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Topic 0: Introduction



Website

https://ayonganguly.github.io/ma682.html

https://ayonganguly.github.io/ma682.html


Syllabus

Review of probability theory

Monte Carlo Simulation

Point estimation

Interval estimation

Testing of hypotheses

Linear regression

Basic non-parametric tests.

Bayesian Analysis

Markov chain Monte Carlo



Reading Materials

For Monte Carlo Methods:

https://artowen.su.domains/mc/

For Parametric Inference:

V. K. Rohatgi and A. K. Md. E. Saleh, An Introduction to
Probability and Statistics, Wiley
G. Casella and R. L. Berger, Statistical Inference, Duxbury Press
B. L. S. Prakasa Rao, A First Course in Probability and
Statistics, World Scientific/Cambridge University Press India

https://artowen.su.domains/mc/


Class Times

In general:

Monday 3 pm to 3:55 pm
Tuesday 2 pm to 2:55 pm
Friday 4 pm to 4:55 pm

Make-up class (if needed):

Thursday 5 pm to 5:55 pm



Exams and Grading Policy

Will be informed.



Resource Persons

Instructor:

Ayon Ganguly (Email: aganguly@iitg.ac.in)

Teaching Assistant:

Aryan Bhambu (Email: a.bhambu@iitg.ac.in)



Probability

Let Ω be a non-empty set.

Let F be a collection of subsets of Ω such that
1 ∅ ∈ F .
2 If A ∈ F , then Ac ∈ F .
3 If {Ai}i≥1 ⊂ F , then

⋃∞
i=1 Ai ∈ F .

A function P : F → [0, ∞) is called a probability if
1 P(Ω) = 1.
2 If {Ai}i≥1 ⊂ F is a sequence of disjoint sets, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai ).

The triplet (Ω, F , P) is called probability space.



Conditional Probability

Let H be an event with P(H) > 0. For any arbitrary event A,
the conditional probability of A given H is defined by

P(A|H) =
P(A ∩ H)

P(H)
.

(Theorem of total probability) Let {E1,E2 . . .} be a collection of
mutually exclusive and exhaustive events with P(Ei) > 0, ∀i .
Then for any event E ,

P(E ) =
∑
i

P(E |Ei)P(Ei).

(Bayes rule) Let {E1,E2 . . .} be a collection of mutually
exclusive and exhaustive events with P(Ei) > 0, ∀i . Then for
any event E with P(E ) > 0,

P(Ej |E ) =
P(E |Ej)P(Ej)∑
i P(E |Ei)P(Ei)

j = 1, 2, . . . .



Random Variable

A function X : Ω → R is called a random variable if for all
x ∈ R,

X−1(−∞, x ] = {ω ∈ Ω : X (ω) ≤ x} ∈ F .

The function F : R → [0, 1] defined by F (x) = P(X ≤ x) is
called the cumulative distribution function (CDF) of X .

CDF has following properties.

F is non-decreasing.
F is right continuous.
lim

x→−∞
F (x) = 0 and lim

x→∞
F (x) = 1.

F (x−) = F (x)− P(X = x).



Discrete Random Variable

A random variable X is said to have a discrete distribution if
there exists an atmost countable set S ⊂ R such that
P(X ∈ S) = 1.

Let X be a discrete random variable. The function
f : R → [0, 1] defined by f (x) = P(X = x) is called probability
mass function (PMF).

For a discrete random variable X ,

F (x) =
∑

u≤x , u∈S

f (u).



Continuous Random Variable

A random variable X is said to have a continuous distribution if
there exists a non-negative function f on R such that

F (x) =

∫ x

−∞
f (u)du for all x ∈ R.

f is called probability density function (PDF) of X .

CDF is continuous.

P(X = x) = 0 for all x ∈ R.



Expectation

Let X be a discrete random variable with PMF f . The
expectation of X is defined by

E (X ) =
∑
x∈S

xf (x),

provided
∑
x∈S

|x | f (x) < ∞.

Let X be a continuous random variable with PDF f . The
expectation of X is defined by

E (X ) =

∫ ∞

−∞
xf (x)dx ,

provided
∫∞
−∞ |x | f (x)dx < ∞.



Jointly Distributed Random Variables

A function X : Ω → Rn is called a random vector if for all
x1, x2, . . . , xn ∈ R,

X−1(−∞, x1]× (−∞, x2]× . . .× (−∞, xn] ∈ F .

For any random vector X = (X1, X2, . . . , Xn), the joint
cumulative distribution function (JCDF) is defined by

FX (x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) ,

for all (x1, . . . , xn) ∈ Rn.



Discrete Random Vector (DRV)

A random vector (X , Y ) is said to have a discrete distribution if
there exists an atmost countable set SX ,Y ⊂ R2 such that
P ((X , Y ) = (x , y)) > 0 for all (x , y) ∈ SX ,Y and
P ((X , Y ) ∈ SX ,Y ) = 1. SX ,Y is called the support of (X , Y ).

Define a function fX ,Y : R2 → R by

fX ,Y (x , y) =

{
P(X = x , Y = y) if (x , y) ∈ SX ,Y

0 otherwise.

The function fX ,Y is called joint probability mass function
(JPMF) of the DRV (X , Y ).



Expectation of Function of DRV

Let (X , Y ) be a DRV with JPMF fX ,Y and support SX ,Y . Let
h : R2 → R. Then the expectation of h(X , Y ) is defined by

E (h(X , Y )) =
∑

(x , y)∈SX , Y

h(x , y)fX ,Y (x , y),

provided
∑

(x , y)∈SX , Y

|h(x , y)|fX ,Y (x , y) < ∞.



Continuous Random Vector (CRV)

A random vector (X , Y ) is said to have a continuous
distribution if there exists a non-negative integrable function
fX ,Y : R2 → R such that

FX ,Y (x , y) =

∫ x

−∞

∫ y

−∞
fX ,Y (t, s)dsdt

for all (x , y) ∈ R2.

The function fX ,Y is called the joint probability density function
(JPDF) of (X , Y ).



Expectation of Function of CRV

Let (X , Y ) be a CRV with JPDF fX ,Y . Let h : R2 → R. Then
the expectation of h(X , Y ) is defined by

E (h(X , Y )) =

∫ ∞

−∞

∫ ∞

−∞
h(x , y)fX ,Y (x , y)dxdy ,

provided

∫ ∞

−∞

∫ ∞

−∞
|h(x , y)|fX ,Y (x , y)dxdy < ∞.



Independent Random Variables

The random variables X1, X2, . . . , Xn are said to be independent
if

FX1,X2, ...,Xn(x1, x2, . . . , xn) =
n∏

i=1

FXi
(xi),

for all (x1, x2, . . . , xn) ∈ Rn.

For DRV/CRV (X , Y ), the condition of independence is
equivalent to

fX ,Y (x , y) = fX (x)fY (y) for all (x , y) ∈ R2.

If X and Y are independent, then

E (g(X )h(Y )) = E (g(X ))E (h(Y )) ,

provided all the expectations exist.



Conditional Distribution for DRV

Let (X ,Y ) be a DRV with JPMF fX ,Y (·, ·). Suppose the
marginal PMF of Y is fY (·). The conditional PMF of X , given
Y = y is defined by

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
,

provided fY (y) > 0.

The conditional CDF of X given Y = y is defined by

FX |Y (x |y) = P(X ≤ x |Y = y) =
∑

{u≤x :(u,y)∈SX ,Y }

fX |Y (u|y) .

provided fY (y) > 0.



Conditional Expectation for DRV

The conditional expectation of h(X ) given Y = y is defined by

E (h(X )|Y = y) =
∑

x :(x ,y)∈SX ,Y

h(x)fX |Y (x |y) ,

provided it is absolutely summable.



Conditional Distribution for CRV

Let fX ,Y be the JPDF of (X ,Y ) and let fY be the marginal PDF
of Y . If fY (y) > 0, then the conditional PDF of X given Y = y
is given by

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
.

The conditional expectation of h(X ) given Y = y is defined for
all values of y such that fY (y) > 0 and given by

E (h(X )|Y = y) =

∫ ∞

−∞
h(x)fX |Y (x |y)dx ,

provided it is absolutely integrable.



Computing Expectation by Conditioning

E (X ) = EE (X |Y ) =


∑
y

E (X |Y = y)P(Y = y) for Y discrete∫ ∞

−∞
E (X |Y = y)fY (y)dy for Y continuous.



Computing Probability by Conditioning

P(E ) =


∑
y

P(E |Y = y)P(Y = y) for Y discrete∫ ∞

−∞
P(E |Y = y)fY (y)dy for Y continuous.



Transformation for DRV

Let X = (X1, X2, . . . , Xn) be a discrete random vector with JPMF
fX and support SX . Let gi : Rn → R for all i = 1, 2, . . . , k . Let
Yi = gi(X ) for i = 1, 2, . . . , k . Then Y = (Y1, . . . , Yk) is a discrete
random vector with JPMF

fY (y1, . . . , yk) =


∑
x∈Ay

fX (x) if (y1, . . . , yk) ∈ SY

0 otherwise,

where Ay = {x ∈ SX : gi(x) = yi , i = 1, . . . , k} and
SY = {(g1(x), . . . , gk(x)) : x ∈ SX}.



Transformation for CRV

Let X = (X1, . . . , Xn) be a continuous random vector with JPDF fX .

1 Let yi = gi(x), i = 1, 2, . . . , n be Rn → R functions such that

y = g(x) = (g1(x), . . . , gn(x))

is one-to-one. That means that there exists the inverse
transformation xi = hi(y), i = 1, 2, . . . , n defined on the range
of the transformation.

2 Assume that both the mapping and its’ inverse are continuous.
Assume that partial derivatives ∂xi

∂yj
, i = 1, 2, . . . , n,

j = 1, 2, . . . , n, exist and are continuous. Assume that the
Jacobian of the inverse transformation
J

.
= det

(
∂xi
∂yj

)
i ,j=1, 2, ..., n

̸= 0 on the range of the transformation.

Then Y = (g1(X ), . . . , gn(X )) is a continuous random vector with
JPDF fY (y) = fX (h1(y), . . . , hn(y))|J |.



Moment Generating Function

Let X = (X1,X2, . . . ,Xn) be a random vector. The MGF of X
at t = (t1, t2, . . . , tn) is defined by

MX (t) = E

(
exp

( n∑
i=1

tiXi

))
provided the expectation exists in a neighborhood of origin
0 = (0, 0, . . . , 0).

Let X and Y be two n-dimensional random vectors. Let
MX (t) = MY (t) for all t in a neighborhood around 0, then

X d
= Y .



Modes of Convergence

Almost sure convergence

Convergence in probability

Convergence in r -th mean

Convergence in distribution



Almost Sure Convergence

Let {Xn} be a sequence of random variables defined on a
probability space (Ω,F ,P). Let X be a random variable defined
on the same probability space (Ω, F , P). We say that Xn

converges almost surely or with probability (w.p.) 1 to a random
variable X if

P ({ω ∈ Ω : Xn(ω) → X (ω)}) = 1.



Convergence in Probability

Let {Xn} be a sequence of random variables defined on a
probability space (Ω,F ,P). Let X be a random variable defined
on the same probability space (Ω,F ,P). We say that Xn

converges in probability to a random variable X if for any ϵ > 0,

P(|Xn − X | > ϵ) → 0 as n → ∞.



Convergence in r -th Mean

Let {Xn} be a sequence of random variables defined on a
probability space (Ω,F ,P). Let X be a random variable defined
on the same probability space (Ω,F ,P). For r = 1, 2, 3, . . ., we
say that Xn converges in r th mean to a random variable X if

E |Xn − X |r → 0 as n → ∞.



Convergence in Distribution

Let {Xn} be a sequence of RVs and X be a RV. Let Fn(·) and
F (·) denote the CDF of Xn and X , respectively. We say that Xn

converges in distribution to a random variable X if

Fn(x) → F (x) as n → ∞

for all x where F is continuous.



Relationship among Modes

a.s mean

Prob

Dist



Strong Law of Large Numbers

Let {Xn} be a sequence of i.i.d. RVs with finite mean µ. Define
X n =

1
n

∑n
i=1 Xi . Then {X n} converges to µ almost surely.



Central Limit Theorem

Let {Xn} be a sequence of i.i.d. RVs with mean µ and variance

σ2 < ∞. Then,

√
n(X n − µ)

σ
converges to a standard normal

random variable in distribution, i.e., as n → ∞,

P

(√
n(X n − µ)

σ
≤ a

)
→ Φ(a) =

∫ a

−∞

1√
2π

e−t2/2dt.



Sampling Distribution Based on Normal

A CRV X is said to have a Normal distribution or Gaussian
distribution with mean µ ∈ R and variance σ2 > 0 if the PDF of
X is given by

f (x) =
{

1
σ
√
2π

exp
{
−1

2

(
x−µ
σ

)2}
for all x ∈ R.

A CRV X is said to have a Gamma distribution with shape
parameter α > 0 and rate parameter λ > 0 if the PDF of X is
given by

f (x) =

{
λα

Γ(α)
xα−1e−λx if x > 0

0 otherwise.

For any positive integer n, a gamma distribution with α = n
2
and

λ = 1
2
is also known as χ2-distribution with n degrees of

freedom.



Sampling Distribution Based on Normal

Let X1, X2, . . . , Xn be i.i.d. N(0, 1) random variables. Then

n∑
i=1

X 2
i ∼ χ2

n.

Let X1, X2, . . . , Xn be i.i.d. N(µ, σ2) random variables. Let
X = 1

n

∑n
i=1 Xi and S2 = 1

n−1

∑n
i=1(Xi − X )2. Then X and S2

are independently distributed and

X ∼ N

(
µ,

σ2

n

)
and

(n − 1)S2

σ2
∼ χ2

n−1.



Sampling Distribution Based on Normal

A CRV X is said to have a Student’s t-distribution (or simply,
t-distribution) with n degrees of freedom if the PDF of X is
given by

f (t) =
Γ(n+1

2
)

√
nπΓ(n

2
)

(
1 +

t2

n

)− n+1
2

for t ∈ R.

We will use the notation X ∼ tn to denote that the RV X has a
t-distribution with n degrees of freedom.



Sampling Distribution Based on Normal

Let X ∼ N(0, 1) and Y ∼ χ2
n be two independent RVs. Then

the RV T =
X√
Y /n

∼ tn.

Let X1, X2, . . . , Xn be i.i.d. N(µ, σ2) random variables. Let
X = 1

n

∑n
i=1 Xi and S2 = 1

n−1

∑n
i=1(Xi − X )2. Then

√
n
(
X − µ

)
S

∼ tn−1.



Sampling Distribution Based on Normal

A CRV X is said to have a F -distribution with n and m degrees
of freedom if the PDF of X is given by

f (x) =
1

B
(
n
2
, m

2

) ( n

m

) n
2
x

n
2
−1
(
1 +

n

m
x
)− n+m

2
for x > 0.

We will use the notation X ∼ Fn,m to denote that the RV X has
a F -distribution with n and m degrees of freedom.



Sampling Distribution Based on Normal

Let X ∼ χ2
n and Y ∼ χ2

m are two independent RVs. Then

F =
X/n

Y /m
=

mX

nY
∼ Fn,m.

Let X1, X2, . . . , Xn
i .i .d .∼ N(µ1, σ

2
1) and

Y1, Y2, . . . , Ym
i .i .d .∼ N(µ2, σ

2
2). Also, assume that Xi ’s and Yj ’s

are independent. Let
X = 1

n

∑n
i=1 Xi , S

2
X = 1

n−1

∑n
i=1(Xi − X )2,Y = 1

m

∑m
i=1 Yi , and

S2
Y = 1

m−1

∑m
i=1(Yi − Y )2. Then

σ2
2S

2
X

σ2
1S

2
Y

∼ Fn−1,m−1.


