probability theory
Monte Carlo Simulation
Point estimation

Interval estimation

Testing of hypotheses
Linear regression

Basic non-parametric tests.

Bayesian Analysis
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Markov chain Monte Carlo



Reading Materials

o For Monte Carlo Methods:
o https://artowen.su.domains/mc/
o For Parametric Inference:
o V. K. Rohatgi and A. K. Md. E. Saleh, An Introduction to
Probability and Statistics, Wiley
o G. Casella and R. L. Berger, Statistical Inference, Duxbury Press
o B. L. S. Prakasa Rao, A First Course in Probability and
Statistics, World Scientific/Cambridge University Press India


https://artowen.su.domains/mc/

Class Times

o In general:
o Monday 3 pm to 3:55 pm
o Tuesday 2 pm to 2:55 pm
o Friday 4 pm to 4:55 pm

o Make-up class (if needed):
o Thursday 5 pm to 5:55 pm



Exams and Grading Policy

o Will be informed.



Resource Persons

o Instructor:

o Ayon Ganguly (Email: aganguly@iitg.ac.in)
o Teaching Assistant:

o Aryan Bhambu (Email: a.bhambu@iitg.ac.in)



Probability

©

Let 2 be a non-empty set.

o Let F be a collection of subsets of €2 such that
@0erF
@ If A€ F, then A® € F.
@ If {Ai};5; CF, then UZ, A € F.

A function P : F — [0, co) is called a probability if
@ P(Q)=1
@ If {Aj},~; C Fis a sequence of disjoint sets, then

P (G A,-) = i P(A).
i=1 i=1

The triplet (Q, F, P) is called probability space.

(]
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Conditional Probability

o Let H be an event with P(H) > 0. For any arbitrary event A,
the conditional probability of A given H is defined by

P(AN H)
P(H)

o (Theorem of total probability) Let {E;, E; ...} be a collection of

mutually exclusive and exhaustive events with P(E;) > 0, Vi.
Then for any event E,

P(E) = >_ P(EIE)P(E).

P(AH) =

o (Bayes rule) Let {E;, E; ...} be a collection of mutually
exclusive and exhaustive events with P(E;) > 0,Vi. Then for
any event E with P(E) > 0,

P(E|E)P(E)

PEIE) = pEEypE) =12




Random Variable

o A function X : Q — R is called a random variable if for all
x € R,

X H—o0, x] ={weQ: X(w)<x}eF.

o The function F : R — [0, 1] defined by F(x) = P(X < x) is
called the cumulative distribution function (CDF) of X.
o CDF has following properties.
o F is non-decreasing.

o F is right continuous.
o lim F(x)=0and lim F(x)=1.

X—r—00 X—00

o F(x—) = F(x) — P(X = x).



Discrete Random Variable

o A random variable X is said to have a discrete distribution if
there exists an atmost countable set S C R such that
P(X €S)=1

o Let X be a discrete random variable. The function
f:R — [0, 1] defined by f(x) = P(X = x) is called probability
mass function (PMF).

o For a discrete random variable X,

Fix)= > f(u).

u<x,uesS



Continuous Random Variable

A random variable X is said to have a continuous distribution if
there exists a non-negative function f on R such that

o

F(x) :/ f(u)du forall xeR.

(]

f is called probability density function (PDF) of X.
o CDF is continuous.
P(X = x) =0 for all x € R.
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Expectation

o Let X be a discrete random variable with PMF f. The
expectation of X is defined by

= Z xf(x)

x€eS

provided Z x| f(x) < o0
x€ES
o Let X be a continuous random variable with PDF f. The
expectation of X is defined by

E(X) = /_ " xF(x)dx,

o0

provided [ |x| f(x)dx < oo.



Jointly Distributed Random Variables

o A function X : 2 — R" is called a random vector if for all
X1, X2, .oy Xp ER,

X Y(—o00, x1] X (=00, X5] X ... x (—00, x,] € F.

o For any random vector X = (X3, Xz, ..., X,), the joint
cumulative distribution function (JCDF) is defined by

Fx(xl,...,x,,):P(Xlgxl,...,X,,gx,,),

for all (xq, ..., x,) € R".



Discrete Random Vector (DRV)

o A random vector (X, Y) is said to have a discrete distribution if
there exists an atmost countable set Sx y C R? such that
P((X, Y)=(x,y)) >0 forall (x,y) € Sx,y and
P((X, Y) € Sx.y) =1. Sx v is called the support of (X, Y).

o Define a function fx y : R> = R by

P(X=x,Y=y) if(x,y) € Sx vy
0 otherwise.

fx,v(x, y) = {

The function fx, y is called joint probability mass function
(JPMF) of the DRV (X, Y).



Expectation of Function of DRV

o Let (X, Y) be a DRV with JPMF fx y and support Sx y. Let
h: R? — R. Then the expectation of h(X, Y) is defined by

E(h(X7 Y)) = Z h(X7 Y)fX,Y(X7 }/),

(x,¥)ESx, v

provided Z lh(x, y)|fx, v(x, y) < oo.

(va)esx, Y



Continuous Random Vector (CRV)

o A random vector (X, Y) is said to have a continuous
distribution if there exists a non-negative integrable function
fx.y : R? — R such that

X y
FX,Y(XJ):/ / fx v(t, s)dsdt

for all (x, y) € R?

o The function fx, y is called the joint probability density function
(JPDF) of (X, Y).



Expectation of Function of CRV

o Let (X, Y) be a CRV with JPDF fx y. Let h: R? = R. Then
the expectation of h(X, Y) is defined by

EX ) = [ [ b )yl )y

provided / / h(x, y)|fx, v(x, y)dxdy < oco.



Independent Random Variables

o The random variables Xi, X5, ..., X, are said to be independent
if

n
FX1,X2,...,X,1(X17 X2y e Xn) = H FX;(Xi)v
i=1

for all (x1, x2, ..., x,) € R™.

o For DRV/CRV (X, Y), the condition of independence is
equivalent to

fx v (x, y) = fx(x)fy(y) for all (x, y) € R

o If X and Y are independent, then

E(g(X)h(Y)) = E (g(X)) E (h(Y)),

provided all the expectations exist.



Conditional Distribution for DRV

o Let (X,Y) be a DRV with JPMF fx y(-,-). Suppose the
marginal PMF of Y is fy(-). The conditional PMF of X, given
Y = y is defined by

fX,Y(Xa.y)

fxv (xly) = o)

provided fy(y) > 0.
o The conditional CDF of X given Y = y is defined by

Fxy(Xly) = P(X <x|[Y =y)= > fqy(uly).

{ux:(u,y)eSx, v}

provided fy(y) > 0.



Conditional Expectation for DRV

o The conditional expectation of h(X) given Y = y is defined by

E(X)IY =y)= > hx)y(xly),

X:(va)ESX,Y

provided it is absolutely summable.



Conditional Distribution for CRV

o Let fx y be the JPDF of (X, Y) and let fy be the marginal PDF
of Y. If fy(y) > 0, then the conditional PDF of X given Y =y
is given by (.y)

fx,v(X,y
fX\Y(XD/) fy(}/)

o The conditional expectation of h(X) given Y = y is defined for
all values of y such that fy(y) > 0 and given by

oo

EGHOOY =) = [ 100y ()

—00

provided it is absolutely integrable.



Computing Expectation by Conditioning

Z E(X|Y =y)P(Y =y) forY discrete

E(X)=EE(X]Y) =< "
/ E(X|Y =y)fy(y)dy for Y continuous.



Computing Probability by Conditioning

ZP(EW:}/)P(Y:y) for Y discrete
_ y

/ P(E|Y = y)fy(y)dy for Y continuous.



Transformation for DRV

Let X = (X1, X5, ..., X,) be a discrete random vector with JPMF
fx and support Sx. Let g : R" - Rforalli=1,2, ..., k. Let
Yi=gi(X)fori=1,2, ..., k. Then Y =(Yq,..., Y) is a discrete
random vector with JPMF

fo f(yi, -, yk) € Sy
fy(yl, cooyg yk) = XEAy
0 otherwise,

where Ay = {x € Sx : gi(x)=y;,i=1, ..., k} and
Sy = {(&1(x), ... &(x))  x € Sx}.



Transformation for CRV

Let X = (X, ..., X,) be a continuous random vector with JPDF fx.
@ Lety,=gi(x), i=1,2, ..., nbe R" — R functions such that

y =&(x) = (&(x) ., &(x))

is one-to-one. That means that there exists the inverse
transformation x; = h;(y), i =1, 2, ..., n defined on the range
of the transformation.

@ Assume that both the mapping and its’ inverse are continuous.

Assume that partial derivatives 2% j=1,2, ..., n,
9y;

j=1,2, ..., n, exist and are continuous. Assume that the
Jacobian of the inverse transformation

J = det % # 0 on the range of the transformation.
YiJij=1,2,..,n

Then Y = (g1(X), ..., g,(X)) is a continuous random vector with
JPDF fy(y) = fx(h(y), -, ha(y))MI.



Moment Generating Function

o Let X = (X1, Xa,...,X,) be a random vector. The MGF of X
at t = (t1, ta, ..., t,) is defined by

Mx(t) = E(p<z ) )

provided the expectation exists in a neighborhood of origin
0=(0,0,...,0).

o Let X and Y be two n-dimensional random vectors. Let
Mx(t) = My(t) for all t in a neighborhood around 0, then

X2y,



Modes of Convergence

©

Almost sure convergence

(]

Convergence in probability

©

Convergence in r-th mean

o

Convergence in distribution



Almost Sure Convergence

o Let {X,} be a sequence of random variables defined on a
probability space (€2, F, P). Let X be a random variable defined
on the same probability space (2, F, P). We say that X,
converges almost surely or with probability (w.p.) 1 to a random
variable X if

P({weQ: X,(w) = X(w)}) =1.



Convergence in Probability

o Let {X,} be a sequence of random variables defined on a
probability space (€2, F, P). Let X be a random variable defined
on the same probability space (2, F, P). We say that X,
converges in probability to a random variable X if for any € > 0,

P(|X, — X| >€) -0 asn— oo.



Convergence in r-th Mean

o Let {X,} be a sequence of random variables defined on a
probability space (€2, F, P). Let X be a random variable defined
on the same probability space (Q, F,P). Forr=1,2,3, ..., we
say that X, converges in rf mean to a random variable X if

EIX,—X|"—0 asn— oo.



Convergence in Distribution

o Let {X,} be a sequence of RVs and X be a RV. Let F,(-) and
F(-) denote the CDF of X, and X, respectively. We say that X,
converges in distribution to a random variable X if

F.(x) = F(x) asn— oo

for all x where F is continuous.



Relationship among Modes

mean

NS

Prob

|

Dist



Strong Law of Large Numbers

o Let {X } be a sequence of i.i.d. RVs with finite mean p. Define
X, =2%" X Then {X,} converges to y almost surely.



Central Limit Theorem

o Let {X,} be a sequence of i.i.d. RVs with mean x and variance

\/E(Xn - /u)

o
random variable in distribution, i.e., as n — oo,

P (@ < a) 5 d(a) = /; \/%e_t2/2dt.

0° < 00. Then, converges to a standard normal



Sampling Distribution Based on Normal

o A CRV X is said to have a Normal distribution or Gaussian
distribution with mean i € R and variance o2 > 0 if the PDF of
X is given by

f) = {Zmen{-1(52)°} forallxeRr

o A CRV X is said to have a Gamma distribution with shape
parameter & > 0 and rate parameter A > 0 if the PDF of X is
given by

AY Ja—1_,-Xx
F(x) = Fa X € |fx>F)
0 otherwise.

o For any positive integer n, a gamma distribution with o = 7 and
A= % is also known as y2-distribution with n degrees of
freedom.



Sampling Distribution Based on Normal

o Let Xi, X5, ..., X, bei.id. N(0,1) random variables. Then

i X? ~ X
i=1

o Let X3, X, ..., X, be i.i.d. N(u,0?) random variables. Let
X =157 X;and $>= 257 (X; — X)?. Then X and S°

are independently distributed and

_ 2 -1 2
X~ N <u, %) and DS e

o2




Sampling Distribution Based on Normal

o A CRV X is said to have a Student’s t-distribution (or simply,
t-distribution) with n degrees of freedom if the PDF of X is

given by
n+1
e N
—1) (1+—) for t €R.
@ n
3

f(t) =

(

o We will use the notation X ~ t, to denote that the RV X has a
t-distribution with n degrees of freedom.



Sampling Distribution Based on Normal

o Let X ~ N(0, 1) and Y ~ x?2 be two independent RVs. Then
the RV T = X ~ tp.
VY/n

o Let X3, X, ..., X, be i.i.d. N(u,0?) random variables. Let
X =157 X and $2=-L-5" (X; — X)2. Then

n n—1

vn(X=n) .
S f=ile




Sampling Distribution Based on Normal

o A CRV X is said to have a F-distribution with n and m degrees
of freedom if the PDF of X is given by

1 n ! _ ntm
f(X):ﬁ <£)2X§71 <1+£X) 2 fOI’X>O.
B (3 %) \m i

o We will use the notation X ~ F, ,, to denote that the RV X has
a F-distribution with n and m degrees of freedom.



Sampling Distribution Based on Normal

o Let X ~ x2 and Y ~ x2, are two independent RVs. Then

poXin_mX g
Y/m nY ’
o Let X1, Xo, ..., Xy "% N(u1, 02) and
Yi, Yo, ..., Ynm S N(u2, 03). Also, assume that X;'s and Y;'s

are independent. Let L
X = %Z?:l Xi’ 5)2( = ﬁZ?:l(Xi - X)2’ Y = %27;1 \/’.’ and
Sy = iz (i = V)2 Then

055)%

252 ~ anl,mfl-
O1°y




